
1

Exact Diffusion Strategy for Optimization by
Networked Agents

Kun Yuan, Bicheng Ying, Xiaochuan Zhao, and Ali H. Sayed
Department of Electrical Engineering, University of California, Los Angeles

Abstract—This work develops a distributed optimization
algorithm with guaranteed exact convergence for a broad
class of left-stochastic combination policies. The resulting
exact diffusion strategy is shown to have a wider stability
range and superior convergence performance than the
EXTRA consensus strategy. The exact diffusion solution
is also applicable to non-symmetric left-stochastic combi-
nation matrices, while most earlier developments on exact
consensus implementations are limited to doubly-stochastic
matrices or right-stochastic matrices; these latter policies
impose stringent constraints on the network topology.
Stability and convergence results are noted, along with
numerical simulations to illustrate the conclusions.

Index Terms—distributed optimization, diffusion, con-
sensus, exact convergence, stochastic matrix, balanced
policy.

I. INTRODUCTION AND MOTIVATION

This work deals with deterministic optimization problems
where a collection of N networked agents operate coopera-
tively to solve an aggregate optimization problem of the form:

wo = arg min
w∈RM

J o(w) =

N∑
k=1

Jk(w). (1)

In this formulation, each risk function Jk(w) is convex and
differentiable, while the aggregate cost J o(w) is strongly-
convex. All agents seek to determine the unique global
minimizer, wo, under the constraint that agents can only
communicate with their neighbors. Problems of this type find
applications in a wide range of areas.

There are several classes of distributed algorithms that can
be used to solve problem (1). In the primal domain, implemen-
tations that are based on gradient-descent methods are effective
and easy to implement. There are at least two prominent
variants under this class: the consensus strategy [1], [2] and
the diffusion strategy [3]–[5]. Primal algorithms are easy to
implement, and enjoy fast convergence rate under constant
step-size learning. These algorithms exhibit minimal bias and
converge towards a neighborhood of the optimal solution,
wo, of square-error size O(µ2). Another important family
of distributed algorithms are those based on the distributed

This work was supported in part by NSF grants CCF-
1524250 and ECCS-1407712. Emails:{kunyuan,ybc,xiaochuanzhao,
sayed}@ucla.edu

alternating direction method of multipliers (ADMM) [6] and
its variants [7]. It is shown in [8] that distributed ADMM with
constant penalty coefficients can converge exponentially fast
to the exact global solution wo. However, distributed ADMM
solutions are computationally expensive since they necessitate
the solution of optimal sub-problems at each iteration.

In the work [9], a modified implementation of consensus
iterations, referred to as EXTRA, was shown to remove the
bias and converge to the exact minimizer wo rather than
to an O(µ2)−neighborhood around wo. Motivated by [9],
other variations with similar properties were proposed in
[10], [11]. These variations, compared to EXTRA, have two
information combinations per recursion, which can be a burden
when communication resources are limited. Moreover, while
EXTRA [9] and ADMM-based algorithms [6], [7] require
symmetric and doubly-stochastic combination matrices, the
variations DIGing [10], ExtraPush [12], and Aug-DGM [11]
require right-stochastic combination matrices. All these types
of combination matrices impose stringent constraints on the
network topology and communication protocols because each
agent will need to be aware of its neighbors in advance.

The current work is motivated by the following consider-
ations. The result in [9] shows that the EXTRA technique
resolves the bias problem in consensus implementations. How-
ever, it is known that diffusion strategies outperform consensus
strategies [3], [4]. Would it then be possible to correct the
bias in the diffusion implementation and attain an algorithm
that is superior to EXTRA in terms of a wider stability
range and better performance/convergence? We answer this
question in the affirmative in this article and provide three
main contributions: (a) first, we develop a diffusion strategy
that attains exact convergence for deterministic optimization
problems; (b) we show that this strategy has a wider stability
range and enhanced performance than EXTRA; and (c) we
show that the proposed strategy is applicable to the larger,
and also more practical class of left-stochastic matrices.

II. DIFFUSION AND COMBINATION POLICIES

We start our exposition by considering a more general
optimization problem than (1). Specifically, we introduce a
weighted aggregate cost of the form:

w? = arg min
w∈RM

J ?(w) =

N∑
k=1

qkJk(w), (2)

for some positive coefficients {qk}. Problem (1) is a special
case when the qk are uniform, i.e., q1 = q2 = . . . = qN , in

2

which case w? = wo. Note also that the aggregate cost J ?(w)
is strongly-convex when J o(w) is strongly-convex. To solve
problem (2) over a strongly-connected network of agents, we
consider the standard (Adapt-then-Combine) diffusion strategy
[3]–[5], which takes the following form:

ψk,i = wk,i−1 − µk∇Jk(wk,i−1), (3)

wk,i =
∑
`∈Nk

a`kψ`,i, (4)

where the {µk}Nk=1 are positive step-sizes, and the
{a`k}N`=1,k=1 are nonnegative combination weights satisfying∑

`∈Nk

a`k = 1. (5)

Here, the symbol Nk denotes the set of neighbors of agent k,
and ∇Jk(·) denotes the gradient vector of Jk relative to w. It
follows from (5) that A = [a`k] ∈ RN×N is a left-stochastic
matrix. It also follows from the strong-connectedness of the
graph that the matrix A is primitive. This implies, in view
of the Perron-Frobenius theorem [4], that there exists an
eigenvector p with positive entires satisfying

Ap = p, 1T
Np = 1, p � 0. (6)

We refer to p as the Perron eigenvector of A.
Next, we introduce the vector q = col{q1, . . . , qN} ∈ RN ,

where qk is the weight associated with Jk(w) in (2). We
also let β > 0 denote the constant that ensures the following
equality:

q = β diag{µ1, µ2, · · · , µN}p. (7)
Condition (7) is not restrictive and a constant β can be chosen
to ensure (7) as follows. Note first that β should satisfy β =
qk/(pkµk) for all k. To make this expression for β independent
of k, we assume the step-sizes are parameterized (or selected)
as µk = µoqk/pk for some small µo > 0. Then, β = 1/µo,
which is independent of k, and relation (7) is satisfied.

It was shown by Theorem 3 in [13] that under (7), the
iterates wk,i generated through the diffusion recursion (3)-(4)
will approach w? in the following sense:

lim sup
i→∞

‖w? − wk,i‖2 = O(µ2
max), ∀ k = 1, · · · , N, (8)

where µmax = max{µ1, · · · , µN}. Result (8) is reassuring: it
ensures that the squared-error is small whenever µmax is small;
moreover, the result holds for any left-stochastic matrix.

Moving forward, we will focus on an important subclass
of left-stochastic matrices, namely, those that satisfy a mild
local balance condition (we shall refer to these matrices as
balanced left-stochastic policies). The point is that we will
be able to derive distributed optimization strategies with exact
convergence guarantees for this sub-class of matrices (which
is already significantly more relaxed than earlier results from
the literature that are limited to the more stringent right- or
doubly-stochastic class of matrices). We will also comment on
how critical the balanced condition is. Thus, let P = diag{p}
correspond to the diagonal matrix constructed from p. The
matrix A is said to be balanced if it holds that

a`k pk = ak` p`, k, ` = 1, · · · , N (9)
or, equivalently, in matrix form:

PAT = AP. (10)

TABLE I

Properties of balanced primitive left-stochastic matrices A

1. A is diagonalizable with real eigenvalues in (−1, 1];
2. A has a single eigenvalue at 1;
3. AP − P + IN is symmetric, primitive, doubly-stochastic;
4. P −AP is positive semi-definite;
5. null(P −AP) = span(1N);
6. null(P −AP) = span{1N ⊗ IM}.

Relations of the form (9) are common in the context of Markov
chains. They are used there to model an equilibrium scenario
for the probability flux into the Markov states, where the {a`k}
represent the transition probabilities from states ` to k and the
{p`} denote the steady-state distribution for the Markov chain.

We can provide an interpretation for (9) in the context of
multi-agent networks by considering two generic agents, k
and `, from an arbitrary network, as shown in Fig. 1. The
coefficient a`k is used by agent k to scale information arriving
from agent `. Therefore, this coefficient reflects the amount of
confidence that agent k has in the information arriving from
agent `. Likewise, for ak`. Since the combination policy is not
necessarily symmetric, it will hold in general that a`k 6= ak`.
However, agent k can re-scale the incoming weight a`k by pk,
and likewise for agent `, so that the local balance condition
(9) requires each pair of rescaled weights to match each other.
We can interpret a`k to represent the (fractional) amount of
information flowing from ` to k and pk to represent the price
paid by agent k for that information. Expression (9) is then
requiring the information-cost benefit to be equitable across
all linked agents.

Fig. 1. Illustration of the local balance condition (9).

It can be shown that the local balancing condition (9) is
satisfied by many important left-stochastic policies such as
the Hastings rule, the averaging rule, the relative-degree rule,
and various doubly-stochastic rules such as the Laplacian rule,
maximum-degree rule, and the Metropolis rule [4]. It can
be further shown that balanced left-stochastic matrices have
several useful properties, which are listed in Table I without
proof for lack of space. In the table, P = P ⊗ IM and
A = A⊗ IM .
One may wonder whether exact convergence can be guar-

anteed for left-stochastic matrices that are not necessarily
balanced. It turns out that one can provide examples of com-
bination matrices that are left-stochastic (but not necessarily
balanced) for which exact convergence occurs and others
for which exact convergence does not not occur. In other
words, exact convergence is not always guaranteed beyond
the balanced class.

III. DEVELOPMENT OF EXACT DIFFUSION

In this section, we reformulate the unconstrained optimiza-
tion problem (2) into the equivalent constrained problem (17),

3

which will be solved using a penalized formulation. This
derivation will help clarify the origin of the O(µ2

max) bias
from (8) in the standard diffusion implementation.

To begin with, note that the unconstrained problem (2) is
equivalent to the following constrained problem:

min
{wk}

N∑
k=1

qkJk(wk), s.t. w1 = · · · = wN . (11)

Let W ∆
= col{w1, · · · , wN}∈RNM and

J ?(W)
∆
=

N∑
k=1

qkJk(wk), J o(W)
∆
=

N∑
k=1

Jk(wk). (12)

Using Property 6 from Table I, problem (11) is equivalent to

min
W∈RNM

J ?(W), s.t.
1

2
(P −AP)W = 0. (13)

From Property 3 in Table I, we can decompose
1
2 (P −AP) = UΣUT, (14)

where Σ ∈ RN×N is a non-negative diagonal matrix and U ∈
RN×N is an orthogonal matrix. If we introduce the symmetric
square-root matrix

V
∆
= UΣ1/2UT ∈ RN×N , V ∆

= V ⊗ IM , (15)
then it holds that

P −AP = 2V 2, P −AP = 2V2. (16)
Using (16), problem (13) can be verified to be equivalent to

min
W∈RNM

J ?(W), s.t. VW = 0. (17)

In this way, we have transformed the original problem (2) to
the equivalent constrained problem (17).

We now apply the primal-dual saddle point method to solve
problem (17) directly. For this purpose, we first introduce the
augmented Lagrangian function:

La(W, Y) = J ?(W) +
1

α
YTVW +

1

2α
‖VW‖2

(16)
= J ?(W)+

1

α
YTVW+

1

4α
WT(P−PAT)W, (18)

where Y = col{y1, · · · , yN} ∈ RNM is the dual variable. The
standard primal-dual saddle point algorithm [14] will then be:

Wi = Wi−1 − α∇WLa(Wi−1, Yi−1),

Yi = Yi−1 + α

(
1

α
VWi

)
= Yi−1 + VWi.

(19)

The first recursion in (19) is the primal descent step while the
second is the dual ascent step. Now, instead of performing the
descent step directly as shown in the first recursion in (19),
we perform it in an incremental manner. Thus, let

D(W)
∆
=

1

4α
WT(P−PAT)W, C(W, Y)

∆
=

1

α
YTVW, (20)

so that
La(W, Yi−1) = J ?(W) +D(W) + C(W, Yi−1). (21)

The diagonally incremental recursion that corresponds to the
first step in (19) is then:

θi = Wi−1 − αP−1∇J ?(Wi−1),

φi = θi − αP−1∇D(θi) =
IMN +AT

2
θi = AT

θi,

Wi = φi−αP−1∇WC(φi, Yi−1) = φi−P−1VYi−1,

(22)

where in the second recursion of (22) we introduced

A ∆
= (IMN +A)/2. (23)

Algorithm 1 Exact diffusion strategy for agent k

Setting: Let A = (IN +A)/2, wk,−1 be arbitrary and ψk,−1 = wk,−1

Repeat for i = 0, 1, 2, · · ·
ψk,i = wk,i−1 − µk∇Jk(wk,i−1), (adaptation) (24)

φk,i = ψk,i + wk,i−1 − ψk,i−1, (correction) (25)

wk,i =
∑
`∈Nk

a`kφ`,i. (combination) (26)

We further let α = 1/β, where β is the constant in relation
(7). It can be verified that

αP−1∇J ?(Wi−1) =M∇J o(Wi−1), (27)
whereM=diag{µ1, · · · , µN}⊗IM . With (27), if we substitu-
te the first two recursions into the third one in (22), we get

Wi = AT
(
Wi−1−M∇J o(Wi−1)

)
− P−1VYi−1. (28)

Replacing (19) with (28), the primal-dual saddle point recur-
sion (19) becomesWi = AT

(
Wi−1−M∇J o(Wi−1)

)
− P−1VYi−1

Yi = Yi−1 + VWi

(29)

Recursion (29) is the primal-dual form of the exact diffusion
recursion we are seeking. For the initialization step, we set
y−1 = 0 and W−1 to be any value, and hence for i = 0:W0 = AT

(
W−1−M∇J o(W−1)

)
,

Y0 = VW0.
(30)

We can rewrite (29) in a simpler form by eliminating the dual
variable Y from the first recursion:

Wi=A
T
(
2Wi−1−Wi−2−M

(
∇J o(Wi−1)−∇J o(Wi−2)

))
(31)

Recursion (31) is the primal version of the exact diffusion. For
comparison purposes, the EXTRA consensus recursion takes
the following form but only when A is symmetric, doubly-
stochastic and all agents employ the same step-size µ, whereas
the exact diffusion recursion (31) is applicable more broadly to
possibly non-symmetric balanced left-stochastic matrices and
allows for heterogeneous step-sizes):

We
i=A

(
2We

i−1−We
i−2

)
−µ
(
∇J o(We

i−1)−∇J o(We
i−2)
)
, (32)

where we use the notation We
i to refer to the primal iterates

in the EXTRA implementation.
We can rewrite the exact diffusion recursion (31) in a

distributed form that resembles (3)–(4) more closely, as listed
in Algorithm 1, where we denote the entries of A by a`k.
It is observed that the resulting strategy resembles (3)–(4) to
great extent, with the addition of a “correction” step between
the adaptation and combination step. Note that the exact
diffusion recursions (24)–(26) are synchronous, and they solve
the differentiable problem (2). However, by following the idea
in [15], it is easy to extend it to the asynchronous version and
adjust them to solve the non-differentiable problem.

IV. CONVERGENCE ANALYSIS

It can be shown that the iterates wk,i that result from the
exact diffusion implementation (24)–(26) converge exactly to
w? at an exponential rate. The following two auxiliary lemmas,

4

stated without proof, prepare for the statement of the general
convergence result.

Lemma 1 (OPTIMALITY CONDITION). If condition (7) holds
and block vectors (W?, Y?) exist that satisfy:

ATM∇J o(W?) + P−1VY? = 0, (33)

VW? = 0. (34)
then it holds that the block entries of W? satisfy:

w?
1 = w?

2 = · · · = w?
N = w? (35)

where w? is the unique solution to problem (2). �

Observe that since J ?(w) is assumed strongly-convex, then
the solution to problem (2), w?, is unique, and hence W?

is also unique. However, since V is rank-deficient, there can
be multiple solutions Y? satisfying (35). Using an argument
similar to [8], [9], we can show that among all possible Y?,
there is a unique solution Y?o lying in the column span of V .

Lemma 2 (PARTICULAR SOLUTION PAIR). When condition
(7) holds and J o(w) defined by (1) is strongly-convex, there
exists a unique pair of variables (W?, Y?o), in which Y?o lies in
the range space of V , that satisfies conditions (33)-(34). �

Using the above two lemmas, we can show that (Wi, Yi)
generated through the exact diffusion recursion (29) will
converge exponentially fast to (W?, Y?o). We first introduce a
common assumption.

Assumption 1 (CONDITIONS ON COST FUNCTIONS). Each
Jk(w) is twice differentiable, and its Hessian matrix satisfies
∇2Jk(w) ≤ δIM . Moreover, there exists at least one agent ko
such that Jko

(w) is ν-strongly convex, i.e. ∇2Jko
(w) > νIM .

�

We first define
W? ∆

= 1N ⊗ w?, W̃i
∆
= W? −Wi, Ỹi

∆
= Y?o − Yi. (36)

Theorem 1 (LINEAR CONVERGENCE). Suppose each cost
function Jk(w) satisfies Assumption 1, the left-stochastic ma-
trix A satisfies the local balance condition (9), and also
condition (7) holds. Then, there exists a finite upper bound
µ̄ > 0 such that exact diffusion recursion (29), or equivalently
(24)–(26), converges exponentially fast to (W?, Y?o) for step-
sizes satisfying

µmax ≤ µ̄, (37)
Moreover, the convergence rate for the error variables is
exponential and given by∥∥∥∥[W̃i

Ỹi

]∥∥∥∥2

≤ Cρi, (38)

for some C > 0 and ρ = 1−O(µmax). �

Expressions for µ̄ and ρ are derived in [16]. It is worth
commenting on how this result compares to what is known for
exact solutions that are based instead on consensus strategies.
For instance, it was shown in [9], [16] that EXTRA consensus
is stable for a range similar to (37), namely, µ < µ̄e for some
µ̄e. It was however shown in [16] that µ̄ > µ̄e, which suggests
that exact diffusion has a provably wider stability range (as
illustrated by the simulation examples later in this article).

1

2

3

4

5

6

7

8 9

10

11

12

13

14

15

16

17

18

19

20

Fig. 2. Network topology used in the simulations.

1000 2000 3000 4000 5000 6000 7000 8000
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

iteration

R
e
la

ti
v
e
 e

rr
o
r

Exact Diffuion (24)−(26)

Diffusion (3)−(4)

Fig. 3. Convergence comparison between standard diffusion and exact
diffusion for distributed logistic regression (42).

Example. We illustrate this behavior by considering the fol-
lowing quadratic example resulting from a mean-square-error
network [4]:

min
w∈RM

1

2

N∑
k=1

(
wTRu,kw − 2rTdu,kw

)
, (39)

where Ru,k is positive definite. We can employ either the exact
diffusion recursion (31) or the EXTRA recursion (32) to solve
(39). To illustrate the stability issue, it is sufficient to consider
a network with 2 agents and with diagonal Hessian matrices:

Ru,1 = Ru,2 = σ2IM . (40)
We assume the agents use the combination weights {a, 1−a}
with a ∈ (0, 1), so that

A =

[
a 1− a

1− a a

]
∈ R2×2, (41)

It can be verified for this example that exact diffusion is
mean-square-error stable for any positive step-size satisfying
µσ2 < 2, while EXTRA consensus is unstable for step-sizes
satisfying µσ2 ≥ 1+a. But since 1+a < 2, we conclude that
exact diffusion has a larger range of stability than EXTRA.
In particular, if agents place small weights on their own data,
i.e., when a ≈ 0, the stability range for exact diffusion will
be almost twice as large as that of EXTRA consensus. �

V. NUMERICAL EXPERIMENTS

In this section we illustrate the performance of the exact dif-
fusion algorithm (24)–(26). In all figures, the y-axis indicates
the relative error, i.e., ‖Wi−Wo‖2/‖W0−Wo‖2, where Wi =
col{w1,i, · · · , wN,i} ∈ RNM and Wo = col{wo, · · · , wo} ∈
RNM . All simulations employ the connected network topology
with N = 20 nodes shown in Fig. 2.

We consider a pattern classification scenario. Each agent k
holds local data samples {hk,j , γk,j}Lj=1, where hk,j ∈ RM

5

0 5000 10000 15000
10

−20

10
−15

10
−10

10
−5

10
0

rounds of communication

R
e
la

ti
v
e
 e

rr
o
r

Exact Diffusion (24)−(26)

EXTRA [9]

DIGing [10]

Aug−DGM [11]

0 1000 2000 3000 4000 5000 6000 7000 8000
10

−20

10
−15

10
−10

10
−5

10
0

rounds of communication

R
e
la

ti
v
e
 e

rr
o
r

Exact Diffusion (24)−(26)

EXTRA [9]

DIGing [10]

Aug−DGM [11]

Fig. 4. Convergence comparison between exact diffusion (31), EXTRA [9],
DIGing [10], and Aug-DGM [11] for distributed logistic regression problem
(42). The step-size is chosen as µ = 0.01 in the top plot, and, µ = 0.04 in
the bottom plot.

is a feature vector and γk,j ∈ {−1,+1} is the corresponding
label. Moreover, the value L is the number of local samples at
each agent. All agents will cooperatively solve the regularized
logistic regression problem:

min
w∈RM

N∑
k=1

[1

L

L∑
`=1

ln
(
1+exp(−γk,`hTk,`w)

)
+
ρ

2
‖w‖2

]
. (42)

In the experiments, we set N = 20, M = 30, and L = 50. For
local data samples {hk,j , γk,j}Lj=1 at agent k, each hk,j is gen-
erated from the standard normal distribution N (0; Λ), where Λ
is a diagonal matrix with each diagonal entry generated from
the uniform distribution U(0, 1). To generate γk,j , we first
generate an auxiliary random vector w0 ∈ RM with each entry
following N (0, 1). Next, we generate γk,j from a uniform
distribution U(0, 1). If γk,j ≤ 1/[1 + exp(−(hk,j)

Tw0)] then
γk,j is set as +1; otherwise γk,j is set as −1. We set ρ = 0.1.

We first compare the convergence behavior of standard dif-
fusion (3)-(4) and exact diffusion (24)-(26). The left-stochastic
matrix A is generated through the averaging rule, and each
agent k employs µk = µo/nk. The convergence of both algori-
thms is shown in Fig. 3. The step-size µo =0.05. It is observed
that exact diffusion corrects the bias in standard diffusion.

In the second experiment, we compare exact diffusion with
EXTRA consensus [9], DIGing [10], and Aug-DGM [11].
These algorithms require symmetric doubly-stochastic matri-
ces or right-stochastic matrices. Therefore, we now consider
a symmetric doubly stochastic matrix (the Metropolis rule).
Moreover, there are two information combinations per iteration
in DIGing and Aug-DGM algorithms, and each information
combination corresponds to one round of communication. In
comparison, there is only one information combination (or
round of communication) in EXTRA consensus and exact
diffusion. For fairness we will compare the algorithms based
on the rounds of communications, rather than iterations. All

agents employ the same step-size µ. When µ = 0.01 is chosen
in the top plot in Fig. 4, it is observed that all four algorithms
converge exponentially to the solution wo, and exact diffusion
and EXTRA are almost twice as fast as DIGing and Aug-
DGM. When a larger step-size µ = 0.04 is chosen in the
bottom plot in Fig. 4, it is observed that both exact diffusion
and Aug-DGM are still able to converge linearly to wo, while
EXTRA and DIGing fail to do so. Moreover, exact diffusion
is considerably faster than Aug-DGM.

REFERENCES

[1] A. Nedić and A. Ozdaglar, “Distributed subgradient methods
for multi-agent optimization,” IEEE Transactions on Automatic
Control, vol. 54, no. 1, pp. 48–61, 2009.

[2] S. Kar, J. M. F. Moura, and K. Ramanan, “Distributed
parameter estimation in sensor networks: Nonlinear observation
models and imperfect communication,” IEEE Transactions on
Information Theory, vol. 58, no. 6, pp. 3575–3605, 2012.

[3] A. H. Sayed, “Adaptive networks,” Proceedings of the IEEE,
vol. 102, no. 4, pp. 460–497, April 2014.

[4] A. H. Sayed, “Adaptation, learning, and optimization over
networks,” Foundations and Trends in Machine Learning, vol.
7, no. 4-5, pp. 311–801, 2014.

[5] J. Chen and A. H. Sayed, “On the learning behavior of adaptive
networks—Part I: Transient analysis,” IEEE Transactions on
Information Theory, vol. 61, no. 6, pp. 3487–3517, 2015.

[6] J. F. Mota, J. M. Xavier, P. M. Aguiar, and M. Püschel,
“D-ADMM: A communication-efficient distributed algorithm
for separable optimization,” IEEE Transactions on Signal
Processing, vol. 61, no. 10, pp. 2718–2723, 2013.

[7] Q. Ling, W. Shi, G. Wu, and A. Ribeiro, “DLM: Decentralized
linearized alternating direction method of multipliers,” IEEE
Transactions on Signal Processing, vol. 63, no. 15, pp. 4051–
4064, 2015.

[8] W. Shi, Q. Ling, K. Yuan, G. Wu, and W. Yin, “On the
linear convergence of the ADMM in decentralized consensus
optimization,” IEEE Transactions on Signal Processing, vol.
62, no. 7, pp. 1750–1761, 2014.

[9] W. Shi, Q. Ling, G. Wu, and W. Yin, “EXTRA: An exact
first-order algorithm for decentralized consensus optimization,”
SIAM Journal on Optimization, vol. 25, no. 2, pp. 944–966,
2015.

[10] A. Nedić, A. Olshevsky, and W. Shi, “Achieving geometric con-
vergence for distributed optimization over time-varying graphs,”
arXiv:1607.03218, Jul. 2016.

[11] A. Nedić, A. Olshevsky, W. Shi, and C. A. Uribe, “Geomet-
rically convergent distributed optimization with uncoordinated
step-sizes,” arXiv:1609.05877, Sep. 2016.

[12] J. Zeng and W. Yin, “ExtraPush for convex smooth decentral-
ized optimization over directed networks,” arXiv:1511.02942,
Nov. 2015.

[13] J. Chen and A. H. Sayed, “Distributed pareto optimization via
diffusion strategies,” IEEE Journal of Selected Topics in Signal
Processing, vol. 7, no. 2, pp. 205–220, 2013.

[14] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed
Computation: Numerical Methods, Prentice Hall, NJ, 1989.

[15] T. Wu, K. Yuan, Q. Ling, W. Yin, and A. H. Sayed, “Decen-
tralized consensus optimization with asynchrony and delays,”
to appear in IEEE Transactions on Signal and Information
Processing over Networks. See also arXiv:1612.00150, Dec.
2016.

[16] K. Yuan, B. Ying, X. Zhao, and A. H. Sayed, “Exact dffusion
for distributed optimization and learning – Part II: Convergence
analysis,” arXiv:1702.05142, Feb. 2017.

