
Coordinate-Descent Adaptation over Networks
Chengcheng Wang∗†, Yonggang Zhang∗, Bicheng Ying‡ and Ali H. Sayed‡

∗College of Automation, Harbin Engineering University
†School of Electrical and Electronic Engineering, Nanyang Technological University

‡Department of Electrical Engineering, University of California, Los Angeles

Abstract—This work examines the mean-square error perfor-
mance of diffusion stochastic algorithms under a generalized
coordinate-descent scheme. In this setting, the adaptation step
by each agent is limited to a random subset of the coordinates of
its stochastic gradient vector. The selection of which coordinates
to use varies randomly from iteration to iteration and from
agent to agent across the network. Such schemes are useful in
reducing computational complexity in power-intensive large data
applications. The results show that the steady-state performance
of the learning strategy is not affected, while the convergence
rate suffers some degradation. The results provide yet another
indication of the resilience and robustness of adaptive distributed
strategies.

Index Terms—Coordinate descent, stochastic partial update,
computational complexity, diffusion strategies, stochastic gradi-
ent algorithms.

I. INTRODUCTION AND RELATED WORK

Consider a strongly-connected network of N agents, where
information can flow in either direction between any two
connected agents and, moreover, there is at least one self-loop
in the topology [1, p. 436]. We associate a strongly-convex
differentiable risk, Jk(w), with each agent k and assume all
costs share a common minimizer, wo ∈ RM . This case models
important situations where agents work cooperatively towards
the same goal. The objective of the network is to determine
the unique minimizer wo of the aggregate cost:

Jglob(w) !
N∑

k=1

Jk(w) (1)

It is further assumed that the individual cost functions, Jk(w),
are each twice-differentiable and satisfy

0 < νdIM ≤ ∇2
wJk(w) ≤ δdIM (2)

where ∇2
wJk(w) denotes the M×M Hessian matrix of Jk(w)

with respect to w, νd ≤ δd are positive parameters, and IM
is the M × M identity matrix. In addition, for matrices A
and B, the notation A ≤ B denotes that B − A is positive
semi-definite. The condition in (2) is automatically satisfied
by important cases of interest, such as logistic regression or
mean-square-error designs [1], [2].

The agents can work cooperatively in an adaptive manner
to seek the minimizer wo of problem (1) by applying the

This work was performed while C. Wang was a visiting student at the
UCLA Adaptive Systems Laboratory. The work of C. Wang was supported
in part by a Chinese Government Scholarship. The work of Y. Zhang was
supported in part by the National Natural Science Foundation of China
(61371173). The work of B. Ying and A. H. Sayed was supported in part
by NSF grants CCF-1524250 and ECCS-1407712.

following adapt-then-combine (ATC) form of the diffusion
strategy [1], [2]:

⎧
⎪⎨

⎪⎩

ψk,i = wk,i−1 − µk∇̂wTJk(wk,i−1)

wk,i =
∑

ℓ∈Nk

aℓkψℓ,i

(3a)

(3b)

This implementation has been shown to have superior perfor-
mance relative to the traditional consensus strategy when used
for continuous adaptation and learning with constant step-sizes
µk [1], [2]. In (3), the vector wk,i denotes the estimate by
agent k at iteration i for wo, while ψk,i is an intermediate
estimate. Moreover, an approximation for the true gradient
vector of Jk(w), ∇̂wTJk(·), is used since it is generally the
case that the true gradient vector is not available (e.g., when
Jk(w) is defined as the expectation of some loss function and
the probability distribution of the data is not known to enable
computation of Jk(·) or its gradient vector). The symbol Nk

in (3b) refers to the neighborhood of agent k. The coefficients
{aℓk} are nonnegative convex combination coefficients that
satisfy:

aℓk ≥ 0,
N∑

ℓ=1

aℓk = 1, aℓk = 0, if ℓ /∈ Nk. (4)

The main distinction in this work relative to prior studies is
that we now assume that, at each iteration i, the adaptation step
in (3a) has only access to a random subset of the entries of the
approximate gradient vector. This situation may arise due to
missing data or a purposeful desire to reduce the computational
burden of the update step. We model this scenario by replacing
the approximate gradient vector by

∇̂wTJ
miss

k (wk,i−1) = Γk,i · ∇̂wTJk(wk,i−1) (5)

where the random matrix Γk,i is diagonal and consists of
Bernoulli random variables {rk,i(m)}; each of these variables
is either zero or one with probability

Prob(rk,i(m) = 0) ! rk (6)

where 0 ≤ rk < 1 and

Γk,i = diag{rk,i(1), rk,i(2), . . . , rk,i(M)}. (7)

In the case when rk,i(m) = 0, the m-th entry of the gradient
vector is missing, and then the m-th entry of ψk,i in (3a) is
not updated. Observe that we are attaching two subscripts to
r: k and i, which means that we are allowing the randomness
in the update to vary across agents and also over time.

A. Relation to Block-Coordinate Descent Methods

If we reduce our formulation (3)–(5) to the single a-
gent case, it will become similar to the randomized block-
coordinate descent (RBCD) algorithm [3]–[5] in that the
desired cost function is optimized only along a subset of the
coordinates at each iteration. However, our algorithm offers
more randomness in generating the coordinate blocks than the
RBCD algorithm, by allowing more random combinations of
the coordinates at each time index. Moreover, we are using a
random subset of the stochastic gradient vector instead of the
true gradient vector to update the estimate, which is necessary
for adaptation and online learning when the true risk function
itself is not known. Furthermore, our results consider a general
multi-agent scenario involving distributed optimization where
each individual agent employs random coordinates for its
own gradient direction, and these coordinates are generally
different from the coordinates used by other agents. In other
words, the networked scenario adds significant flexibility into
the operation of the agents under model (5).

B. Relation to Partial Updating Schemes

It is also useful to comment on the differences between our
formulation and works that rely on other notions of partial
information updates. To begin with, our formulation (5) is
different from the models used in [6], [7] where the step-
size parameter was modeled as a random Bernoulli variable,
µk(i), which could assume the values µk or zero with certain
probability. In that case, when the step-size is zero, all entries
of wk,i−1 will not be updated and adaptation is turned off
completely. This is in contrast to the current scenario where
only a subset of the entries are left without update and,
moreover, this subset varies randomly from one iteration to
another. The useful works [8], [9] focus on the special case
in which the risks Jk(w) are quadratic in w. In [8], it is
assumed that only a subset of the weight entries are shared
(diffused) among neighbors and that the estimate itself is still
updated fully in the adaptation step as shown by (3a). In
comparison, the formulation we are considering diffuses all
entries of the weight estimates. Similarly, in [9] it is assumed
that some entries of the regression vectors are missing, which
causes changes to the gradient vectors. In order to undo these
changes, an estimation scheme is proposed in [9] to estimate
the missing data. In our formulation, more generally, a random
subset of the entries of the gradient vector are set to zero at
each iteration, while the remaining entries remain unchanged
and do not need to be estimated.

There are also other criteria that have been used in the
literature to motivate partial updating. For example, in [10],
periodic and sequential least-mean-squares (LMS) algorithms
are proposed. In [11], [12] the weight vectors are partially
updated by following a set-membership approach, where up-
dates occur only when the innovation obtained from the data
exceeds a predetermined threshold. In [12], [13], only entries
corresponding to the largest magnitudes in the regression
vector or the gradient vector at each agent are updated.
However, such scheduled updating techniques can suffer from

non-convergence in the presence of nonstationary signals [14].
Partial update schemes can also be based on dimensionality
reduction policies using Krylov subspace concepts [15]–[17].
There are also techniques that rely on energy considerations
to limit updates, e.g., [18].

C. This Work
The objective of the analysis that follows is to examine the

effect of random partial gradient information on the learning
performance and convergence rate of adaptive networks for
general risk functions. We clarify these questions by adapting
the framework developed in [1], [2]. Note that the main
difference between the current work and the prior work in
[1] is the appearance of the random matrices {Γk,i} defined
by (5). In the special case when the random matrices are set to
the identity matrices across the agents, i.e., {Γk,i ≡ IM}, the
current coordinate-descent case will reduce to the full-gradient
update studied in [1]. The inclusion of the random matrices
{Γk,i} adds a non-trivial level of complication because now,
agents update only random entries of their iterates at each
iteration and, importantly, these entries vary randomly across
the agents.

II. DATA MODEL AND ASSUMPTIONS

Let F i−1 represent the filtration of all random events
generated by the processes {wk,j} and {Γk,j} at all agents
up to time i− 1. In effect, the notation F i−1 refers to the
collection of all past {wk,j ,Γk,j} for all j ≤ i− 1 and all k.

Assumption 1: (Conditions on indicator variables). It is
assumed that the indicator variables rk,i(m) and rℓ,i(n) are
independent of each other, for all ℓ, k,m, n. In addition, the
variables {rk,i(m)} are independent of F i−1 and ∇̂wTJk(w)
for any iterates w ∈ F i−1 and for all agents k. "
Let

sk,i(wk,i−1) ! ∇̂wTJk(wk,i−1)−∇wTJk(wk,i−1) (8)

denote the gradient noise at agent k at iteration i, based on
the complete approximate gradient vector, ∇̂wTJk(w). We
introduce its conditional second-order moment:

Rs,k,i(w) ! E[sk,i(w)sTk,i(w)|F i−1]. (9)

The following assumptions are standard and are satisfied by
important cases of interest, such as logistic regression risks or
mean-square-error risks, as already shown in [1], [2].

Assumption 2: (Conditions on gradient noise) [1, pp. 496–
497]. It is assumed that the first and fourth-order conditional
moments of the individual gradient noise processes satisfy the
following conditions for any iterates w ∈ F i−1 and for all
k, ℓ = 1, 2, . . . , N :

E[sk,i(w)|F i−1] = 0 (10)
E[sk,i(w)sTℓ,i(w)|F i−1] = 0, k ̸= ℓ (11)

E[∥sk,i(w)∥4|F i−1] ≤ β4
k∥w∥4 + σ4

s,k (12)

almost surely, for some nonnegative scalars β4
k and σ4

s,k. "
Assumption 3: (Smoothness conditions) [1, pp. 552,576].

It is assumed that the Hessian matrix of each individual cost

function, Jk(w), and the covariance matrix of each individual
gradient noise process are locally Lipschitz continuous in a
small neighborhood around w = wo in the following manner:

∥∇2
wJk(w

o +△w)−∇2
wJk(w

o)∥ ≤ κc∥△w∥ (13)
∥Rs,k,i(w

o +△w)−Rs,k,i(w
o)∥ ≤ κd∥△w∥γ (14)

for any small perturbations ∥△w∥ ≤ ε and for some κc ≥ 0,
κd ≥ 0, and parameter 0 < γ ≤ 4. In addition, the notation
∥·∥ denotes the two-induced norm of a matrix or the Euclidean
norm of a vector. "

III. MAIN RESULTS: STABILITY AND PERFORMANCE

In this and the following sections, we only state the main
results due to space limitations. Detailed derivations appear in
[19].

Theorem 1: (Network stability). The second-order and
fourth-order moments of the network error vectors {w̃k,i !
wo − wk,i} are stable (bounded) for sufficiently small step-
sizes, namely, there exists a small enough µo such that:

lim sup
i→∞

E∥w̃k,i∥2 = O(µmax) (15)

lim sup
i→∞

E∥w̃k,i∥4 = O(µ2
max) (16)

for any µmax < µo, where µmax ! max{µ1, µ2, . . . , µN}. "
In (15)–(16), the notation α = O(µ) means that |α| ≤ c|µ|

for some constant c > 0. Result (15) ensures that the mean-
square-error (MSE) performance of the network is on the order
of µmax. We can be more explicit and assess the propor-
tionality constant that determines the value of the network
mean-square-error to first-order in µmax. To do so, we first
introduce some useful variables. Since the network is strongly-
connected, then the combination matrix A = [aℓk] is primitive.
This means, in view of the Perron-Frobenius Theorem [1],
[2], that A has a single eigenvalue at one. We denote the
corresponding eigenvector by p, with entries pk. We normalize
the entries of p to add up to one and note that all entries pk
are strictly positive:

Ap = p, 1Tp = 1, pk > 0. (17)

In (17), the notation 1 refers to the vector of size N with all
its entries equal to one. We introduce the vector q = col{qk}

q ! col {µ1p1, µ2p2, . . . , µNpN} (18)

where col{·} denotes a column vector, and the Hessian matrix
of Jk(w) evaluated at w = wo

Hk ! ∇2
wJk(w

o). (19)

We also introduce the gradient-noise covariance matrices:

Gk ! lim
i→∞

Rs,k,i(w
o) (20)

G′
k ! E[Γk,iGkΓk,i]. (21)

Observe that Gk is the limiting covariance matrix of the
gradient noise process, while G′

k is a weighted version of it.

It can be verified by direct inspection that the entries of G′
k

are given by:

G′
k(m,n) =

{
(1− rk)2Gk(m,n), m ̸= n
(1− rk)Gk(m,m), m = n.

(22)

Let MSDk denote the size of the steady-state mean-square-
deviation, E∥w̃k,i∥2, to first-order in µmax, and let MSDav

denote the average MSDk value across all N agents — see
[1, p. 582] for expressions and further clarifications. Moreover,
we define the convergence rate as the slowest rate at which the
error variances, E∥w̃k,i∥2, converge to the steady-state region
— see [1, p. 395] for expressions and further clarifications.

Theorem 2: (Network limiting performance). It holds that,
for sufficiently small step-sizes:

MSDcoor,k = MSDcoor,av

=
1

2
Tr

⎛

⎝
(

N∑

k=1

qk(1− rk)Hk

)−1 N∑

k=1

q2kG
′
k

⎞

⎠ (23)

where the subscript “coor” denotes the stochastic coordinate-
descent diffusion implementation. Moreover, for large enough
i, the convergence rate of the error variances, E∥w̃k,i∥2,
towards the steady-state region (23) is given by

αcoor = 1− 2λmin

(
N∑

k=1

qk(1− rk)Hk

)
+O

(
µ(N+1)/N
max

)

(24)
where λmin(·) denotes the minimum eigenvalue. "

IV. IMPLICATIONS AND USEFUL CASES

Consider the case when the missing probabilities are iden-
tical across the agents, i.e., {rk ≡ r}.

A. Convergence Time

Consider the full-gradient or coordinate-descent diffusion
strategy (3a)–(3b) and (5). Let Tgrad and Tcoor denote the
largest number of iterations that are needed for the error
variances, E∥w̃k,i∥2, to converge to their steady-state regions.

Corollary 1: (Convergence time). It holds that, for suffi-
ciently small step-sizes:

1 ≤ Tcoor

Tgrad
≈ 1

1− r
. (25)

"
It follows that the coordinate-descent implementation con-

verges at a slower rate as expected (since it only employs
partial gradient information).

B. Computational Complexity

Assume that the computation required to calculate each
entry of the gradient vector ∇̂wTJk(wk,i−1) is identical, and
let cm ≥ 0 denote the number of multiplications that are
needed for each entry. Let nk ! |Nk| denote the degree of
agent k, Mgrad,k and Mcoor,k denote the total number of
multiplications at agent k for the full-gradient and coordinate-
descent implementations, respectively.

Corollary 2: (Computational complexity). It holds that, for
sufficiently small step-sizes:

1 ≤ Mcoor,k

Mgrad,k
= (1− r)−1

(
1− cm + 1

cm + nk + 1
r

)
. (26)

It is clear that when it is costly to compute the gradient
entries, i.e., when cm ≫ nk, then Mcoor,k and Mgrad,k will be
essentially identical. A similar analysis and conclusion holds
if we examine the total number of additions (as opposed to
multiplications). "

Corollaries 1 and 2 show that while the coordinate-descent
implementation will take longer to converge, the savings in
computation per iteration that it provides is such that the
overall computational complexity until convergence remains
largely invariant. This is a useful conclusion. It means that
in situations where computations at each iteration need to be
minimal, then a coordinate-descent variant is recommended
and it will be able to deliver the same steady-state performance
(to first-order in µmax, see (31) ahead) with the total compu-
tational demand spread over a longer number of iterations.

C. MSD performance

Note that the MSD value for the stochastic full-gradient
diffusion implementation, MSDgrad,k, can be evaluated from
the expression (23) by setting the missing probabilities {rk ≡
0} [1, p. 594]. In that case, the matrix G′

k defined in (21) will
be replaced by Gk defined in (20), since the random matrices
{Γk,i} will reduce to {Γk,i ≡ IM}. Then, it holds that

MSDcoor,k −MSDgrad,k

=
r

2
Tr

((
N∑

k=1

qkHk

)−1 N∑

k=1

q2kǦk

)
(27)

where
Ǧk ! diag{Gk}−Gk (28)

with the term diag{Gk} being a diagonal matrix that consists
of the diagonal entries of Gk. It follows by direct inspection
that in the case when the matrices {Hk} or {Gk} are diagonal,
we have

MSDcoor,k = MSDgrad,k. (29)

We show in [19] that the difference in (27) can be positive or
negative, i.e., the MSD performance can be better or worse
in the stochastic coordinate-descent case in comparison to
the stochastic full-gradient case. In addition, we are able to
provide a general upper bound for that MSD gap as shown
by Corollary 2 of [19]. Recall that the MSD performance is
evaluated to first-order in µmax. Then, it follows from (27):

Tr

((
N∑

k=1

qkHk

)−1 N∑

k=1

q2kǦk

)
= O(µmax). (30)

Moreover, the difference between MSDcoor,k and MSDgrad,k

is linearly dependent on the missing probability r. Then, the
MSD gap in (27) can be decreased by using small missing
probabilities across the agents.

Corollary 3: (Small missing probabilities). Let r =
O(µε

max) for a small number ε > 0. It holds that

MSDcoor,k −MSDgrad,k = O(µ1+ε
max) = o(µmax) (31)

where α = o(µ) signifies that α/µ → 0 as µ → 0. "
Corollary 3 shows that in the case of small missing probabil-

ities, the steady-state MSD levels of the stochastic coordinate-
descent and full-gradient diffusion cases will be the same to
first-order in µmax.

D. MSE Networks
Consider MSE networks where the risk function that is

associated with each agent k is the mean-square-error [1], [2]:

Jk(w) = E(dk(i)− uk,iw)
2 (32)

where the scalar dk(i) denotes the desired signal, and uk,i

is a (row) regression vector. In these networks, the data
{dk(i),uk,i} are assumed to be related via the linear regres-
sion model

dk(i) = uk,iw
o + vk(i) (33)

where vk(i) is zero-mean white measurement noise with
variance σ2

v,k and assumed to be independent of all other
random variables. Assume also that the regression data {uk,i}
are zero-mean, white over time and space with

EuT
k,iuℓ,j ! Ru,kδk,ℓδi,j (34)

where Ru,k > 0, and δk,ℓ denotes the Kronecker delta
sequence. Consider the case when the covariance matrices of
the regressors are identical across the network, i.e., {Ru,k ≡
Ru > 0}. Then, it holds that [1, p. 598]:

Hk ≡ 2Ru, Gk = 4σ2
v,kRu. (35)

In the case of MSE networks, by exploiting the special
relation between the matrices {Hk} and {Gk} in (35), we
are able to show that the MSD in the stochastic coordinate-
descent case is always larger (i.e., worse) than or equal to that
in the stochastic full-gradient diffusion case (although by not
more than o(µmax), as indicated by (31)). We are also able to
provide a general upper bound on the MSD gap.

Corollary 4: (MSE networks). For MSE networks with u-
niform regression covariance matrices, i.e., {Ru,k ≡ Ru > 0},
it holds that, for sufficiently small step-sizes:

0 ≤ MSDcoor,k −MSDgrad,k ≤

r

(
N∑

k=1

qk

)−1(N∑

k=1

q2kσ
2
v,k

)(
δd
νd

− 1

)
M (36)

Moreover, it holds that MSDcoor,k = MSDgrad,k if, and only
if, Ru is diagonal in view of (28) and (35). "

V. SIMULATION RESULTS

In this section, we illustrate the results by considering
MSE networks, which satisfy condition (2) and Assumptions
1 through 3. The performance of the algorithms is tested in the
case when uniform missing probabilities are utilized across the

1

12

5
17

10

2

15

8

7

4

9

6

163

18

14

11

20

13

19

(a)

0.5 1 1.5 2 2.5 3 3.5 4
x 104

−50

−40

−30

−20

−10

0

10

Iterations

Tr
an

si
en

t M
SD

 (d
B)

Theoretical MSD for full update
Theoretical MSD for partial update
MSE network, full update
MSE network, partial update

(b)

0.5 1 1.5 2 2.5
x 104

−60

−50

−40

−30

−20

−10

0

10

Iterations

Tr
an

si
en

t M
SD

 (d
B)

Theoretical MSD
MSE network, full update
MSE network, partial update
convergence rate for full update
convergence rate for partial update

(c)

Fig. 1. (a) Network topology consisting of N = 20 agents. (b) MSD learning curves, averaged over 1000 independent runs, in the case of Corollary 3 when {rk ≡ 0.1}. The
dashed lines show the theoretical MSD values from (23). (c) MSD learning curves, averaged over 1000 independent runs, in the case of Corollary 4 when the regressors are white.
The dashed line along the horizontal axis shows the theoretical MSD value from (23). Those along the learning curves show the reference recursion at rates formulated by (24).

agents. Figure 1(a) shows a network topology with N = 20
agents. In the first example, we test the case when the gradient
vectors are missing with small probabilities {rk ≡ 0.1} across
the agents. The combination matrix A is doubly-stochastic
and set according to the Metropolis rule in [1, p. 664]. The
parameter vector wo is randomly generated with M = 10.
The regressors are generated by the first-order autoregressive
model

uk,i(m) = πkuk,i(m− 1) +
√
1− π2

ktk,i(m) (37)

for any 1 ≤ m < M , and the variances are scaled to be 1.
The processes {tk,i} are zero-mean, unit-variance, and inde-
pendent and identically distributed (i.i.d) Gaussian sequences.
The {πk} are generated from a uniform distribution on the
interval (−1, 1). The noises, uncorrelated with the regression
vectors, are zero-mean white Gaussian sequences with the
variances uniformly distributed over (0.001, 0.1). The step-
sizes {µk} across the agents are generated from a uniform
distribution on the interval (1× 10−4, 5× 10−4). Figure 1(b)
shows the simulation results, which are averaged over 1000
independent runs. It is clear from the figure that, when the
gradient information is missing with small probabilities, the
performance of the coordinate-descent case is close to that of
the full-gradient diffusion case.

In the second example, we test the case when the regressors
are white across the agents. We randomly generate wo of size
M = 6. The white regressors are generated from zero-mean
white Gaussian sequences, and the powers, which vary from
entry to entry, and from agent to agent, are uniformly distribut-
ed over (0.5, 1.5). The step-sizes are uniformly distributed
over (1×10−4, 8×10−4). The results, including the theoretical
MSD value from (23) in Theorem 2, the simulated MSD
learning curves, and the reference recursion at rates from (24),
are illustrated by Fig. 1(c), where the results are averaged over
1000 independent runs. It is clear from the figure that, when
white regressors are utilized in MSE networks, the stochastic
coordinate-descent case converges to the same MSD level
as the full-gradient diffusion case, which verifies (29), at a
convergence rate formulated in (24).

REFERENCES

[1] A. H. Sayed, “Adaptation, learning, and optimization over networks,”
Foundations and Trends in Machine Learning, vol. 7, no. 4-5, pp. 311–

801, 2014. [Online]. Available: http://dx.doi.org/10.1561/2200000051
[2] A. H. Sayed, “Adaptive networks,” Proceedings of the IEEE, vol. 102,

no. 4, pp. 460–497, Apr. 2014.
[3] Y. Nesterov, “Efficiency of coordinate descent methods on huge-scale

optimization problems,” SIAM Journal on Optimization, vol. 22, no. 2,
pp. 341–362, 2012.

[4] P. Richtárik and M. Takáč, “Iteration complexity of randomized block-
coordinate descent methods for minimizing a composite function,”
Mathematical Programming, vol. 144, no. 1-2, pp. 1–38, 2014.

[5] Z. Lu and L. Xiao, “On the complexity analysis of randomized block-
coordinate descent methods,” Mathematical Programming, vol. 152, pp.
615–642, 2015.

[6] X. Zhao and A. H. Sayed, “Asynchronous adaptation and learning over
networks-Part I: Modeling and stability analysis,” IEEE Trans. Signal
Process., vol. 63, no. 4, pp. 811–826, Feb. 2015.

[7] X. Zhao and A. H. Sayed, “Asynchronous adaptation and learning over
networks-Part II: Performance analysis,” IEEE Trans. Signal Process.,
vol. 63, no. 4, pp. 827–842, Feb. 2015.

[8] R. Arablouei, S. Werner, Y.-F. Huang, and K. Dogancay, “Distributed
least mean-square estimation with partial diffusion,” IEEE Trans. Signal
Process., vol. 62, no. 2, pp. 472–484, Jan. 2014.

[9] M. R. Gholami, E. G. Ström, and A. H. Sayed, “Diffusion estimation
over cooperative networks with missing data,” in Proc. IEEE GlobalSIP,
Austin, TX, Dec. 2013, pp. 411–414.

[10] S. C. Douglas, “Adaptive filters employing partial updates,” IEEE Trans.
Circuits Syst. II, vol. 44, no. 3, pp. 209–216, Mar. 1997.

[11] S. Werner, M. Mohammed, Y.-F. Huang, and V. Koivunen, “Decentral-
ized set-membership adaptive estimation for clustered sensor networks,”
in Proc. IEEE ICASSP, Las Vegas, NV, 2008, pp. 3573–3576.

[12] S. Werner and Y.-F. Huang, “Time- and coefficient- selective diffusion
strategies for distributed parameter estimation,” in Proc. Asilomar Con-
ference on Signals, Systems, and Computers, Pacific Grove, CA, 2010,
pp. 696–700.

[13] K. Doğancay, O. Tanrıkulu, “Adaptive filtering algorithms with selective
partial updates,” IEEE Trans. Circuits Syst. II, vol. 48, no. 8, pp. 762–
769, Aug. 2001.

[14] M. Godavarti and A. O. Hero, “Partial update LMS algorithms,” IEEE
Trans. Signal Process., vol. 53, no. 7, pp. 2382–2399, Jul. 2005.

[15] S. Chouvardas, K. Slavakis, and S. Theodoridis, “Trading off complexity
with communication costs in distributed adaptive learning via Krylov
subspaces for dimensionality reduction,” IEEE Journal Selected Topics
Signal Process., vol. 7, no. 2, pp. 257–273, April 2013.

[16] S. Theodoridis, K. Slavakis, and I. Yamada, “Adaptive learning in a
world of projections: A unifying framework for linear and nonlinear
classification and regression tasks,” IEEE Signal Process. Magazine,
vol. 28, no. 1, pp. 97–123, Jan. 2011.

[17] S. Chouvardas, K. Slavakis, Y. Kopsinis, and S. Theodoridis, “A sparsity
promoting adaptive algorithm for distributed learning,” IEEE Trans.
Signal Process., vol. 60, no. 10, pp. 5412–5425, Oct. 2012.

[18] O. N. Gharehshiran, V. Krishnamurthy, and G. Yin, “Distributed energy-
aware diffusion least mean squares: Game-theoretic learning,” IEEE J.
Sel. Top. Signal Process., vol. 7, no. 5, pp. 821–836, Oct. 2013.

[19] C. Wang, Y. Zhang, B. Ying, and A. H. Sayed, “Coordinate-descent
diffusion learning by networked agents,” submitted for publication. Also
available as arXiv:1607.01838, Jul. 2016.

