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ABSTRACT
Diffusion LMS was originally conceived for online distributed pa-
rameter estimation in single-task environments where agents pursue
a common objective. However, estimating distinct but correlated ob-
jects (multitask problems) is useful in many applications. To address
multitask problems with combine-then-adapt diffusion LMS strate-
gies, we derive an unsupervised strategy that allows each node to
continuously select the neighboring nodes with which it should ex-
change information to improve its estimation accuracy. Simulation
experiments illustrate the efficiency of this clustering strategy. In
particular, nodes do not know which other nodes share similar ob-
jectives.

Index Terms— Diffusion LMS, combine-then-adapt, multitask
problems, adaptive network, online learning, distributed learning.

1. INTRODUCTION
Distributed adaptive estimation allows a collection of interconnected
nodes to perform preassigned tasks from streaming measurements.
For online parameter estimation, among various strategies [1–7], dif-
fusion LMS [8, 9] is an efficient algorithm that is particularly attrac-
tive due to its enhanced adaptation performance and wider stabil-
ity ranges [10]. Its variants and performance have been extensively
studied in the literature, under various scenarios [11–19].

The working hypothesis for several earlier studies on diffusion
LMS strategies is that the nodes cooperate with each other to esti-
mate a single parameter vector. We shall refer to problems of this
type as single-task problems. However, many problems of interest
happen to be multitask-oriented in the sense that there are multiple
optimum parameter vectors to be inferred simultaneously and in a
collaborative manner. The multitask learning problem is relevant in
several machine learning formulations [20–22]. In the distributed
estimation context, which is the focus of this work, there exist many
applications where either agents are subject to data measurements
arising from different models or they are sensing data that varies
over the spatial domain. When this is the case, it is important for
cooperation to occur only among agents with similar or related ob-
jectives to avoid biased solutions.

A handful of works have considered before problem formula-
tions that deal with multitask scenarios [23–28]. It is generally as-
sumed in these studies that the nodes have some prior knowledge
about clustering or about the parameter space. In this work, we pro-
pose an unsupervised clustering strategy that allows each node to
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select, via adaptive adjustments of combination weights, the neigh-
boring nodes with which it should collaborate to improve its estima-
tion accuracy. In the related work [23], we formulated the multitask
problem directly over networks with connected clusters of nodes. In
that work, the clusters were assumed to be known beforehand and no
clustering strategy was proposed. In [28], the parameter vectors were
assumed to lie in a common subspace. In the current work, building
up on our recent results from [29], neither clusters nor other latent
structures are assumed to be known. It then becomes necessary to
examine how this lack of information influences performance. It
also becomes necessary to endow the nodes with the ability to iden-
tify and form appropriate clusters to enhance performance. We do
so by considering the combine-then-adapt diffusion strategy, extend-
ing and enhancing the earlier procedure proposed in [26], and also
complementing the result in [29] which focused on studying the al-
ternative adapt-then-combine formulation.

Notation. Boldface small letters x denote column vectors. The
superscript (·)� represents the transpose of a matrix or a vector.
Identity matrix of size N × N is denoted by IN , and the all-one
vector of length N is denoted by 1N . We denote by Nk the set of
node indices in the neighborhood of node k, including k itself.

2. MULTITASK PROBLEMS AND DIFFUSION LMS
2.1. Modeling assumptions
We consider a connected network composed of N nodes. The prob-
lem is to estimate L × 1 unknown vectors w�

k at each node k from
collected measurements. Node k has access to temporal measure-
ment sequences {dk(n),xk(n)}, with dk(n) denoting a reference
signal, and xk(n) denoting an L×1 regression vector with a covari-
ance matrix Rx,k = E{xk(n)x

�
k (n)} > 0. The data at node k are

assumed to be related via the linear regression model:

dk(n) = x�
k (n)w

�
k + zk(n) (1)

where zk(n) is a zero-mean i.i.d. additive noise at node k and time
instant n. Noise zk(n) is assumed to be independent of other signals
and has variance σ2

z,k. Let Jk(w) be the mean-square-error criterion
at node k, namely,

Jk(w) = E{|dk(n)− x�
k (n)w|2}. (2)

It is clear that each Jk(w) is minimized at w�
k. Depending on

whether the minima of all the Jk(w) are achieved at the same loca-
tion or not, referred to as tasks, the distributed learning problem can
be single-task or multitask oriented [23]. In a single-task network,
all nodes have to estimate the same parameter vector w�, namely:

w�
k = w�, ∀k ∈ {1, ..., N}. (3)

Diffusion LMS strategies for the distributed estimation of w� under
this scenario were derived in [6–9] by seeking the minimizer of the
following aggregate cost function:
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Jglob(w) =

N∑

k=1

Jk(w) (4)

in a cooperative manner in order to improve estimation accuracy.
In a multitask network, on the other hand, each node needs to

determine its own parameter vector w�
k. The parameter vectors at

two connected nodes can be related in various ways depending on
the application [23,28,30]. In this work, we do not assume the avail-
ability of any prior information, and nodes do not know which other
nodes share similar objectives.

2.2. Diffusion LMS in multitask environments
The diffusion LMS strategies can be subdivided into two forms:
the adapt-then-combine (ATC) and the combine-then-adapt (CTA)
strategies, depending in which order the adaptation and the consul-
tation steps are performed. The related work [29] studied the case
of ATC implementations. Here we extend diffusion LMS for multi-
task environment based on CTA variants. The CTA diffusion LMS
algorithm was designed for minimizing the cost function (4) by em-
ploying the following recursive construction [6, 8, 9, 31]:⎧
⎪⎨

⎪⎩

ψk(n) =
∑

�∈Nk

a�k w�(n)

wk(n+ 1) = ψk(n) +μkxk(n)
[
dk(n)− x�

k (n)ψk(n)
] (5)

where the non-negative coefficients a�k are the (�, k)-th entries of a
left-stochastic matrices A such that:

A�1N = 1N and a�k = 0 if � /∈ Nk. (6)

There are several ways to select these coefficients such as using
the averaging rule or the Metropolis rule for single-task environ-
ments. When operating in multitask environments, the bias and
mean-square deviation (MSD) performance of diffusion LMS using
these rules with fixed combination coefficients have been analyzed
in [29,32]. The main conclusion is that cooperation by means of dif-
fusion LMS is still beneficial when the contrasts among the tasks are
small enough, otherwise, as expected, degradation in performance
occurs by leading to an estimation bias. In this work, we continue
using the updating structure (5), but derive a time variant combina-
tion matrix to endow CTA diffusion LMS with the ability to work in
multitask environments.

3. NODE CLUSTERING VIA ADAPTIVE COMBINATION

In order to reduce the bias that may arise in multitask environments,
we now derive a clustering strategy where each node k can adjust
the combination weights a�k in an online manner, for � ∈ Nk.

3.1. Clustering via matrix A adjustments
Motivated by the construction in [26], we suggest to adjust A in an
online manner via MSD optimization. Let the weight error vector
after the combination step be denoted by vk(n) = w�

k − ψk(n).
Considering matrix A is left-stochastic, at each instant n the instan-
taneous MSD at node k is given by

E{‖vk(n)‖2} = E
{∥∥w�

k −
∑

�∈Nk

a�k w�(n)
∥∥2}

=
∑

�∈Nk

∑

p∈Nk

a�k apk [Ψk]�p
(7)

where Ψk is the matrix at node k with (�, p)-th entry defined as

[Ψk]�p=

{
E
{
[w�

k−w�(n)]
�[w�

k−wp(n)]
}
, �, p ∈ Nk

0, otherwise.
(8)

However, we cannot determine a�k by minimizing objective (7)
since, at each node k, the optimum w�

k and the covariance Ψk are
unknown. We suggest to use an approximation ŵ�

k instead of w�
k,

to approximate matrix Ψk by an instantaneous value, and to drop
its off-diagonal entries in order to make the problem tractable. The
resulting problem is then as follows:

min
ak

N∑

�=1

a2
�k ‖ŵ�

k −w�(n))‖2

subject to 1�
N ak = 1, a�k ≥ 0,

a�k = 0 if � /∈ Nk

(9)

where the notation ak refers to a column vector containing the en-
tries {a�k} for � = 1, . . . , N . A direct consequence of this objective
is that large combination weight a�k will be penalized if the local es-
timate at node � is far from the objective at node k. We now discuss
the solution of (9) before dwelling on the selection of ŵ�

k. We omit
the non-negativity constraints a�k ≥ 0 for the moment, and con-
sider the simplified optimization problem only with the sum-to-one
equality constraint. The Lagrangian associated with this simplified
problem is given by

L(ak, λ) =
N∑

�=1

a2
�k ‖ŵ�

k −w�(n))‖2 + λ (1�
N ak − 1),

with λ the Lagrange multiplier for the equality constraint. Equating
the gradient of L(ak, λ) with respect to ak and λ to 0, we get the
solution at time n+ 1

a�k(n+ 1) =
‖ŵ�

k −w�(n))‖−2

∑
j∈Nk

‖ŵ�
k −wj(n))‖−2

, for � ∈ Nk. (10)

Observe that this solution is always non-negative and, consequently,
(10) is also the solution to problem (9). Let us now discuss the ap-
proximation for w�

k to be used in (10). Since w�
k is unknown and

needs to be estimated iteratively, we assign node k with a time vari-
ant approximation ŵ�

k(n) at each instant n. In order to reduce the
MSD bias that results from the inappropriate cooperation of nodes
performing distinct estimation tasks, one strategy is to use the local
one-step unbiased approximation:

ŵ�
k(n) = wk(n)− μk ∇Jk(w)

∣∣
w=wk(n)

. (11)

Since the true negative gradient −∇Jk(w) = E{ek(n)xk(n)} with
ek(n) = [dk(n) − x�

k (n)wk(n)] at wk(n) is not available in an
adaptive implementation, we can approximate it by using its instan-
taneous value qk = ek(n)xk(n). This yields the following approx-
imation:

ŵ�
k(n) = wk(n) + μk qk(n). (12)

Substituting this expression into (10), we get the combination rule

a�k(n+ 1) =
‖wk(n) + μk qk(n)−w�(n)‖−2

∑
j∈Nk

‖wk(n) + μk qk(n)−wj(n)‖−2

for � ∈ Nk.

(13)

This rule uses the local unbiased estimate (11) as a reference in order
to reduce the MSD bias caused by cooperation among neighboring
nodes that estimate distinct parameter vectors. Besides, consider the
inverse of the numerator of rule (13):

‖wk(n) + μk qk(n)−w�(n)‖2 =

μ2
k ‖qk(n)‖2 + ‖w�(n)−wk(n)‖2+

2[w�(n)−wk(n)]
�[−μk qk(n)]

(14)

The second term ‖w�(n) − wk(n)‖2 on the RHS accounts for the
distance between the current estimates at nodes k and �; this term
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tends to decrease the combination weight a�k(n+ 1) if the distance
is large, and to limit information exchange. Now, consider the ap-
proximated first-order Taylor series expansion of Jk(w) at wk(n):

Jk(w) ≈ Jk(wk(n))− [w −wk(n)]
�qk(n). (15)

The third term [w�(n)−wk(n)]
�[−μk qk(n)] on the RHS of (14)

is proportional to Jk(w�(n))− Jk(wk(n)). This term also tends to
decrease a�k(n) if Jk(w�(n)) > Jk(wk(n)). Indeed, in this case,
it is not recommended to promote the combination of wk(n) and
w�(n) because the latter induces an increase of the cost function.

3.2. Algorithm
The CTA diffusion algorithm with adaptive clustering defined by
time-variant combination matrices A(n) is summarized below. Note
that we use the normalized gradient qk(n)/(‖qk(n)‖+ ξ) instead
of qk(n), with ξ a small positive number, since it improves the ro-
bustness of the algorithm. The matrix A(0) is initialized with IN ,
considering that no prior information on clusters is available.

Algorithm 1: CTA Diffusion LMS with adaptive clustering
for multitask problems

Initialization: Set A(0) = IN .
Set wk(0) = 0 for all k = 1, ..., N .

Algorithm:
At each time n ≥ 1, and for each node k, update by:

Update the combination coefficients:
qk(n) = [dk(n)− x�

k (n)wk(n)]xk(n) (16)

Normalize qk(n) : qk(n)/(‖qk(n)‖+ ξ) (17)

a�k(n) =
‖wk(n)+μkqk(n)−w�(n))‖−2

∑
j∈Nk

‖wk(n)+μkqk(n)−wj(n))‖−2 (18)

Combine:
ψk(n) =

∑

�∈Nk

a�k(n)wk(n) (19)

Adapt:
wk(n+1)=ψk(n)+μk

[
d�(n)−x�

� (n)ψk(n)
]
x�(n) (20)

4. SIMULATIONS

We now report simulation results to illustrate the operation of the
proposed algorithm in a manner similar to what was done in [29]
for the ATC implementation. All nodes were initialized with zero
parameter vectors wk(0). Simulation curves were obtained by aver-
aging over 100 runs.

4.1. Stationary environment
Consider the network of 16 agents depicted in Fig. 1(a). The regres-
sion inputs xk(n) were zero-mean 2×1 random vectors governed by
a Gaussian distribution with covariance matrices Rx,k = σ2

x,k IL.
The background noises zk(n) were i.i.d. zero-mean Gaussian ran-
dom variables, independent of any other signals. The variances σ2

x,k

and σ2
z,k are depicted in Fig. 1(b). The parameter vectors to be esti-

mated are as follows:

w�
k =

⎧
⎪⎪⎨

⎪⎪⎩

[0.5 − 0.4]� k = 1, . . . , 4 Cluster 1

[0.6 − 0.2]� k = 5, . . . , 9 Cluster 2

[0.3 − 0.3]� k = 10, . . . , 14 Cluster 3

[−0.8 0.5]� k = 15, 16 Cluster 4

(21)
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Fig. 1. Network topology in Section 4.1 and associated input variances and
noise variances.
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Fig. 2. Network MSD comparison in a stationary multitask environment

The following algorithms were considered for estimating the four
optimum parameter vectors: 1) diffusion LMS with a uniform com-
bination matrix A, 2) non-cooperative LMS, 3) diffusion LMS with
the clustering strategy introduced in [26], 4) diffusion LMS with our
clustering strategy. The step size was set to μ = 0.01 for all nodes.

Fig. 2 illustrates the MSD convergence behavior for these algo-
rithms. Due to large bias of the estimated weights, diffusion LMS
with a uniform combination matrix had large MSD. Non-cooperative
LMS performs better since its leads to unbiased estimates due to the
lack of cooperation among nodes with different tasks. The proposed
algorithm achieved the best performance in this context.

4.2. Non-stationary environment

Consider now a dynamic environment. Properties of input signals
and noise were the same as those in the above case. From instant
n = 1 to 1000, the network consisted of one cluster with a unique
optimum parameter vector. From n = 1501 to 2500, nodes were
split into two clusters with two different optimums. From n = 3001
to 4000, nodes were split again to give four clusters. Finally, from in-
stant n = 4501, nodes were aggregated into one cluster with another
unique parameter vector. Cluster structures and optimum parameter
vectors are illustrated in Fig. 4 and 5, respectively.

The same four algorithms as before were considered for com-
parison. Transient stages can be clearly observed on both weight
behavior curves Fig. 3 and MSD behavior curves Fig. 6. Diffusion
LMS enforced the weight vectors estimated by each agent to con-
verge to the same solution at each stage. As a consequence, the
MSD learning curve shows poor performance due to large bias. Non-
cooperative LMS converged without bias towards the optimum pa-
rameter vectors. The algorithm introduced by [26] showed some
ability to conduct clustering but did not provide satisfactory results
during transient episodes. During stages 1 and 4, it worked as well
as diffusion LMS. However, during stages 2 and 3, it only performed
slightly better than diffusion LMS. The proposed algorithm was able
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(b) Non-cooperative LMS.
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(c) Algorithm in [26].
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(d) Proposed.

Fig. 3. Mean weight behavior of various algorithms in the non-stationary environment. Colors are consistent with cluster colors in Fig. 1(a).
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Fig. 4. Evolution of cluster structures of the network (1 cluster → 2 clusters → 4 clusters → 1 cluster).
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Fig. 7. Simulation results of Sec. 4.3.
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Fig. 6. Network MSD behavior comparison in the time variant multitask
environment.

to track the system dynamic with correct clustering.

4.3. Large network and high-dimensional regressors
For the sake of simplicity, previous experiments were conducted

with relatively small networks and low-dimensional optimum pa-
rameter vectors. A network consisting of two clusters with 50 nodes
in each cluster was randomly deployed in a given area, with phys-
ical connections defined by the connectivity matrix in Fig. 7(b).
The optimum parameter vectors were set as follows: w�

k = 150

for k = 1, . . . , 50, and w�
k = −150 for k = 51, . . . , 100. The

regression inputs xk(n) were zero-mean 50 × 1 random vec-
tors governed by a Gaussian distribution with covariance matrices
Rx,k = σ2

x,k IL. The background noises zk(n) were i.i.d. zero-
mean Gaussian random variables, and independent of any other
signal. The variances σ2

x,k and σ2
z,k were uniformly sampled in

[0.8, 1.2] and [0.018, 0.022], respectively. For all nodes, the step-
sizes were set to μk = 0.01. The same four algorithms as before
were considered. Our algorithm was used with the normalized gra-
dient qk(n)/(‖qk(n)‖ + ξ) and ξ = 0.01. MSD learning curves
are shown in Fig. 7(a), and the connectivity matrix determined by
our algorithm is represented in Fig. 7(c). From these experiments
the advantage of the proposed algorithm can clearly be observed.

5. CONCLUSION AND PERSPECTIVE

Many practical problems of interest happen to be multitask-oriented
in the sense that there are multiple optimum parameter vectors to
be inferred simultaneously. In this paper, we proposed an unsu-
pervised clustering strategy of the combine-then-adapt (CTA) type
that allows each node to select the neighboring nodes with which it
can collaborate to address a given task. Reference [29] studies the
alternative adapt-then-combine (ATC) strategy and carries out the
necessary analysis and derivations. Simulations were presented to
illustrate the efficiency of the proposed clustering strategy.
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