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ABSTRACT

We examine the problem of adaptation and learning over net-

works with selfish agents. In order to motivate agents to co-

operate, we allow the agents to select their partners according

to whether they can help them reduce their utility costs. We

divide the operation of the network into two stages: a clus-

ter formation stage and an information sharing stage. During

cluster formation, agents evaluate a long-term combined cost

function and decide on whether to cooperate or not with other

agents. During the subsequent information sharing phase,

agents share and process information over their sub-networks.

Simulations illustrate how the clustering technique enhances

the mean-square-error performance of the agents over non-

cooperative processing.

Index Terms— Adaptive networks, cluster formation,

selfish agents, diffusion strategy, mean-square-error.

1. INTRODUCTION

In prior works on distributed estimation over networks, agents

were modeled as cooperative players that exchange informa-

tion willingly. Several distributed strategies have been de-

veloped to enable the decentralized processing of informa-

tion among cooperating agents, such as the consensus strat-

egy (e.g., [1, 2]) and the diffusion strategy (e.g., [3–5]). In

this work, we study networks where agents can behave in a

selfish manner. In this case, agents share information with

their neighbors only if they believe that cooperation is bene-

ficial for their long-term interests.

One way to motivate cooperation among selfish agents is

to allow them to decide with whom to cluster and share infor-

mation. The clustering concept is widely studied in the social

sciences and game theory (e.g., [6–10]). It enables agents

to drive their cooperative behavior by selecting their partners

according to whether they can help them reduce their utility

costs. For adaptive networks, the challenge is to select util-

ity functions that can drive the clustering operation. Recent

results on the performance of adaptive networks [11] can be

exploited to great effect for this purpose.
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Fig. 1: (a) Selfish agents establish new links to form a larger cluster. (b)

Timeline illustrates two stages of cluster formation and information sharing.

In the formulation studied in this paper, the objective of

the agents is to estimate a common parameter of interest by

relying on local measurements and on local interactions. We

divide the operation of the network into two stages. The first

stage is the cluster formation phase and the second stage is

the information sharing and processing phase. During cluster

formation, agents meet randomly in pairs following a random

pairing protocol [12]. This situation could occur, for example,

due to an exogenous matcher or the mobility of the agents.

Based on some prior reference knowledge about mutual clus-

ters, each agent then evaluates the expected cost of its possible

actions and decides on whether to propose cooperation to the

other agent. If both agents agree on cooperation, then they

establish a link and become part of the same larger cluster.

We illustrate cluster formation and the timeline involved in

Figure 1. Once clusters are formed, the agents can then pro-

ceed to solve the estimation task in a distributed manner by

cooperating within their sub-networks. We assume there ex-

ist harsh punishments to prevent agents from deviating from

the agreement of information sharing, such as to permanently

isolate the deviant agents.

2. INFORMATION SHARING STRUCTURE

2.1. Reference Knowledge and Transmission Cost

Consider a network with N selfish agents. During the cluster

formation stage, pairs of agents, say, agents k and �, randomly

meet and exchange some preliminary knowledge, denoted by

Kk and K�, respectively. Based on Kk and K�, the agents

decide on whether they want to become part of the same clus-

ter. Membership in the same cluster implies that the agents

would agree to cooperate with each other during the infor-
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mation sharing stage. During this second phase, agents share

information denoted by Ik,i and I�,i at time i. Obviously, the

sharing of the information Ik,i with agent � bears some trans-

mission cost for agent k, which is denoted by ck� > 0 and

assumed to be known by agent k. Likewise, c�k > 0 rep-

resents the cost for agent � when it shares information with

agent k. In the subscripts �k, the first letter represents the

source agent and the second letter represents the destination

agent. We set ckk = 0.

2.2. Agreement to Cluster

When agent k first meets agent � during the cluster formation

stage, agent k chooses an action αk� ∈ {0, 1} based on their

shared preliminary knowledge Kk and K� (as described fur-

ther ahead in Sec. 3).The action αk� = 1 means that agent k
proposes to agent � that they become part of the same cluster,

and the action αk� = 0 means that agent k does not want to

cluster with agent �. Agent �’s action, α�k ∈ {0, 1}, is de-

fined in a similar manner. The agreement to cluster must be

consensual, i.e., both agents need to propose αk� = 1 and

α�k = 1. This situation can be represented by the indicator

value defined by:

Ik� = I�k � αk� ·α�k (1)

Thus, Ik� = 1 means that both agents have agreed to become

part of the same cluster so that agent k will share information

Ik,i with agent � during the information sharing stage, and

vice-versa. On the other hand, Ik� = 0 means that agents k
and � do not wish to cluster. We set Ikk = 1.

2.3. Diffusion Strategy

During the information sharing stage, agents will share infor-

mation to solve a distributed estimation task, such as estimat-

ing and tracking some parameter vector of interest, which we

denote by wo ∈ C
M×1. In this context, the information Ik,i

to be shared by agent k refers to its estimate of wo at time i,
which we denote by wk,i. At each time instant i during the

information sharing stage, each agent k in the network is as-

sumed to have access to a scalar measurement dk(i) ∈ C and

a 1 × M regression vector uk,i ∈ C
1×M with a covariance

matrix Ru,k � Eu∗
k,iuk,i > 0. The data are assumed to be

related via the linear regression model:

dk(i) = uk,iw
o + vk(i) (2)

where vk(i) ∈ C is measurement noise with variance σ2
v,k

and is independent of all other variables. Models of the form

(2) are common in applications and can be used to model sev-

eral scenarios of interest: parameter and channel estimation,

target tracking, system modeling, data regression, etc. Agents

in the network update their estimates of wo based on their

own data dk(i) and uk,i, and on estimates from their neigh-

bors. Two prominent classes of distributed strategies that can

be used to compute the estimates wk,i in a distributed and

8
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4 6

Fig. 2: The neighborhood of agent 3 is N3 = {2, 3, 4, 6} and the cluster of

agent 3 is C3 = {1, 2, 3, 4, 5, 6, 7, 8}.

online manner are consensus strategies [1, 2] and diffusion

strategies [3–5]. In this work, we focus on diffusion strategies

since they have been shown to have superior mean-square-

error performance and stability properties [13]. There are

several variants of diffusion adaptation. We employ the adapt-

then-combine (ATC) formulation, where agents update their

estimates according to the following recursive construction:

ψk,i = wk,i−1 + μku
∗
k,i[dk(i)− uk,iwk,i−1] (3)

wk,i =
∑
�∈Nk

a�kψ�,i (4)

where the symbol Nk denotes the set of neighbors of agent k,

including k itself; these are agents that can share information

directly with k. As illustrated in Figure 2, it is obvious that

agents in Nk should belong to the cluster of agent k, denoted

by Ck, i.e., Nk ⊂ Ck. The cluster of agent k includes two

types of agents: (a) those agents which agent k has decided

to cluster with and, therefore, has direct links to them, and (b)

agents which agent k has a path through other intermediate

agents to connect with. In other words, the set Ck represents

a connected sub-network that includes k and its immediate

neighborhood in addition to other agents. Formally, the clus-

ter set Ck is constructed as follows. Representing the connec-

tion topology graphically, we connect two agents k and � by

an edge if Ik� = 1. Then, the cluster Ck is the maximally

connected subnetwork containing agent k. In this way, for

any other agent in Ck, there will exist at least one path con-

necting agent k to it either directly by an edge, or by means

of a path passing through other intermediate agents.

The parameter μk in (3) is a positive step-size factor,

which is assumed to be sufficiently small and identical for all

agents, i.e., μk ≡ μ � 1. Sufficiently small step-sizes ensure

mean-square stability of the diffusion strategy [3, 4, 14]. In

the first step (3), an intermediate estimate ψk,i is determined

by adjusting the existing estimate wk,i−1 using local data.

The second step (4) uses non-negative coefficients {a�k} to

combine the estimates from the neighbors. The coefficients

{a�k} are required to satisfy:

a�k ≥ 0, a�k = 0 if � /∈ Nk (5)

We collect the coefficients {a�k} into an N ×N matrix A. In

this work, although unnecessary, we assume that A is doubly-

stochastic, i.e., the entries on each of its rows and columns

add up to one, such as selecting A to be the Laplacian com-

2
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Table 1: Cost values for all four combinations of actions by the selfish agents.

αk� = 0 αk� = 1

α�k = 0

MSDk(Ck) + βk

∑

q∈Nk

Ikqckq

MSD�(C�) + β�

∑

q∈N�

I�qc�q

MSDk(Ck) + βk

∑

q∈Nk

Ikqckq

MSD�(C�) + β�

∑

q∈N�

I�qc�q

α�k = 1

MSDk(Ck) + βk

∑

q∈Nk

Ikqckq

MSD�(C�) + β�

∑

q∈N�

I�qc�q

MSDk(Ck ∪ C�) + βk

∑

q∈Nk

Ikqckq + βkck�

MSD�(Ck ∪ C�) + β�

∑

q∈N�

I�qc�q + β�c�k

bination rule [14, 15] or the Metropolis combination rule [15,

16]. Then, we have

AT1 = 1, A1 = 1 (6)

where the notation 1 denotes a vector with all its entries equal

to one. In the context of algorithm (3)-(4), the information to

be shared between neighbors are the intermediate estimates

ψ�,i.

During the cluster formation stage, the cluster dynamics

is evolving and, therefore, Ck is dependent on time during

this phase. When two agents k and � first meet randomly

at some time i, prior to the adaptation stage involving (3)-

(4), the reference knowledge Kk and K� that they share is

assumed to consist of the agents that belong to their clusters

and their respective noise variances:

Kk �
{
(q, σ2

v,q)|q ∈ Ck
}

(7)

When two agents decide to cluster, then their cluster sets are

merged and all agents in these sets become part of the same

larger cluster. As such, whenever two agents meet and they

are not members of the same cluster, then their cluster sets are

necessarily disjoint.

3. COMBINED COST FOR CLUSTERING
AGREEMENT

In the cluster formation stage, when two agents k and � meet

randomly, they select their actions {αk�,α�k} based on their

assessment of a long-term expected return as follows. Each

agent k employs a combined cost function that takes into ac-

count the cost of communicating with agent � and the con-

tribution of agent � towards the estimation task (i.e., whether

it will help reduce the steady-state mean-square error). The

combined cost function for agent k depends on the actions by

both agents and on their existing clusters:

Jk(αk�,α�k|Ck, C�) �⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

MSDk(Ck ∪ C�) + βk

( ∑
q∈Nk∪{�}

Ikqckq

)
,

if (αk�,α�k) = (1, 1)

MSDk(Ck) + βk

( ∑
q∈Nk

Ikqckq

)
, otherwise

(8)

where βk is a normalization parameter, and MSDk denotes

the steady-state mean-square-deviation (MSD) measure for

agent k:

MSDk � lim
i→∞

E‖w̃k,i‖2 (9)

in terms of the error vector w̃k,i � wo −wk,i. Moreover, the

notation MSDk(Ck) for cluster Ck is used to denote the MSD

value that would be attained by agent k if its cluster is Ck. In

Table 1, we summarize the resulting cost values for the agents

under their respective actions.

Let us now explain how the MSD values in (8) can be

evaluated. Consider an arbitrary agent k and a cluster set Ck
of size K. Under the assumption that the regressors uk,i are

spatially and temporally independent and that the step-size μ
is sufficiently small, it holds that for the doubly-stochastic A,

we have the following expression (refer to Equations (89) and

(97) in [11] or Equation (32) in [17]):

MSDk(Ck) ≈ μM

2
· 1

K2

∑
q∈Ck

σ2
v,q (10)

Suppose agent k meets agent � with cluster C� of size L.

We note that one of two situations will occur: Ck = C� or

Ck
⋂ C� = ∅. In the trivial case that Ck = C�, we have

MSDk(Ck ∪ C�) = MSDk(Ck) (11)

since agents k and � have the same cluster. For Ck
⋂ C� = ∅, if

agents k and � fail to reach agreement, which means Ik� = 0,

then we again obtain MSDk(Ck) for (10). On the other hand,

if they successfully reach agreement (Ik� = 1), then

MSDk(Ck ∪ C�) ≈ μM

2
· 1

(K + L)2

∑
q∈Ck∪C�

σ2
v,q (12)

In this way, the combined cost values in (8) are given by:

Jk(αk�,α�k|Ck, C�) =⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

μM
2 · 1

(K+L)2

∑
q∈Ck∪C�

σ2
v,q+βk

∑
q∈Nk

Ikqckq+βkck�,

if (αk�,α�k) = (1, 1)
μM
2 · 1

K2

∑
q∈Ck

σ2
v,q + βk

∑
q∈Nk

Ikqckq, otherwise

(13)

Then, agents choose the actions that minimize their combined

cost function (13). Once Ikl = 1, agents k and � start sharing

3



 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

estimates in the information sharing stage. To prevent agents

from deviating from the agreement, we punish the deviant

agents in the following manner: if any agent k violates the

agreement to cooperate with agent �, agent � broadcasts this

misbehavior to its neighbors and from there to their neighbors

and agents will stop sharing estimates with agent k perma-

nently.

We remark that the individual actions of agents could im-

pact the combined cost values of other agents in the same

cluster. However, individual actions do not worsen the

marginal combined costs of other agents in a cluster. To

see this, if no larger clustering (no new agreement) occurs,

the combined cost of every agent in a cluster remains the

same. If a new clustering agreement of agents, say, k and �,
is made, the MSD costs of other agents reduce but there is no

addition communication cost required by them, and thus their

combined costs reduce.

4. CLUSTER FORMATION PROCESS

The following lemma characterizes the conditions for cluster

formation.

Lemma 1. Agents k and � reach agreement to cluster (Ik� =
1), when the following two conditions are met:∑

q∈Ck
σ2
v,q

K2
−

∑
q∈Ck∪C�

σ2
v,q

(K + L)2
>

2

μM
βkck� (14)

and ∑
q∈C�

σ2
v,q

L2
−

∑
q∈Ck∪C�

σ2
v,q

(K + L)2
>

2

μM
β�c�k (15)

Proof. From Table 1, we first note that if agent � selects

α�k = 0, then it is indifferent to agent k selecting αk� = 0 or

1. On the other hand, in the case of α�k = 1, if we have

Jk(αk� = 0,α�k = 1|Ck, C�)
> Jk(αk� = 1,α�k = 1|Ck, C�) (16)

then agent k should choose αk� = 1 to obtain a lower com-

bined cost. Therefore, condition (16) ensures the best strategy

for agent k to be αk� = 1. Using (13) we can rewrite (16) as

μM

2

(∑
q∈Ck

σ2
v,q

K2

)
+ βk

∑
q∈Nk

Ikqckq

>
μM

2

(∑
q∈Ck∪C�

σ2
v,q

(K + L)2

)
+ βk

∑
q∈Nk

Ikqckq + βkck� (17)

which is equivalent to (14). Similarly, we can obtain condi-

tion (15) to ensure α�k = 1 from agent �’s perspective.

Note that when conditions (14) and (15) hold, the dom-

inant strategies for agents k and � become αk� = 1 and

α�k = 1. On the other hand, when either one of condi-

tions (14) or (15) fails to hold, agents have no incentive to

cluster. In this case, (αk�,α�k) = (1, 1) will not be chosen,

which results in Ik� = 0. We assume agents k and � select

(αk�,α�k) = (0, 0) if equalities occur in (14) and (15). From

Lemma 1, we know that clusters Ck and C� unite if both con-

ditions (14) and (15) hold. Furthermore, we observe that low

weighted transmission costs, βkck� and β�c�k, facilitate the

formation of the united cluster. Now, let us consider networks

with uniform βk = β� ≡ β and ck� = c�k ≡ c. If every agent

further has the same noise variance, we obtain the following

result.

Lemma 2. If the noise variances across the network are uni-
form, i.e., σ2

v,q ≡ σ2
v , then the following condition guarantees

the cluster formation Ck ∪ C�:
K + L

σ2
v

2

μM
βc < min

{
L

K
,
K

L

}
(18)

Proof. For agent k, it follows from (14) that we must have

L

K
>

K + L

σ2
v

2

μM
βc (19)

Similarly, for agent � it follows from (15) that we must have

K

L
>

K + L

σ2
v

2

μM
βc (20)

Combining both results, we obtain (18).

Therefore, if we want to facilitate the formation of larger

clusters, Lemma 2 suggests to maximize the right-hand side

of (18), which occurs when K = L and the maximum value

becomes equal to one. In other words, larger clustering is

more likely to occur for clusters Ck and C� of equal sizes.

Now, let us examine the case in which the clusters Ck and C�
have the same sizes but their agents have heterogeneous noise

variances.

Lemma 3. If clusters Ck and C� have the same sizes, i.e.,
K = L, then the following condition guarantees the cluster
formation Ck ∪ C�:

8

μM
βc < min

{
1

K
(3σ̄2

k − σ̄2
� ),

1

L
(3σ̄2

� − σ̄2
k)

}
(21)

where

σ̄2
k � 1

K

∑
q∈Ck

σ2
v,q and σ̄2

� � 1

L

∑
q∈C�

σ2
v,q (22)

are the average noise variances of Ck and C�, respectively.

Proof. For agent k, we conclude from (14) that we must have:

3

∑
q∈Ck

σ2
v,q

K
−

∑
q∈C�

σ2
v,q

L
>

8K

μM
βc (23)

Similarly, for agent � it must hold that

3

∑
q∈C�

σ2
v,q

L
−

∑
q∈Ck

σ2
v,q

K
>

8L

μM
βc (24)

Combining both conditions, we obtain (21).

4
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(a) Evolution of clusters.
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Fig. 3: Cluster formation with c = 5× 10−5 and σ2
v = −6 (dB).
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Fig. 4: Simulations of steady-state network MSD.

Again, the maximum of the term on the right-hand side of

(21) occurs when

(3L+K)σ̄2
k = (3K + L)σ̄2

L (25)

Therefore, for clusters of equal sizes, two clusters with the

same (weighted) average noise variance will be more likely

to unite.

5. SIMULATION RESULTS

In our simulations, we consider a network with 20 agents.

During the first 10 time instants, agents are uniformly and

randomly paired. Then, agents proceed to cooperate within

their clusters to solve the estimation problem. The length of

wo is M = 3 and we randomly choose its entries and nor-

malize them to satisfy ‖wo‖ = 1. The regressor {uk,i} is

zero-mean and Ru,k is diagonal with entries uniformly gen-

erated between [0,1]. The background noise vk(i) is tem-

porally white and spatially independent Gaussian distributed

with zero-mean and assumed to be uniform with variance

σ2
v,k = σ2

v = −6 (dB). We set μ = 0.005, βk = β = 1,

and ck� = c = 5× 10−5 for all agents.

Figure 3(a) shows the topology evolution from i = 1 to

4. We observe that agents gradually form clusters to maxi-

mize their own utilities. The final topology with three disjoint

clusters is shown in Figure 3(b). Cooperating over the re-

sulting sub-networks, agents start to share estimates and run

algorithm (3)-(4). We simulate the corresponding steady-state

MSD in Figure 4(a) where agents are indexed and grouped ac-

cording to their clusters. We observe that through clustering,

every agent is able to achieve better estimation performance

than if the agents were to act independently of the other agents

by running their own individual LMS recursions. Figure 4(b)

shows the effect of transmission cost to the cluster formation

and thus to the steady-state network MSD.
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