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ABSTRACT

This work characterizes the nature of the limit point of dis-
tributed strategies for adaptation and learning over networks
in the general case when the combination policy is not nec-
essarily doubly stochastic and when the individual risks do
not necessarily share a common minimizer. It is shown that,
for sufficiently small step-sizes, the limiting behavior of the
network is mainly influenced by the right-eigenvector of the
combination policy corresponding to the single eigenvalue at
one. It is also shown that the limit point of the network is the
unique solution to a certain fixed-point equation determined
by the entries of this eigenvector. The arguments show fur-
ther that even when only partial information is available to
the agents, cooperation over a connected network enables the
agents to attain the same level of performance as a centralized
solution.

Index Terms— Distributed optimization, diffusion strat-
egy, consensus strategy, Pareto optimality.

1. INTRODUCTION

We examine two important classes of strategies for the op-
timization of aggregate cost functions by a connected net-
work of N distributed agents. One class of strategies relies
on the consensus implementation [1–8] and the second class
of strategies relies on the diffusion implementation [9–14]. In
both implementations, the agents use stochastic gradient re-
cursions and collaborate locally to estimate some parameter
of interest. The step-sizes used by the agents can be identical
or different. The algorithms can be motivated as follows. Let
Jglob(w) denote the aggregate cost function

Jglob(w) =
N∑

k=1

Jk(w) (1)

which is defined in terms of individual cost functions Jk(w)
assigned to each agent, for k = 1, . . . , N . The objective is to
minimize Jglob(w), which is assumed to be strongly convex.

Email: {jshchen, sayed}@ee.ucla.edu. This work was supported in part
by NSF grant CCF-1011918.

There are several variants of distributed strategies. Consensus
and the adapt-then-combine (ATC) diffusion strategies pursue
the above objective by employing recursions of the following
form:ψk,i−1 =

∑
`∈Nk

a`kw`,i−1

wk,i = ψk,i−1 − µk∇̂wJk(wk,i−1)
[consensus] (2)

and
ψk,i = wk,i−1 − µk∇̂wJk(wk,i−1)

wk,i =
∑

`∈Nk

a`kψ`,i
[diffusion] (3)

where the µk are non-negative step-size parameters, wk,i

denotes the estimate computed by agent k at time i, and
∇̂wJk(·) represents a stochastic approximation for the true
gradient vector of Jk(w) with respect to w. We require at
least one µk > 0 so that at least one agent in the network is
performing adaptation. Some of the other step-sizes can be
zero, in which case the corresponding agents would only be
participating in the aggregation of information. Moreover, the
symbol Nk in (2)–(3) denotes the set of neighbors of agent
k. The {a`k} are non-negative combination coefficients that
satisfy ∑

`∈Nk

a`k = 1, a`k = 0 if ` /∈ Nk (4)

If we introduce the N ×N matrix A = [a`k], then condition
(4) implies that A is a left-stochastic matrix, namely, it sat-
isfies AT1 = 1, where 1 denotes the vector with all entries
equal to one.

In the diffusion implementation (3), the variable ψ`,i is
an intermediate estimator that is shared among the neighbors
in lieu of the estimators w`,i−1 used by the consensus im-
plementation (2). In doing so, diffusion allows information
to spread more thoroughly through the network. It is clear
from (2) and (3) that the consensus and diffusion implemen-
tations have exactly the same computational complexity, and
yet it was shown in [15] that the diffusion dynamics leads to
improved mean-square-error performance. Diminishing step-
sizes of the form µk(i) = ck/(i + 1) for some constants
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ck > 0, can also be used in (2)–(3). Nevertheless, we fo-
cus in this work on the case of constant step-sizes in order
to endow the agents with continuous learning and adaptation
abilities. For studies involving diminishing step-sizes, readers
are referred to [2–5, 16].

One important question is the following. The above re-
cursive schemes are motivated as distributed solutions for
the minimization of the aggregate cost function (1). When
the individual costs are all minimized at the same location,
wo, or when the combination matrix A happens to be doubly
stochastic (i.e., each of its columns and each of its rows add
up to one), then results in the literature [5, 6, 11, 12] already
establish that the estimates wk,i generated by both strate-
gies (2)–(3) converge within small mean-square-error to the
unique minimizer wo of (1). But what if A is not doubly
stochastic and what if the individual costs Jk(w) do not share
a common minimizer? Where do these strategies converge
to? These questions are relevant because it is known that the
optimal combination policy that minimizes the steady-state
mean-square-error is not necessarily doubly stochastic [17]
— see also expression (36) further ahead.

Building on recent results from [13], this article answers
the above question in an interesting way. The conclusion will
establish that, for sufficiently small step-sizes, the distributed
schemes (2)–(3) do not converge to the minimizer of (1) but
rather to the unique solution of the following equation:

N∑
k=1

pk∇wJk(w) = 0 (5)

where the {pk} denote positive scalars that will be con-
structed later from the step-sizes and from the entries of the
right-eigenvector of A corresponding to the eigenvalue at one
— see (13). Moreover, the analysis will show that the solution
of (5) can be interpreted as being a Pareto optimal solution
to a multi-objective optimization problem. The analysis will
further show that when A is doubly stochastic or when the
{Jk(w)} have a common minimizer, then the solution of (5)
agrees with the minimizer of (1). In this way, equation (5) can
be viewed as the desired relation that characterizes the limit
point of the network for all scenarios. These conclusions are
significant for various reasons:

(a) They show how the choice of the combination policy
A influences the limit point of the learning process
(through the scalars {pk}).

(b) They provide a way to selectA in order to drive the net-
work towards a desired limit point, including the limit
point of the original optimization problem (1). For this
latter purpose, we would simply need to ensure that the
resulting {pk} are all identical.

(c) They allow us to quantify the benefit of cooperation, as
the results in the following sections reveal.

2. PROBLEM FORMULATION

Thus, consider a network of N connected agents, where each
agent k receives a stream of data {xk,i} arising from some
underlying distribution. In this paper, we consider the case
where the topology is static over time and the communica-
tion links are noise free. The networked multi-agent system
would then like to extract some useful information about the
underlying process from the distributed data. To measure the
quality of the inference task, an individual convex cost func-
tion, Jk(w), is associated with each agent k, where w denotes
an M × 1 parameter vector. The agents are interested in min-
imizing an aggregate cost function of the form (1). Based on
whether the individual costs {Jk(w)} share a common min-
imizer or not, we can classify problems of the form (1) into
two broad categories.

2.1. Category I: Distributed Learning

In this case, the data streams {xk,i} are assumed to be gen-
erated by (possibly different) distributions that depend on the
same parameter vector wo ∈ RM . The objective is then to es-
timate this common parameter wo in a distributed manner. To
do so, we first need to associate with each agent k a cost func-
tion Jk(w) that measures how well some arbitrary parameter
w approximates wo. The cost Jk(w) should be such that wo

is one of its minimizers. More formally, letWo
k denote the set

of vectors that minimize the selected Jk(w), then

wo ∈ Wo
k ,

{
w : arg min

w
Jk(w)

}
(6)

for k = 1, . . . , N . Since Jglob(w) is assumed to be strongly
convex, then the intersection of the sets Wo

k should contain
the single element wo:

wo ∈ Wo ,
N⋂

k=1

Wo
k (7)

The main motivation for cooperation in this case is that
the data collected at each agent k may not be sufficient to
uniquely identify wo since wo is not the unique element in
Wo

k ; this happens, for example, when the individual costs
Jk(w) are not necessarily strictly convex. However, once
the individual costs are aggregated into (1) and the aggregate
function is strongly convex, then wo is the unique element in
Wo. In this way, the cooperative minimization of Jglob(w)
allows the agents to estimate wo. In addition, it is gener-
ally beneficial to have more agents involved in the learning
process to reduce the effect of statistical perturbations in the
data [17].

2.2. Category II: Distributed Optimization

In this case, we include situations where the individual costs
Jk(w) do not have a common minimizer, i.e., Wo = ∅. The
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optimization problem should then be viewed as one of solving
a multi-objective minimization problem of the form:

min
w
{J1(w), . . . , JN (w)} (8)

A vector wo is said to be a Pareto optimal solution to (8) if
there does not exist another vector w that is able to improve
(i.e., reduce) any individual cost without degrading (increas-
ing) some of the other costs. Pareto optimal solutions are not
necessarily unique. It is known that the problem of determin-
ing Pareto optimal solutions can be transformed into the op-
timization of cost functions of a form similar to (1) by means
of a scalarization technique [12, 18]. Specifically, we replace
(1) by

Jglob(w) =
N∑

k=1

πkJk(w) (9)

where the {πk} are positive weighting coefficients that we are
free to choose. Then, each set of coefficients {πk} leads to a
Pareto optimal solution wo to problem (8). Since we can re-
scale the individual costs in (9) above as

Jk(w) ←− πkJk(w) (10)

then we are reduced again to the scenario described by (1) and
the same recursions (2)–(3) continue to be applicable.

The question we would like to address now is the follow-
ing: given individual costs {Jk(w)} and a combination policy
A, what is the limit point of the distributed strategies (2) or
(3)?

3. LIMIT POINT OF LEARNING PROCESS

3.1. Diffusion and Consensus Strategies

We observe from (2)–(3) that there are two types of learn-
ing processes involved in the dynamics of each agent k: (i)
self-learning with stochastic gradients {∇̂wJk(·)} from lo-
cally sensed data and (ii) social learning using combination
steps from neighbors. All nodes implement the same self- and
social learning structure. As a result, the learning dynamics
of all nodes in the network are coupled; knowledge exploited
from local data at node k will be propagated to its neighbors
and from there to their neighbors in a diffusive learning pro-
cess.

We introduce a couple of assumptions that are sufficient
to guarantee the convergence of the learning process.

Assumption 1 (Strongly connected network). We require A
to be a primitive left-stochastic matrix, i.e., AT1 = 1 and
there exists a finite positive integer j0 such that all entries of
Aj0 are strictly positive. �

Assumption 1 is automatically satisfied if the network is
connected and there is at least one akk > 0 for some node

k. It then follows from the Perron-Frobenius Theorem [19]
that the matrix A has an eigenvalue at one with multiplicity
one and that all other eigenvalues of A are strictly less than
one in magnitude. Obviously, 1T is a left eigenvector for A
corresponding to the eigenvalue at one. Let θ denote the right
eigenvector corresponding to the eigenvalue at one and whose
entries are normalized to add up to one, i.e.,

Aθ = θ and 1T θ = 1 (11)

Then, the Peron-Frobenius Theorem further ensures that all
entries of θ are positive.

Definition 1 (p-vector). Let

µmax , max
k

µk (12)

so that µk = µmaxβk for some nonnegative scalars 0 ≤ βk ≤
1. We define

p , col{θ1β1, . . . , θNβN} (13)

where θk is the kth entry of the vector θ.

The vector p plays an important role in characterizing the
limit point and the steady-state mean-square-error perfor-
mance of the distributed strategies (2) and (3).

Furthermore, we denote the difference between the true
and approximate gradient vectors as the gradient noise vk,i(·):

∇̂wJk(w) = ∇wJk(w) + vk,i(w) (14)

Assumption 2 (Gradient noise). There exist αk ≥ 0 and
σ2

v,k ≥ 0 such that, for all w ∈ Fi−1:

E {vk,i(w) | Fi−1} = 0 (15)

E
{
‖vk,i(w)‖2

}
≤ αk · E‖∇wJk(w)‖2 + σ2

v,k (16)

for all i, k, where Fi−1 denotes the past history of all iterates
{wk,j} up to time i− 1 for all k. �

The above assumption is standard in stochastic approxima-
tion theory [20] and we explained why it is necessary in the
context of adaptive solutions in [11].

Finally, we require the true gradient vectors {∇wJk(w)}
to satisfy the following conditions.

Assumption 3 (Lipschitz gradients). There exist λU ≥ 0 such
that for all x, y ∈ RM and all k:

‖∇wJk(x)−∇wJk(y)‖ ≤ λU · ‖x− y‖ (17)

where the subscript “U” in λU refers to an upper bound. �

Assumption 4 (Global observability). There exists λL > 0
such that for all w ∈ RM :

N∑
k=1

pk∇2
wJk(w) ≥ λLIM (18)

where the subscript “L” in λL refers to a lower bound, and
the {pk} denote entries of the vector p. �
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3.2. Main Result

We summarize the main result in the following theorem; its
proof follows from the arguments used in [13].

Theorem 1 (Limit point and performance). Suppose Assump-
tions 1–4 hold. Then, there exists a unique solution wo ∈ RM

to the following equation:

N∑
k=1

pk∇wJk(w) = 0 (19)

Moreover, for sufficiently small step-sizes, both the consensus
strategy (2) and the diffusion strategy (3) will converge to this
wo in the mean-square sense at the following rate:

r ≈ 1− 2µmaxλmin (Rc) (20)

with the steady-state mean-square-error (MSE) at each agent
approximated by:

lim
i→∞

E‖w̃k,i‖2 ≈
µmax

2
· Tr

{
(pT ⊗ IM )Rv(p⊗ IM )R−1

c

}
(21)

where µmax is defined in (12) and

Rc ,
N∑

k=1

pkHk (22)

Hk , ∇2
wJk(wo) (23)

Rv , lim
i→∞

E
{
vi(wo)vi(wo)T

}
(24)

vi(wo) , col {v1,i(wo), . . . ,vN,i(wo)} (25)

�

One important observation from (21) is that the perfor-
mance is independent of the agent index; different agents will
have almost the same performance to first order in the step-
sizes. In fact, the convergence rate (20) and the MSE perfor-
mance level (21) have the same values that would result from
the following centralized solution:

wcent,i = wcent,i−1 − µmax

N∑
k=1

pk∇̂wJk(wcent,i−1) (26)

where wcent,i denotes the estimate generated by the cen-
tralized recursion. In [17], results similar to (20)–(21) were
derived for the special case of diffusion-LMS adaptive net-
works, where the Hessian matrices and step-sizes were as-
sumed to be the same across all agents.

4. BENEFITS OF COOPERATION

4.1. Distributed Learning

4.1.1. Working under Partial Observation

Under the scenario described by (7), the solution of (19)
agrees with the unique minimizer wo for Jglob(w) given by

(1) regardless of the {pk} and, therefore, regardless of the
combination policy A. Therefore, Theorem 1 ensures that
the estimator wk,i at each agent k converges to this unique
wo at a centralized rate and MSE performance. Note that
Assumption 4 can be satisfied without requiring each Jk(w)
to be strongly convex. Instead, we only require Jglob(w) to
be strongly convex. In other words, we do not need each
agent to have complete information about wo; we only need
the network to have enough information to determine wo

uniquely. Although the individual agents in this case have
partial information about wo, the distributed strategies (2)
and (3) enable them to attain the same performance level as
a centralized solution. The following example illustrates the
idea in the context of distributed LMS estimation.

Example. Suppose each agent k collects data {uk,i,dk(i)}
that are related via the linear model:

dk(i) = uk,iw
o + zk,i (27)

where zk,i is a zero mean noise process, and the regressor
uk,i is 1×M . The objective is to estimate wo in a distributed
manner by minimizing (1) where

Jk(w) = E|dk(i)− uk,iw|2 (28)

When the covariance matrix Ru,k , E[uT
k,iuk,i] is rank de-

ficient, then Jk(w) would not be strongly convex and there
would be infinitely many minimizers to Jk(w). In this case,
the information provided to agent k via (27) is not sufficient
to determine wo uniquely. However, if the global cost func-
tion is strongly convex, which can be shown to be equivalent
to requiring:

N∑
k=1

pkRu,k > λLIM (29)

then the information collected over the entire network is rich
enough to learn the unique wo. As long as (29) holds for one
set of positive {pk}, it will hold for all other positive {pk}.
A “network observability” condition similar to (29) was used
in [3] to characterize the sufficiency of information over the
network in a similar context of distributed estimation over lin-
ear models albeit with diminishing step-sizes. �

4.1.2. Optimizing the MSE Performance

Since the distributed strategies (2) and (3) converge to the
minimizer wo of (1) for any set of {pk}, we can then con-
sider selecting the {pk} to optimize the MSE performance.
Consider the case where Hk ≡ H and µk ≡ µ and assume
the gradient noises are asymptotically uncorrelated across the
agents so that Rv becomes block diagonal with entries de-
noted by:

Rv = diag{Rv,1, . . . , Rv,N} (30)

4
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Then, we have βk = 1 and pk = θk in which case expressions
(20)–(21) become

r ≈ 1− 2µλmin(H) (31)

lim
i→∞

E‖w̃k,i‖2 ≈
µ

2
·

N∑
k=1

θ2kTr
(
Rv,kH

−1
)

(32)

The optimal positive coefficients {θk} that minimize (32)
subject to

∑N
k=1 θk = 1 is given by

θo
k =

[Tr(Rv,kH
−1)]−1

N∑
`=1

[Tr(Rv,`H
−1)]−1

(33)

and the optimal MSE is

MSEopt ≈ µ

2
·

[
N∑

`=1

1
Tr(Rv,`H−1)

]−1

(34)

The optimal right-eigenvector θo = col{θo
1, . . . , θ

o
N} can be

implemented by selecting the combination policy A as the
following Hasting’s rule [17, 21, 22]:

ao
`k =


(θo

k)−1

max {|Nk|·(θo
k)−1, |N`|·(θo

` )−1} , `∈Nk\{k}

1−
∑

m∈Nk\{k}

ao
mk, ` = k

(35)

4.1.3. Left-Stochastic Combination Policies

If we choose a doubly-stochastic combination policy for A,
then θk = 1/N . Note from (31) that the convergence rate
would be the same for both the left-stochastic policy (35) and
the doubly-stochastic policy. However, the steady-state MSE
for the doubly stochastic policy is worse than the performance
by the optimal left-stochastic policy:

MSEds =
µ

2
· 1
N2

N∑
k=1

Tr
(
Rv,kH

−1
)
≥ MSEopt (36)

where equality holds only when all agents have the same
noise covariance matrices, i.e., Rv,` ≡ Rv .

4.2. Distributed Pareto Optimization

When the individual costs {Jk(w)} do not necessarily share
a common minimizer, then each set of coefficients {pk} will
lead to a different minimizer of the fixed point equation (19).
This minimizer will correspond to a Pareto optimal solution.
Again, if we assume that Hk ≡ H , µk ≡ µ, and that the
gradient noises are asymptoically uncorrelated as in (30), then
we will obtain the same results along the lines of (31)–(32).
Therefore, if we want to reach a Pareto-optimal solution wo

that has the smallest steady-state MSE, then we should choose
the same Hasting’s rule as (35). Readers may consult [12] for
examples.
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