
SPATIO-TEMPORAL DIFFUSION MECHANISMS FOR ADAPTATION OVER

NETWORKS

Jae-Woo Lee∗, Seong-Eun Kim†, Woo-Jin Song∗†, and Ali H. Sayed‡

∗Department of Electronic and Electrical Engineering, POSTECH
†Educational Institute of Future Information Technology, POSTECH

Pohang, Gyungbuk, 790-784, Korea
‡Department of Electrical Engineering, University of California, Los Angeles, CA 90095

Email:{magic0ad,raslove,wjsong}@postech.ac.kr, ‡sayed@ee.ucla.edu

ABSTRACT

This work develops diffusion algorithms for adaptation over
networks that endow nodes with both cooperation abilities
and temporal processing abilities. Each node is allowed to
share information locally with its neighbors. At the same
time, each node filters past data and uses them to enhance
the collaborative process. In this manner, the resulting algo-
rithms consist of three stages: adaptation, spatial processing,
and temporal processing. The order of these operations can
be inter-changed leading to a total of six variations. The re-
sults indicate that the version that performs adaptation prior
to the steps of spatial cooperation and temporal processing
leads to best performance.

1. INTRODUCTION

Consider a set of N nodes that are distributed over a re-
gion in space, as shown in Fig. 1. The set of nodes that
are connected to node k (including k itself) is called the
neighborhood of node k and is denoted by Nk. Each node k
receives scalar measurements dk(i) and 1×M regression vec-
tors uk,i at successive time instants i. The data are assumed
to satisfy a linear regression model of the form

dk(i) = uk,iw
o + vk(i) (1)

where wo is an M × 1 parameter vector of interest. The
nodes would like to estimate wo in a distributed and adap-
tive manner through local cooperation. Each node is al-
lowed to share information only with its neighbors. Dis-
tributed adaptive problems of this type have been proposed
and studied in some detail in [1-8]. Several algorithms have
been developed for this purpose, such as incremental LMS
[1,2], diffusion LMS [3-5], diffusion RLS [6], and diffusion
Kalman filters and smoothers [7]. Algorithms based on av-
erage consensus also have been proposed in [8]. Adaptive dif-
fusion algorithms exploit the spatial diversity in the data to
great effect. Performance and stability analyses in the afore-
mentioned references [1]-[7] derive expressions that charac-
terize the mean-square behavior of adaptive diffusion algo-
rithms and establish their superior performance over non-
cooperative schemes.

The purpose of this article is to add a temporal dimension
to the processing at the nodes. Rather than rely solely on
current data and on the data shared with the neighbors at
a particular time instant, we endow each node with a local
memory to filter its past data and use them in addition to

This work was supported in part by the Brain Korea 21
Project in 2011 while J-W. Lee was a PhD student visitor at the
UCLA Adaptive Systems Laboratory. The work of A. H. Sayed
was supported in part by NSF grants CCF-1011918 and CCF-
0942936.

Figure 1: A spatio-temporal network, where each node has access
to the P data points {dk(i− j), uk,i−j} for j = 0, 1, . . . , P − 1.

the current data. In this way, the effects of previous data
and estimates are used to enhance performance further. We
proceed to derive the spatio-temporal diffusion algorithms
and to illustrate their behavior.

2. PROBLEM FORMULATION

Each node k is assumed to have access to data from time i
and to data from the previous P − 1 time instants. Thus,
consider the following global cost function:

Jglob(w) =
N
∑

k=1

(

P−1
∑

j=0

qk,jE |dk(i− j)− uk,i−jw|
2

)

(2)

where E denotes the expectation operator, and qk,j is a non-
negative scalar that represents the weight that node k gives
to data from time i−j. We collect the weights {qk,j} into an
N×P matrix Q and require that Q satisfy the normalization
condition Q1P = 1N ,where 1k denotes the k×1 vector with
unit entries.

When the processes dk(i) and uk,i are jointly wide-sense
stationary (WSS) and the regression process uk,i is also
WSS, the optimal solution wo of (2) is the solution to the
following normal equations (where we assume inverses exist
whenever necessary)[9]:

wo =

(

N
∑

k=1

Ru,k

)−1(N
∑

k=1

Rdu,k

)

(3)

where Ru,k = Eu∗
k,iuk,i and Rdu,k = Edk(i)u

∗
k,i.

2.1 Local Optimization over Space

Following the approach developed in [4] to derive spatial dif-
fusion, we introduce an N × N weighting matrix C with

19th European Signal Processing Conference (EUSIPCO 2011) Barcelona, Spain, August 29 - September 2, 2011

© EURASIP, 2011 - ISSN 2076-1465 1040

individual non-negative real entries {cl,k} such that

cl,k = 0 if l /∈ Nk, C1N = 1N , 1
∗
NC = 1

∗
N . (4)

We further consider the following local cost function at node
k; it only employs data that are available to node k:

J loc
k (w) =

∑

l∈Nk

cl,k

(

P−1
∑

j=0

ql,jE |dl(i− j) − ul,i−jw|
2

)

. (5)

The local optimal estimate for wo is given by:

wloc
k = Γ−1

k

∑

l∈Nk

cl,kRdu,l

 where Γk =
∑

l∈Nk

cl,kRu,l. (6)

We can rewrite (5) in terms of wloc
k as follows:

J loc
k (w) =

∥

∥

∥w − wloc
k

∥

∥

∥

2

Γk

+mmse. (7)

where mmse denotes the resulting minimum mean-square
error and the notation ‖a‖2Σ = a∗Σa represents a weighted
vector squared norm. In this manner, we can re-express the
original global cost function (2) in the form:

Jglob(w) =
N
∑

l=1

J loc
l (w) = J loc

k (w) +
N
∑

l 6=k

J loc
l (w). (8)

From (5), (7) and (8), we conclude that minimizing (2) is
equivalent to minimizing the alternative cost function:

Jglob′(w) = J loc
k (w) +

N
∑

l 6=k

∥

∥

∥w − wloc
l

∥

∥

∥

2

Γl

. (9)

2.2 Local Optimization over Time

As explained in [4], the equivalent expression (9) allows us
to relate the global optimization problem (2) to local opti-
mization problems of the form (5) at the local nodes. In this
manner, expression (9) can be used to motivate a distributed
way for solving the global problem (2) through local inter-
actions at the nodes. But before we discuss the distributed
solution, we repeat a similar argument in the time domain.
Starting from (5), we can write it as:

J loc
k (w) =

P−1
∑

j=0

∑

l∈Nk

cl,k
(

ql,jE |dl(i− j) − ul,i−jw|
2) . (10)

Expression (10) motivates us to introduce the following
cost function at node k for every time instant j (j =
0, 1, 2, . . . , P − 1):

J loc
k,j (w)=

∑

l∈Nk

cl,k
(

ql,jE|dl(i− j)−ul,i−jw|
2
)

. (11)

Then,

J loc
k (w) =

P−1
∑

j=0

J loc
k,j (w). (12)

By the WSS assumption on the regression process, the opti-
mal temporal solution of (11) at node k is

wloc
k,j = Λ−1

k,j

∑

l∈Nk

cl,kql,jRdu,l

 (13)

where Λk,j =
∑

l∈Nk
cl,kql,jRu,l. In a manner similar to (7),

we can express (11) as

J loc
k,j (w) =

∥

∥

∥
w − wloc

k,j

∥

∥

∥

2

Λk,j

+mmse. (14)

Using (12) and (14), we observe that minimizing the local
cost function (5) is equivalent to minimizing the following
cost:

J loc′
k (w) = J loc

k,0(w) +

P−1
∑

j=1

∥

∥

∥
w − wloc

k,j

∥

∥

∥

2

Λk,j

. (15)

Combining (9) and (15), we arrive at our initial conclusion,
namely, that optimizing the cost below over w is equivalent
to optimizing the original global cost function (2):

Jglob′′(w) =
∑

l∈Nk

cl,k
(

ql,0E|dl(i)−ul,iw|
2)

+
P−1
∑

j=1

∥

∥

∥
w − wloc

k,j

∥

∥

∥

2

Λk,j

+
N
∑

l 6=k

∥

∥

∥
w − wloc

l

∥

∥

∥

2

Γl

. (16)

3. SPATIO-TEMPORAL DIFFUSION LMS

The alternative cost (16) is expressed in terms of the spa-

tial local estimates {wloc
l } and the temporal local estimates

{wloc
k,j}. To minimize this cost in its present form, we need

to have access to global information such as the moment
matrices, Γl and Λk,j . Following the arguments in [4], a dis-
tributed implementation can be motivated by replacing Γl

and Λk,j by (non-negative) scaled multiples of the identity
matrix and by replacing wloc

l and wloc
k,j by local estimates ψl

and φk,j , respectively:

Γl =⇒ bl,kIM wloc
l =⇒ ψl

Λk,j =⇒ hk,jIM wloc
k,j =⇒ φk,j (17)

where bl,k = 0 if l /∈ Nk, 1
∗
NB = 1

∗
N and H1P = 1N .

The matrix B is the N ×N matrix with individual entries
bl,k and the matrix H is the N × P matrix with individual
entries hk,j . The vectors ψl serve as intermediate estimates
resulting from the spatial processing and the vectors φk,j

serve as intermediate estimates resulting from the temporal
processing.

In this way, each node k can proceed to minimize a cost
of the following form in a distributed manner:

Jdist
k (w)=

∑

l∈Nk

cl,k
(

ql,0E|dl(i)−ul,iw|
2)

+

P−1
∑

j=1

hk,j ‖w−φk,j‖
2+

∑

l∈Nk\{k}

bl,k ‖w − ψl‖
2 . (18)

We observe that (18) is a localized apporoximation for the
global cost function (16). Taking the gradient of (18) with
respect to w we obtain:

[

∇wJ
dist
k (w)

]∗

=
∑

l∈Nk

cl,kql (Ru,lw −Rdu,l)

+

P−1
∑

j=1

hk,j (w − φk,j) +
∑

l∈Nk\{k}

bl,k (w − ψl) (19)

where ql,0 is now being denoted by ql for the simplicity. The
gradient vector in (19) is a sum of three terms, namely

∑

l∈Nk

cl,kql (Ru,lw −Rdu,l) ,

P−1
∑

j=1

hk,j (w − φk,j) ,

∑

l∈Nk\{k}

bl,k (w − ψl) . (20)

By ordering these gradients, we arrive at combinations for
evaluating the gradient vector (19). For example, one incre-
mental algorithm (see [3,5]) to update the local estimate can

1041

be accomplished in three steps by incorporating the gradient
vectors (20) in the following order:

φk,i = wk,i−1 + µk

∑

l∈Nk

cl,kql (Rdu,l −Ru,lwk,i−1) (21)

ψk,i = φk,i + λk

P−1
∑

j=1

hk,j (φk,i−j − φk,i) (22)

wk,i = ψk,i + νk
∑

l∈Nk\{k}

bl,k (ψl,i − ψk,i) (23)

where we replace φk,j and ψl by the intermediate estimates
φk,i−j and ψl,i which are available at time i. We can rewrite
(22) and (23) as

ψk,i = (1−λk+hk,0λk)φk,i + λk

P−1
∑

j=1

hk,jφk,i−j (24)

wk,i = (1−νk+bk,kνk) + νk
∑

l∈Nk\{k}

bl,kψl,i. (25)

We define ak,k = (1− νk + bk,kνk) and al,k = νkbl,k for
l 6= k, then N × N weighting matrix A with individual
entries {al,k} satisfies 1

TA = 1
T . We also define gk,0 =

(1−λk+hk,0λk) and gk,j = λkhk,j for j 6= 0. We then
use the instantaneous approximations Ru,k ≈ u∗

k,iuk,i and
Rdu,k ≈ dk(i)u

∗
k,i to obtain the following diffusion algorithm:

φk,i = wk,i−1+ µk

∑

l∈Nk

cl,kqlu
∗
l,i (dl(i)−ul,iwk,i−1) (26a)

ψk,i =

P−1
∑

j=0

gk,jφk,i−j (26b)

wk,i =
∑

l∈Nk

al,kψl,i. (26c)

The above algorithms involves three steps: (a) an adaptation
step (A) represented by (26a); (b) a temporal filtering step
(T) represented by (26b), and a spatial combination step (S)
represented by (26c). We use the letters ATS to designate
the order of these steps and, therefore, refer to the algorithm
as the ATS diffusion version. In a similar manner, we can
obtain six different combinations of diffusion algorithms by
changing the order in which the temporal and spatial com-
binations are performed in relation to the adaptation step.
The results are summarized in Table 1.

4. PERFORMANCE ANALYSIS

In this section we analyze the ATS diffusion algorithm (26).
The other combinations can be analyzed in a similar manner.
We follow the approach of [4]. We define the error quantities

w̃k,i = wo − wk,i, ψ̃k,i = wo − ψk,i and φ̃k,i = wo − φk,i,
and the global vectors:

w̃i =

w̃1,i

...
w̃N,i

φ̃1,i

...

φ̃N,i

≀
φ̃1,i−P+2

...

φ̃N,i−P+2

, φ̃i =

φ̃1,i

...

φ̃N,i

φ̃1,i−1

...

φ̃N,i−1

≀
φ̃1,i−P+1

...
φ̃N,i−P+1

, ψ̃i =

ψ̃1,i

...

ψ̃N,i

φ̃1,i

...

φ̃N,i

≀
φ̃1,i−P+2

...
φ̃N,i−P+2

.

Table 1: Six combinations of spatio-temporal diffusion. The let-
ters A, T, and S refer to the steps of adaptation, temporal filter-
ing, and spatial combination. The order of the letters indicate the
order by which the steps are performed. For example, in TSA,
temporal processing is followed by spatial processing and then by
adaptation.

1. TSA diffusion

φk,i−1 =
∑P−1

j=0 gk,jwk,i−j−1

ψk,i−1 =
∑

l∈Nk
al,kφl,i−1

wk,i = ψk,i−1 + µk

∑

l∈Nk
qlcl,ku

∗
l,i (dl(i)− ul,iψk,i−1)

2. STA diffusion

φk,i−1 =
∑

l∈Nk
al,kwl,i−1

ψk,i−1 =
∑P−1

j=0 gk,jφk,i−j−1

wk,i = ψk,i−1 + µk

∑

l∈Nk
qlcl,ku

∗
l,i (dl(i)− ul,iψk,i−1)

3. TAS diffusion

φk,i−1 =
∑P−1

j=0 gk,jwk,i−j−1

ψk,i = φk,i−1 + µk

∑

l∈Nk
qlcl,ku

∗
l,i (dl(i) − ul,iφk,i−1)

wk,i =
∑

l∈Nk
al,kψl,i

4. SAT diffusion

φk,i−1 =
∑

l∈Nk
al,kwl,i−1

ψk,i = φk,i−1 + µk

∑

l∈Nk
qlcl,ku

∗
l,i (dl(i) − ul,iφk,i−1)

wk,i =
∑P−1

j=0 gk,jψk,i−j

5. ATS diffusion

φk,i = wk,i−1 + µk

∑

l∈Nk
qlcl,ku

∗
l,i (dl(i)− ul,iwk,i−1)

ψk,i =
∑P−1

j=0 gk,jφk,i−j

wk,i =
∑

l∈Nk
al,kψl,i

6. AST diffsuion

φk,i = wk,i−1 + µk

∑

l∈Nk
qlcl,ku

∗
l,i (dl(i)− ul,iwk,i−1)

ψk,i =
∑

l∈Nk
al,kφl,i

wk,i =
∑P−1

j=0 gk,jψk,i−j

We further introduce:

M = diag {µ1IM , . . . , µNIM}

A = A⊗ IM , C = C ⊗ IM

Di = diag

{

N
∑

l=1

cl,1qlu
∗
l,iul,i, . . . ,

N
∑

l=1

cl,Nqlu
∗
l,iul,i

}

Gi = CT col
{

q1u
∗
1,iv1(i), . . . , qNu

∗
N,ivN(i)

}

D = EDi = diag

{

N
∑

l=1

cl,1qlRu,l, · · · ,
N
∑

l=1

cl,NqlRu,l

}

G = E [GiG
∗
i] = CTdiag

{

q21σ
2
v,1Ru,1, · · · , q

2
Nσ

2
v,NRu,N

}

C.

where the notation col{· · · } denotes a column vector and the
notation diag{· · · } denotes a diagonal matrix. Also,

D̂i =

[

IMN −MDi 0

0 I(P−1)MN

]

Ĝi =

[

MGi

0

]

Â =

[

AT 0

0 I(P−1)MN

]

B̂ =

[

K

I(P−1)MN 0

]

K = [diag{g1,0,· · ·, gN,0},· · ·,diag{g1,P−1,· · ·, gN,P−1}]⊗ IM .

Then, expression (26) leads to:

φ̃i = D̂iw̃i−1 − Ĝi

ψ̃i = B̂φ̃i

w̃i = Âψ̃i (27)

1042

or, equivalently,

w̃i = ÂB̂D̂iw̃i−1 − ÂB̂Ĝi. (28)

Let

D̂ = ED̂i =

[

IMN −MD 0

0 I(P−1)MN

]

Ĝ = E
[

ĜiĜ
∗
i

]

=

[

MGM 0

0 0

]

.

4.1 Mean-Square Analysis

We analyze the mean-square performance of the algorithm
by following the energy conservation argument of [9]. Eval-
uating the weighted norm of w̃i in (28) we obtain:

E‖w̃i‖
2
Σ=E‖w̃i−1‖

2
D̂iB̂T ÂT ΣÂB̂D̂i

+ E
[

Ĝ
∗
i B̂

TÂTΣÂB̂Ĝi

]

(29)

where Σ is any Hermitian positive definite matrix. For
tractable analysis, we introduce the independence assump-
tion:

Assumption: All regressors uk,i are spatially and tempo-
rally independent.

Using the above assumption, we can rewrite (29) as:

E ‖w̃i‖
2
Σ = E ‖w̃i−1‖

2
Σ′ + Tr

[

ΣÂB̂ĜB̂TÂT
]

(30)

where Σ′ = E
(

D̂iB̂
TÂTΣÂB̂D̂i

)

. Let

σ = vec (Σ) and Σ = vec−1 (σ) (31)

where the vec{·} notation replaces an M ×M arbitrary ma-
trix by an M2×1 column vector or anM2×1 column vector
by an M ×M matrix. To represent σ′ as a function of σ, we
use the following kronecker product property:

vec (PΣQ) =
(

QT ⊗ P
)

vec (Σ) . (32)

Using (32), we have a relation between σ′ and σ as follows:

σ′ = vec
(

Σ′) = Fσ (33)

where

F = E
(

D̂
T

i B̂
TÂT ⊗ D̂

T

i B̂
TÂT

)

. (34)

Moving forward, we use the simpler notation ‖w̃‖2
σ
instead

of ‖w̃‖2Σ. Using the property Tr (ΣX) = vec
(

XT
)T
σ, in

steady-state, (30) is rewritten as:

E ‖w̃∞‖2(I−F)σ =
[

vec
(

ÂB̂ĜTB̂TÂT
)]T

σ. (35)

The mean-square deviation (MSD) and the excess mean-
square error (EMSE) at node k are defined by:

MSDk = E ‖wk,i − wo‖2 EMSEk = E |uk,iw̃k,i−1|
2 (36)

as i → ∞. We can calculate these values by using proper
weighting matrices. Let us define the vectorized version of
the matrices for the MSD and the EMSE as follows:

mk = vec

[

diag (ek)⊗ IM 0

0 0

]

rk = vec

[

diag (ek)⊗Ru,k 0

0 0

]

.

2 4 6 8 10
5

10

15

Node number k

σ
2 v
,k

2 4 6 8 10
0

1

2

3

4

5

Node number k

T
r
(R

u
,k

)

Figure 2: Network topology (top), noise variance σ2
v,k

(bottom,

left) and trace of regressor covariance Tr
(

Ru,k

)

(bottom, right)
for N = 10 nodes.

where ek is N × 1 column vector which has a unit entry
at position k and zeros elsewhere. Then the MSD and the
EMSE become:

MSDk=E ‖w̃∞‖2
mk

=
[

vec
(

ÂB̂ĜTB̂TÂT
)]T

(I−F)−1mk (37)

EMSEk=E ‖w̃∞‖2
rk

=
[

vec
(

ÂB̂ĜTB̂TÂT
)]T

(I−F)−1rk. (38)

The network MSD and EMSE are defined as the average
MSD and EMSE over all nodes in the network [4]:

MSDnetwork =
1

N

N
∑

k=1

MSDk =
1

N
E ‖w̃∞‖2

IMN 0

0 0

(39)

EMSEnetwork =
1

N

N
∑

k=1

EMSDk

=
1

N
E ‖w̃∞‖2

diag{Ru,1, · · · , Ru,N} 0

0 0

.

(40)

In (37) and (38), the weighting matrix B̂ is added compared
to the conventional diffusion LMS [4]. When we use only one

previous weight vector for update (i.e., P = 1), B̂ becomes
the identity matrix and (37) and (38) reduce to the same
form as in diffusion LMS [4].

5. SIMULATIONS

In this section, we illustrate the performance of the proposed
spatio-temporal diffusion LMS algorithms and also compare
them with the spatial diffusion LMS algorithm from [4]. For
the simulation, we assume a channel identification scenario
of an FIR model with channel length of 10 for every node.
Fig. 2 depicts the network topology with N = 10 nodes and
the network statistical profile of noise variance and signal
power. step-size µk is set to 0.05 and all simulations are
obatined by averaging 500 independent experiments. The
number of temporal memory P is 3 for Figs. 3 and 5. We
use relative-degree weights for the diffusion matrix A and
metropolis weights for the adaptation matrix C, which are
the same choices used in [4]. Also, we set ql = 1/P for
every l and gk,j = 1/P for every k and j. In the proposed
algorithms, we set µk to 0.05P to make the adaptation step

1043

0 200 400 600 800 1000
−10

−8

−6

−4

−2

0

Number of iteration

M
S

D
 (

d
B

)

(a) Conventional diff. LMS [4]

(b) TSA diff. LMS

(c) STA diff. LMS

(d) TAS diff. LMS

(e) SAT diff. LMS

(f) ATS diff. LMS

(g) AST diff. LMS(a)

(b), (c)

(f), (g)

(d), (e)

Figure 3: Transient network MSD for the conventional diffusion
LMS and the 6 combinations of spatio-temporal diffusion LMS.

0 200 400 600 800 1000
−10

−8

−6

−4

−2

0

Number of iteration

T
ra

n
s

ie
n

t
n

e
tw

o
rk

 M
S

D
 (

d
B

)

(a) Conventional diff. LMS

(b) ATS diff. LMS (P=2)

(c) ATS diff. LMS (P=3)

(c)

(b)

(a)

Figure 4: Trandient network MSD of the proposed ATS diffusion
LMS with various P = 2, 3, compared to the conventional diffusion
LMS algorithm.

have the same weighting as in [4] for comparison purposes
(µkql = 0.05).

Fig. 3 shows the transient network MSD curves for the
proposed diffusion algorithms. The performance is depen-
dent on the order by which the A, T, and S steps are per-
formed. Algorithms (f) and (g), which perform adaptation
first have the lowest steady-state error regardless of the or-
der of the S and T steps. In contrast, algorithms (b) and
(c), which perform adaptation last, are more efficient than
the conventional diffusion LMS in steady-state although the
convergence rate is a little slower.

In Fig. 4, we show the effect of P . We use the ATS dif-
fusion LMS algorithm, which is the best combination for the
simulation. As P increases, the steady-state error decreases
but the convergence rate becomes slightly slower.

Fig. 5 shows the steady-state MSD at every node in the
spatial network, and compares with the theoretical results
from expression (37). In this figure, we also simulate with
ATS diffusion LMS. The steady-state values are obtained by
averaging over 500 samples after convergence. The simula-
tion results match well the theoretical values.

6. CONCLUSIONS

We proposed distributed adaptation algorithms that are able
to process local data both spatially and temporally. Sev-
eral variations are possible depending on how the operations

1 2 3 4 5 6 7 8 9 10
−9.2

−9

−8.8

−8.6

−8.4

−8.2−8.2

Node Number, k

S
te

a
d

y
−

S
ta

te
 M

S
D

 (
d

B
)

(a) ATS diff. LMS, C=I, practical

(b) ATS diff. LMS, C=I, theory

(c) ATS diff. LMS, C=C
met

, practical

(d) ATS diff. LMS, C=C
met

, theory

Figure 5: Steady-state MSD of the proposed ATS diffusion LMS
at each node.

of adaptation, spatial combination, and temporal combina-
tion are ordered. The algorithm that adapts first, and then
combines the data (regardless of the order of the spatial or
temporal processing) performs the best.

REFERENCES

[1] A. H. Sayed and C. G. Lopes, “Adaptive processing over
distributed networks,” IEICE Trans. on Fund. of Elec-
tronics, Communications and Computer Sciences, vol.
E90-A, no. 8, pp. 1504–1510, August 2007.

[2] C. G. Lopes and A. H. Sayed, “Incremental adaptive
strategies over distributed networks,” IEEE Trans. on
Signal Processing, vol. 55, no.8, pp. 4064–4077, August
2007.

[3] C. G. Lopes and A. H. Sayed, “Diffusion least-mean
squares over adaptive networks: Formulation and per-
formance analysis,” IEEE Trans. on Signal Processing,
vol. 56, no. 7, pp. 3122–3136, July 2008.

[4] F. Cattivelli and A. H. Sayed, “Diffusion LMS strate-
gies for distributed estimation,” IEEE Trans. on Signal
Processing, vol. 58, no. 3, pp. 1035–1048, March 2010.

[5] N. Takahashi, I. Yamada, and A. H. Sayed, “Diffusion
least-mean squares with adaptive combiners: Formula-
tion and performance analysis,” IEEE Trans. on Sig-
nal Processing, vol. 58, no. 9, pp. 4795–4810, September
2010.

[6] F. S. Cattivelli, C. G. Lopes, and A. H. Sayed, “Dif-
fusion recursive least-squares for distributed estimation
over adaptive networks,” IEEE Trans. on Signal Process-
ing, vol. 56, no. 5, pp. 1865–1877, May 2008.

[7] F. Cattivelli and A. H. Sayed, “Diffusion strategies
for distributed Kalman filtering and smoothing,” IEEE
Trans. on Automatic Control, vol. 55, no. 9, pp. 2069–
2084, September 2010.

[8] S. Kar and J. M. F. Moura, “Distributed consensus algo-
rithms in sensor networks with imperfect communication:
Link failures and channel noise,” IEEE Trans. on Signal
Processing, vol. 57, no. 1, pp. 355-369, January 2009.

[9] A. H. Sayed, Adaptive Filters. New York: Wiley, 2008.

1044

