
DIFFUSION MECHANISMS FOR FIXED-POINT DISTRIBUTED KALMAN

SMOOTHING

Federico S. Cattivelli Ali H. Sayed

Department of Electrical Engineering
University of California, Los Angeles, CA 90095

Emails: {fcattiv, sayed}@ee.ucla.edu

ABSTRACT

We consider the problem of fixed-point distributed Kalman
smoothing, where a set of nodes are required to estimate the
initial condition of a certain process based on their measure-
ments of the evolution of the process. Specifically, we con-
sider linear state-space models where the Kalman smoother
gives us the MMSE estimate of the initial state of the system.
We propose distributed diffusion solutions where nodes com-
municate with their neighbors and information is propagated
through the network via a diffusion process. Hierarchical co-
operation schemes are also described.

1. INTRODUCTION

We consider the problem of distributed fixed-point Kalman
smoothing (KS). Given a linear state-space system, every
node in the network observes measurements of the evolution
of the system, and the objective is to collectively estimate the
initial state of the system given observations up to the cur-
rent time. It is well known that for linear state-space models,
the optimal estimate in the mean-square error (MSE) sense
is given by the Kalman filtering and smoothing algorithms.
Distributed Kalman filtering and smoothing have wide range
of applications, including target positioning and tracking [1].
At the end of this paper we present an application where we
estimate the initial position of a projectile.

The KS problem can be solved in a centralized manner
by transmitting all the measurements from the nodes to a
central fusion center, which computes the optimal estimate
using the KS algorithm, and then relays back the estimates
to all nodes. The disadvantage of this method is that it
requires large amount of communications between nodes [2].

Distributed incremental estimation algorithms have been
developed in the context of adaptive filtering for the LMS
and RLS algorithms [3, 4]. These algorithms have the disad-
vantage of requiring a cyclic path through the network. Dis-
tributed diffusion alternatives of these algorithms have been
proposed in [4, 5, 6]. Diffusion algorithms are more amenable
to distributed implementations since nodes communicate in
an isotropic manner with their neighbors, and no restrictive
topology constraints are imposed. Thus the algorithms are
easier to implement and also more robust to node and link
failure, at the expense of inferior performance compared to
incremental or centralized solutions. More recently, diffusion
Kalman filtering has been introduced in [7], which forms the
basis for our development of diffusion Kalman smoothing.
Distributed Kalman filtering has been proposed also in [8]
and [9]. Fixed-lag smoothing was also considered in [9].

This material was based on work supported in part by the Na-
tional Science Foundation under awards ECS-0725441 and ECS-
0601266.

2. THE KALMAN SMOOTHER

2.1 The Kalman filter

Consider a state-space model of the form:

xi+1 = Fixi +Gini + ui

yi = Hixi + vi
(1)

where xi ∈ C
M and yi ∈ C

PN denote the state and mea-
surement vectors of the system, respectively, at time i. The
signal ui is a deterministic input, and the signals ni and vi

denote state and measurement noises, respectively, and are
assumed to be zero-mean and white, with covariance matri-
ces denoted by

E

�
ni

vi

� �
nj

vj

�∗
=

�
Qi 0
0 Ri

�
δij

where ∗ denotes conjugate transposition. The initial state
x0 is assumed to have zero mean, covariance matrix Π0, and
to be uncorrelated with ni and vi, for all i.

Let x̂i|j denote the linear minimum mean-squares error
estimate of xi given observations yk up to and including
time j. The Kalman filter in its time- and measurement-
update forms can be computed by starting from x̂0|−1 = 0
and P0|−1 = Π0 and iterating the following equations [10,
11]:

Measurement-Update:
Re,i = Ri +HiPi|i−1H

∗
i

x̂i|i = x̂i|i−1 + Pi|i−1H
∗
i R

−1
e,i [yi −Hix̂i|i−1]

Pi|i = Pi|i−1 − Pi|i−1H
∗
i R

−1
e,iHiPi|i−1

Time-Update:
x̂i+1|i = Fix̂i|i + ui

Pi+1|i = FiPi|iF
∗
i +GiQiG

∗
i

(2)

where Pi|j denotes the covariance matrix of the estimation

error x̃i|j , xi − x̂i|j .

2.2 The fixed-point smoother

We now consider a Kalman smoother, where we wish to es-
timate the state at some fixed time i0, given all observations
up to time i, where i > i0. Consider the innovations at time
j:

ej = yj − ŷj|j−1 = yj −Hj x̂j|j−1 = Hj x̃j|j−1 + vj

and its covariance matrix

Re,j = E[eje
∗
j] = HjPj|j−1H

∗
j +Rj

Then from the orthogonality of the innovations we have [10,
p.371]

x̂i0|i =
iX

j=0

E[xi0e
∗
j]R

−1
e,jej (3)

16th European Signal Processing Conference (EUSIPCO 2008), Lausanne, Switzerland, August 25-29, 2008, copyright by EURASIP

where E[xi0e
∗
j] = Pi,jH

∗
j and Pi,j = E[x̃i|i−1x̃

∗
j|j−1]. More-

over,

Pi0|i = Pi0|i0−1 −
iX

j=i0

Pi0,jH
∗
jR

−1
e,jHjP

∗
i0,j (4)

In [10, p.373] it is shown that for the standard state-space
model (1) with ui = 0, and for j ≥ i we have

Pi,j = Pi|i−1Φ
∗
p(j, i)

where

Φp(j, i) =

�
Fp,j−1Fp,j−2...Fp,i j > i
I j = i

(5)

and Fp,i = Fi−Kp,iHi andKp,i = FiPi|i−1H
∗
i R

−1
e,i . It can be

shown that the same equations hold for the case when ui 6= 0.
Applying the matrix inversion lemma, it is straightforward
to show that

Fp,i = FiPi|iP
−1
i|i−1 (6)

We now look for recursive updates of the quantities x̂i0|i

and Pi0|i. We start by defining the matrix

Mi , Pi0|i0−1Φ
∗
p(i, i0)P

−1
i|i−1 (7)

From (3) we have for i ≥ i0:

x̂i0|i = x̂i0|i−1 + Pi0|i0−1Φp(i, i0)
∗H∗

i R
−1
e,i ei

= x̂i0|i−1 +MiPi|i−1H
∗
i R

−1
e,i ei

x̂i|i = x̂i|i−1 + Pi|i−1H
∗
i R

−1
e,i ei

The above two equations can be combined to obtain:

x̂i0|i = x̂i0|i−1 +Mi[x̂i|i − x̂i|i−1] (8)

Equation (8) shows that the l.l.m.s.e. estimate of xi0 given
all observations up to time i can be obtained recursively
given the estimates x̂i|i, x̂i|i−1 and the covariance matrix of
error, Pi|i−1 = E[x̃i|i−1x̃

∗
i|i−1].

From (4) we have for i ≥ i0:

Pi0|i = Pi0|i−1 − Pi0,iH
∗
i R

−1
e,iHiP

∗
i0,i

= Pi0|i−1 −MiPi|i−1H
∗
i R

−1
e,iHiPi|i−1M

∗
i

Pi|i = Pi|i−1 − Pi|i−1H
∗
i R

−1
e,iHiP

∗
i|i−1

The above two equations can be combined to obtain:

Pi0|i = Pi0|i−1 +Mi(Pi|i − Pi|i−1)M
∗
i (9)

We now need to compute a recursion for the matrix Mi.
From (5), (6), and (7) we have

Mi+1 = Pi0|i0−1Φ
∗
p(i+ 1, i0)P

−1
i+1|i

= P ∗
i0|i0−1Φp(i, i0)F

∗
p,iP

−1
i+1|i (10)

= MiPi|iF
∗
i P

−1
i+1|i (11)

Equations (8), (9) and (11), together with the Kalman
filter recursions (2), give a set of recursions that allow us to
compute the estimate of xi0 given observations up to time
i > i0, given the initial estimate x̂i0 and the error covariance
matrix Pi0 . The initial condition for Mi is Mi0 = I.

3. DISTRIBUTED FIXED-POINT SMOOTHER

Consider the case where a set of N nodes are spatially dis-
tributed over some region. We may represent the nodes and
links between nodes as the vertices and edges respectively
of a graph G = {V, E}. Throughout our work we assume
that such a graph is connected. Let Nk denote the closed
neighborhood of node k (i.e., the set of nodes connected to
node k including itself). The degree of node k is defined as
the number of neighbors of node k including itself. It is as-
sumed that at time i, every node k collects a measurement
yk,i ∈ C

P×1 according to model (1) as follows:

yk,i = Hk,ixi + vk,i k = 1, ..., N (12)

It is assumed that model (1) corresponds to collecting all N
measurements from (12) as follows:

yi =

264 y1,i

...
yN,i

375 Hi =

264 H1,i

...
HN,i

375 vi =

264 v1,i

...
vN,i

375 (13)

We further assume that the measurement noises vk,i are spa-
tially uncorrelated, i.e.,

E

�
ni

vk,i

� �
nj

vl,j

�∗
=

�
Qi 0
0 Rk,i

�
δijδkl

The objective in a distributed smoother implementation
is for every node k in the network to compute an estimate
of the unknown state xi0 , while sharing data only with its
neighbors. We will denote the estimate of xi0 obtained by
node k given observations up to time i as x̂k,i0|i. It is also
desirable that the quality of this estimate be comparable to
the global estimate of xi0|i had node k had access to all mea-
surements across the entire network and not just its neigh-
borhood.

3.1 Diffusion Kalman smoother

In a diffusion implementation, nodes communicate with their
neighbors in an isotropic manner and cooperate to obtain
better estimates than they would without cooperation. The
diffusion KS algorithm and its variants require the definition
of a diffusion matrix C ∈ R

N×N with the properties:

1
∗C = 1

∗ cl,k = 0 if l 6∈ Nk cl,k ≥ 0, ∀l, k (14)

where 1 is a N × 1 column vector with unity entries, and
cl,k is the l, k element of matrix C. We call C the diffusion
matrix, since it governs the diffusion process, and plays an
important role in the steady-state performance of the net-
work. The entries in C represent the weights that are used
by the diffusion algorithm to combine nearby estimates.

The proposed diffusion Kalman smoothing algorithm is
based on the diffusion Kalman filtering algorithm proposed
in our previous work [7]. This algorithm allows us to recur-
sively compute estimates x̂k,i|i and x̂k,i|i−1 for every node k
in the network. The index k emphasizes the fact that the
estimates of different nodes will be different in general, since
they have access to different data. At every time i, each
node k exchanges matrices Hl,i and Rl,i with its neighbors
l ∈ Nk. Then every node runs the so-called incremental up-
date as follows. Start with ψk,i = x̂k,i|i−1 and Pk,i = Pk,i|i−1

and for every neighboring node l ∈ Nk, repeat the following
in sequential order (recall (2)):

Re ← Rl,i +Hl,iPk,iH
∗
l,i

ψk,i ← ψk,i + Pk,iH
∗
l,iR

−1
e [yl,i −Hl,iψk,i]

Pk,i ← Pk,i − Pk,iH
∗
l,iR

−1
e Hl,iPk,i

16th European Signal Processing Conference (EUSIPCO 2008), Lausanne, Switzerland, August 25-29, 2008, copyright by EURASIP

where the arrow “←” denotes a sequential, or non-concurrent
assignment. At the end of the above update, the nodes will
be left with ψk,i, which is an estimate of x̂i|i. The algorithm
requires running one further step, known as the diffusion
update, where the estimates ψk,i are combined in a convex
form to obtain x̂k,i|i as follows:

x̂k,i|i =
X

l∈Nk

cl,kψl,i

after which they can run the following updates:

x̂k,i+1|i = Fix̂k,i|i + ui

Pk,i+1|i = FiPk,i|iF
∗
i +GiQiG

∗
i

The diffusion step is an attempt to achieve the global per-
formance via local node interactions.

From equations (8) and (11) we know that the Kalman
smoother update can be computed by using knowledge of the
Kalman filtering variables x̂i|i and x̂i|i−1. Thus, the diffu-
sion Kalman smoothing algorithm is derived by adding the
recursion for x̂k,i0|i and Mk,i as shown below. We also take
into account an input ui from the model (1). The diffusion
Kalman smoothing algorithm is presented below.

Algorithm 1: Diffusion Kalman smoother
(time- and measurement-update form)
Consider a state-space model as in (1) and a diffusion
matrix as in (14). Start with x̂0|−1 = 0, Pk,0|−1 = Π0

and Mk,i0 = I and at every time instant i, compute:

Step 1: Incremental Update:
ψk,i ← x̂k,i|i−1

Pk,i ← Pk,i|i−1

for every neighboring node l ∈ Nk, repeat:
Re ← Rl,i +Hl,iPk,iH

∗
l,i

ψk,i ← ψk,i + Pk,iH
∗
l,iR

−1
e [yl,i −Hl,iψk,i]

Pk,i ← Pk,i − Pk,iH
∗
l,iR

−1
e Hl,iPk,i

end
x̂k,i|i ← ψk,i

Pk,i|i ← Pk,i

Step 2: Diffusion Update:
x̂k,i|i ←

P
l∈Nk

cl,kψl,i

x̂k,i+1|i = Fix̂k,i|i + ui

Pk,i+1|i = FiPk,i|iF
∗
i +GiQiG

∗
i

if i ≥ i0 :
Mk,i = Mk,i−1Pk,i−1|i−1F

∗
i P

−1
k,i|i−1

x̂k,i0|i = x̂k,i0|i−1 +Mk,i(x̂k,i|i − x̂k,i|i−1)

Algorithm 2: Diffusion Kalman smoother
(information form)
Consider a state-space model as in (1) and a diffusion
matrix as in (14). Start with x̂0|−1 = 0, Pk,0|−1 = Π0

and Mk,i0 = I and at every time instant i, compute:

Step 1: Incremental Update:
Sk,i =

P
l∈Nk

H∗
l,iR

−1
l,i Hl,i

qk,i =
P

l∈Nk
H∗

l,iR
−1
l,i yl,i

P−1
k,i|i = P−1

k,i|i−1 + Sk,i

ψk,i = x̂k,i|i−1 + Pk,i|i

�
qk,i − Sk,ix̂k,i|i−1

�
Step 2: Diffusion Update:
x̂k,i|i =

P
l∈Nk

cl,kψl,i

x̂k,i+1|i = Fix̂k,i|i + ui

Pk,i+1|i = FiPk,i|iF
∗
i +GiQiG

∗
i

if i ≥ i0 :
Mk,i = Mk,i−1Pk,i−1|i−1F

∗
i P

−1
k,i|i−1

x̂k,i0|i = x̂k,i0|i−1 +Mk,i(x̂k,i|i − x̂k,i|i−1)

Algorithm 1 uses the diffusion Kalman filter in time-
and measurement-update form, whereas Algorithm 2 uses
it in Information form. Both algorithms are mathematically
equivalent, and therefore have exactly the same performance
in terms of estimation error. Which algorithm is more conve-
nient will depend on the specific application. It is important
to note that even though the notation Pk,i|i and Pk,i|i−1

has been retained for simplicity, these two matrices do not
represent the covariance of the estimation error any longer,
since the diffusion update is not taken into account in the
recursions for these matrices. Exact expressions for the co-
variances of the estimates are derived in [7].

Algorithm 1 requires that at every instant i, nodes com-
municate with their neighbors their measurement matrices
Hk,i, the covariance matrices Rk,i, and the measurements
yk,i for the incremental update, and their pre-estimates
ψk,i for the diffusion update. The total communication
requirement for every node and for every measurement is
PM+M+P 2/2+3P/2 complex scalars, and it requires one
matrix inversion per incremental update. Also note that, as
discussed in [7], communication of Rk,i may not be necessary
if its Cholesky factor is computed, say Rk,i = Lk,iL

∗
k,i, and

H̄k,i = L−1
k,iHk,i and ȳk,i = L−1

k,iyk,i are transmitted instead
of Hk,i and yk,i. In this scenario, the algorithm requires
transmission of PM +M + P complex scalars per node per
measurement. For Algorithm 2, the total communication per
measurement per node, is M2/2 +M/2 +MP scalars, and
it requires two matrix inversions per incremental update.

3.2 Hierarchical Kalman Smoother

Up to now we have considered non-hierarchical Kalman
smoothing, where nodes communicate with their neighbors
in an isotropic manner, and every node does the same type
of processing. This setup is very robust to node and link
failure, since the network keeps working whenever a node
fails. However, we may obtain performance improvement if
we exploit hierarchy in the network. That is, if we assign dif-
ferent responsibilities to different nodes, we can reduce the
number of communications required as well as improve the
performance, as discussed next.

Consider the case where we cluster the nodes in the net-
work, and we designate a cluster leader or clusterhead to
every cluster, with the following conditions:

• Every node in the network is a neighbor to at least one
clusterhead

• Every clusterhead has a degree larger than or equal to
the degree of each of its neighbors

• Two clusterheads cannot be neighbors

An algorithm to cluster the network in such a way can be
found in [12] (see Fig. 1). When clusterheads change or the
network topology changes, the network must adapt itself to
identify new clusterheads. An algorithm to address these
issues was proposed in [13].

We now consider the network formed only by clusterhead
nodes, and denote this network by Level-1 (the network with
all the nodes is called Level-0). Note that every clusterhead
will be at most three hops away from the closest clusterhead.
Thus, we consider two clusterheads as being Level-1 neigh-

m

n

Nm Nn

Figure 1: A network where nodes m and n are clusterheads.

16th European Signal Processing Conference (EUSIPCO 2008), Lausanne, Switzerland, August 25-29, 2008, copyright by EURASIP

bors whenever they are 3 hops or less away from each other.
In this setup, communication between the clusterheads may
be achieved through multi-hop transmissions.

We now establish a Hierarchical Kalman smoothing algo-
rithm using 2 levels, based on the diffusion Kalman smoother
in information form (Algorithm 2). At level 0 (the entire
network), nodes exchange data with the clusterheads. These
compute the pre-estimates by running the incremental up-
date, and then communicate with their level-1 neighbors to
perform a diffusion update. The pseudocode of this algo-
rithm, which we call Algorithm 3, is shown below.

Algorithm 3: Hierarchical Kalman Smoother
with 2 levels
- Nodes are clustered and clusterheads are designated
(e.g. using maximum-degree criterion in [13])
- For every measurement at time i, do:

1. Every node k that is not a clusterhead transmits the
quantities H∗

k,iR
−1
k,iHk,i and H∗

k,iR
−1
k,iyk,i to its neigh-

boring clusterheads.
2. Every clusterhead k updates its estimate ψk,i and
Pk,i|i using the incremental update of Algorithm 2.

3. Neighboring clusterheads in the Level-1 network ex-
change their estimates ψk,i and average them as in
the diffusion update of Algorithm 2 to obtain x̂k,i|i.

4. Clusterheads compute x̂k,i+1|i, Pk,i+1|i, Mk,i and the
smoothed estimates x̂k,i0|i as in the diffusion update
of Algorithm 2.

5. Clusterheads transmit the estimates x̂k,i0|i to their
neighbors. If a node receives more than one estimate,
it will select one according to some rule (for instance,
the clusterhead with largest degree).

6. (Optional to improve robustness) Clusterheads trans-
mit Pk,i|i, Pk,i+1|i, Mk,i and x̂k,i+1|i to one or two
neighbors in case of a clusterhead failure.

Note that even though the hierarchical method will re-
quire some communications to establish the clusterheads and
maintain them, it can gain in terms of number of communi-
cations. Compared to Algorithms 1 and 2, in Algorithm 3
the nodes only need to communicate with their clusterhead,
and not to every other neighbor. In unidirectional commu-
nications, this represents savings in terms of energy required
for transmission. Also, the multi-hop communications re-
quired for the diffusion step do not require much bandwidth
since only the estimate is being transmitted.

4. SIMULATIONS

We now apply the diffusion Kalman smoothing algorithms
to the problem of estimating the original position of a trav-
eling projectile. This could be useful in applications where
a set of sensor nodes are measuring the position of a certain
projectile, and they wish to collectively estimate the loca-
tion of the source of the projectile. In case the source of the
projectile is hostile, knowledge of its exact location would
aid in evasion or counter-attack strategies.

We assume a simple model of projectile motion, where
the acceleration, velocity and position, respectively, are:

a =

"
ax

ay

az

#
v =

"
vx

vy

vz

#
d =

"
dx

dy

dz

#
and

a = v̇ v = ḋ ax = ay = 0 az = −g

where g is the gravity constant (we use g = 10). We formu-

late a continuous-time state-space model as follows:�
v̇

ḋ

�| {z }
ẋ

=

�
0 0
I3 0

�| {z }
Φ

�
v
d

�| {z }
x

+

264 "
0
0
−g

#
0

375| {z }
c

Noting that for the Φ matrix above,

eΦδ = I + δΦ

Z t0+δ

t0

eΦ(t0+δ−τ)dτ = δI − δ2Φ/2

we conclude that the state satisfies the following equation:

x(t+ δ) = [I + δΦ]x(t) + [δI − δ2Φ/2]c

Given a time-step δ, we now define:

F , I + δΦ and u , [δI − δ2Φ/2]c

We assume that every node measures the position of the un-
known object in either the x and y dimensions, or the x and
z dimensions. The assignment of which pair is observable
by every node is done at random, but taking care that the
three dimensions are observed by at least one node in every
neighborhood. Therefore, we have, Hk,i = [0 diag([1 1 0])]
or Hk,i = [0 diag([1 0 1])].

Denoting xi = x(iδ), we arrive at the following discrete
state-space model:

xi+1 = Fxi +Gini + u

yk,i = Hk,ixi + vk,i

where ni accounts for modeling errors, and vk,i is the mea-
surement noise at node k.

Figure 2: Network topology

In our experiment we use a network with N = 40 nodes,
a time-step δ = 0.1, Gi = I, Qi = (0.001)I, Si = 0 and
Rk,i = PR0 with R0 = 0.5 × diag[1 4 7] and P being a
permutation matrix, chosen at random for every node. The
diffusion matrix C was chosen such that every neighbor is
weighted according to the number of neighbors it has, as
follows:

clk =

�
αk|Nl| if l ∈ Nk

0 otherwise

where |Nk| is the cardinality of the closed neighborhood of
node k (i.e., the number of neighbors including itself), and
αk is a normalization parameter chosen such that 1∗C = 1

∗.
The results were averaged over 20 independent experiments
over the same network topology, which is shown in Fig. 2.
The clusterhead nodes in Fig. 2 are represented by squares,

16th European Signal Processing Conference (EUSIPCO 2008), Lausanne, Switzerland, August 25-29, 2008, copyright by EURASIP

Centralized

Local
Isolated

diffKS (Alg. 1 & 2)
diffKS (Alg. 3)

Time instant i

-10

-5

0

10

10

15

15

20

20 25 30 35 40 45 50

5

5

T
ra

n
si

en
t

M
S
D

(d
B

)

Node

-10

-5

0

10

10 15 20 25 30 35 401

5

5

S
te

a
d
y
-s

ta
te

M
S
D

(d
B

)

Figure 3: Transient (top) and steady-state (bottom) MSD
performance for different algorithms.

and the rest of the nodes by circles. The gray lines repre-
sent connections between two nodes. The red lines represent
Level-1 (multi-hop) connections between clusterheads.

Figure 3 shows the transient and steady-state mean-
square deviation MSDk,i for five algorithms. In the algo-
rithm denoted “Isolated”, all nodes are isolated from the
rest of the network, and perform Kalman smoothing using
their own measurements. The algorithm denoted “Local”
allows communication between neighbors, and every node
computes the optimal Kalman smoother given the data from
their neighbors only. Also shown is the diffusion Kalman
smoother (Alg. 1 and 2), where neighbors not only share
their measurements, but also their estimates, and the hier-
archical version (Alg. 3). The optimal centralized Kalman
smoother algorithm is also shown for comparison. We ob-
serve that the diffusion smoothing algorithms have good per-
formance and convergence properties. If we compare the
“Local” estimate with Alg. 1 or Alg. 2, we can appreciate the
improvement offered by the diffusion step. The improvement
of the hierarchical method (Alg. 3) over the non-hierarchical
ones is clear at low MSD values. Also note that all the diffu-
sion algorithms have an equalizing effect, whereby all nodes
have similar steady-state MSD performance. Finally, Fig. 4
shows the estimates of the trajectory of the object in the
z-direction for different algorithms.

5. CONCLUSIONS

We considered fixed-point distributed Kalman smoothing
and proposed three diffusion algorithms. Two of them re-
quire no hierarchy in the network, whereas the third one
clusters the network and assigns cluster leaders that per-

Centralized
diffKS (Alg. 1 & 2)
diffKS (Alg. 3)

True

Measurements

E
st

im
a
te

o
f

z
-p

o
si

ti
o
n

Time instant i

0
10 20

2

2

4

4

6

6 8 12 14 16 18

1

3

5

7

Figure 4: Estimates of vertical position.

form most of the processing. The latter algorithm has some
performance improvement over the former two, at the ex-
pense of higher complexity required to form and maintain
the clusters, as well as requiring multi-hop communications.
In unidirectional communications, this method also reduces
the total amount of communications.

REFERENCES

[1] P. Alriksson and A. Rantzer, “Experimental evaluation of
a distributed Kalman filter algorithm,” in Proc. 46th IEEE

Conf. on Decision and Control, New Orleans, LA, Dec. 2007.

[2] D. Estrin, L. Girod, G. Pottie, and M. Srivastava, “Instru-
menting the world with wireless sensor networks,” in Proc.

ICASSP, Salt Lake City, UT, May 2001, pp. 2033–2036.

[3] A. H. Sayed and C. G. Lopes, “Adaptive processing over dis-
tributed networks,” IEICE Trans. on Fundamentals of Elec-

tronics, Communications and Computer Sciences, vol. E90-A,
no. 8, pp. 1504–1510, August 2007.

[4] A. H. Sayed and F. Cattivelli, “Distributed adaptive learning
mechanisms,” in Handbook on Array Processing and Sensor

Networks, S. Haykin and K. J. Ray Liu, Eds. Wiley, NJ, 2009.

[5] C. G. Lopes and A. H. Sayed, “Diffusion least-mean squares
over adaptive networks: Formulation and performance analy-
sis,” to appear, IEEE Trans. on Signal Processing, 2008.

[6] F. S. Cattivelli, C. G. Lopes, and A. H. Sayed, “Diffusion
recursive least-squares for distributed estimation over adaptive
networks,” IEEE Trans. on Signal Processing, vol. 56, no. 5,
pp. 1865–1877, May 2008.

[7] F. S. Cattivelli, C. G. Lopes, and A. H. Sayed, “Diffusion
strategies for distributed Kalman filtering: formulation and
performance analysis,” in Proc. Cognitive Information Pro-

cessing, Santorini, Greece, June 2008.

[8] R. Olfati-Saber, “Distributed Kalman filtering for sensor net-
works,” in Proc. 46th IEEE Conf. Decision and Control, New
Orleans, LA, December 2007.

[9] I. D. Schizas, G. B. Giannakis, S. I. Roumeliotis, and
A. Ribeiro, “Anytime optimal distributed Kalman filtering
and smoothing,” in Proc. IEEE Workshop on Statistical Sig-

nal Processing, Madison, WI, August 2007, pp. 368–372.

[10] T. Kailath, A. H. Sayed, and B. Hassibi, Linear Estimation,
Prentice Hall, NJ, 2000.

[11] A. H. Sayed, Fundamentals of Adaptive Filtering, Wiley, NJ,
2003.

[12] M. Gerla and J. T. C. Tsai, “Multicluster, mobile, multimedia
radio network,” Wireless Networks, vol. 1, no. 3, pp. 255–265,
September 1995.

[13] C. Chiang, H. Wu, W. Liu, and M. Gerla, “Routing in clus-
tered multihop, mobile wireless networks,” in Proc. IEEE

SICON’97, April 1997, pp. 197–211.

16th European Signal Processing Conference (EUSIPCO 2008), Lausanne, Switzerland, August 25-29, 2008, copyright by EURASIP

