
Distributed Learning via Diffusion Adaptation

with Application to Ensemble Learning

Zaid J. Towfic, Jianshu Chen, and Ali H. Sayed ∗

Electrical Engineering Department

University of California, Los Angeles

Abstract. We examine the problem of learning a set of parameters from

a distributed dataset. We assume the datasets are collected by agents over

a distributed ad-hoc network, and that the communication of the actual

raw data is prohibitive due to either privacy constraints or communication

constraints. We propose a distributed algorithm for online learning that

is proved to guarantee a bounded excess risk and the bound can be made

arbitrary small for sufficiently small step-sizes. We apply our framework

to the expert advice problem where nodes learn the weights for the trained

experts distributively.

1 Introduction

Effective online and distributed learning over large networks, such as social
or peer-to-peer networks, often needs to satisfy privacy and communication
constraints. These constraints make it impractical to transfer large amounts
of raw data from local agents to a central server for processing. It is more
advantageous to develop schemes that would enable learning from the large
amount of data through distributed processing.

In [1], a distributed algorithm is proposed that employs a time-variant step-
size sequence that diminishes with time as 1/

√
i; it further assumes that the

network is a clique (i.e., fully connected). In [2], a distributed algorithm is
proposed for connected (but not necessarily fully connected) networks; the al-
gorithm achieves zero average regret (defined in the next section) as time in-
creases but assumes that the subgradient norm is bounded and that the step-size
sequence again decays to zero as 1/

√
i or 1/i.

In recent years, diffusion adaptation strategies have been proposed for the
solution of estimation [3, 4] and optimization problems [5] over networks in an
adaptive and distributed manner. These strategies endow networks with adap-
tation and learning abilities by allowing the step-sizes to remain constant. Moti-
vated by these results, in this work, we first propose a statistical formulation for
online learning. In the proposed formulation, the nodes wish to optimize an ex-
pected loss (also known as risk [6]), but due to insufficient information about the
statistical properties of the underlying data, the nodes need to rely on instanta-
neous data to approximate gradient directions. This treatment of the expected
loss allows us to generalize the work in [2] to incorporate adaptation and track-
ing abilities into the operation of the agents. In addition, we do not impose

∗This work was supported in part by NSF grants CCF-1011918 and CCF-0942936.

245



any assumptions on the network on which the distributed algorithm is executed
except for the fact that it is connected (i.e., there is a path between any two
arbitrary nodes, usually through other nodes). The resulting algorithm only re-
quires communication between single-hop neighbors in the network. Moreover,
the nodes do not share any raw information; instead they share estimates of
the unknown parameters they are attempting to learn from the data, therefore
adhering to privacy constraints. We also eliminate the assumption of diminish-
ing step-sizes in order to endow the network with a continuous learning ability,
which is particularly useful when the statistical distribution from which the data
arises changes over time. Assuming the loss function is strongly convex with a
uniformly bounded Hessian matrix, we show that the algorithm proposed in this
work achieves arbitrary small excess risk values (defined in the next section).

In the next section, we introduce the problem we wish to solve in an online
manner and define the performance criterion. We then describe the proposed
algorithm and analyze it. We define an ensemble learning problem and simulate
the performance of the algorithm on a synthetic changing dataset. We use bold-
face letters for random quantities and plain font for deterministic quantities.
Capital letters are used to distinguish between matrices and vectors/scalars.

2 Problem Formulation

Consider a network of N learners with an arbitrary connected topology. Learner
k is confronted with an individual loss function at time i, which we denote by
Qk,i(w), where w ∈ R

M×1 is a set of unknown parameters. In [2], the main
objective of the learning process was to ensure that the average “regret” of the
algorithm diminishes to zero as time increases. The regret at time T measures
the cost of the classification decisions up to time T , and is defined as [2]:

R(T ) ,
T∑

i=1

N∑

k=1

Qk,i(wk,i)−min
w

(
T∑

i=1

N∑

k=1

Qk,i(w)

)
(1)

where wk,i denotes the estimate of w that is available to node k at time i.
The quantity R(T )/T is generally referred to as average regret. Different time-
varying loss functions Qk,i(w) can be chosen, such as the quadratic loss:

Qk,i(w) = (yk(i)− hTk,iw)
2 (2)

where the input data samples yk(i) and hk,i are observed realizations that allow
the learner to adjust and learn w as more samples are collected. Other losses
can be used such as the hinge loss [1] and the logistic loss [7, p. 337]. We
use the square loss in this section mainly for illustration purposes. Motivated
by the earlier works [3, 4], we shall regard the M × 1 regressor hk,i and the
scalar observation yk(i) as realizations of random quantities hk,i and yk(i),
respectively. Therefore, if the statistical distribution from which the data arise
is fixed, then we can associate with each node a time-invariant cost function:

Jk(w) , E{Qk,i(w)} = E{(yk(i)− hT

k,iw)
2} (3)

246



where the expectation E{·} is taken over the data yk(i) and hk,i. The cost
function Jk(w) is referred to as the risk [6] at agent k. Minimizing the risk
allows learners to optimize performance on unobserved data since the risk is the
average over the underlying statistics. We require the risk functions across the
nodes to have a common minimizer, wo, so that cooperation among the nodes
is beneficial. The network then wishes to determine the parameter vector wo:

wo , argmin
w

1

N

N∑

k=1

Jk(w) (4)

We denote the estimate by node k at time i by wk,i. This estimate will be
updated in a distributed manner over time. The node will then suffer a cost
Jk(wk,i) at time i. We measure the cost of making decisions in an online manner
by considering the following aggregate excess risk at time i:

ER(i) ,
1

N

N∑

k=1

[Jk(wk,i)− Jk(w
o)] (5)

Compared to the earlier definition of regret in (1), which is used in [2], the
above excess risk definition (5) relies on the expected cost over the distribution
of {yk(i),hk,i} as in (3). Notice that (5) is a network generalization of the
single-node excess risk introduced in [8].

3 Diffusion Optimization

Following [5], we can derive the following diffusion adaptation strategy with a
constant step-size for solving (4) in a distributed manner.

Algorithm 1 (Diffusion Adaptation)

Each node k begins with an estimate wk,0 and step-size µ. Each node k
employs non-negative coefficients {aℓk} such that

N∑

ℓ=1

aℓk = 1, aℓk = 0 when nodes ℓ and k are not connected

The coefficients {aℓk} allow node k to combine its estimate wk,i with its
neighbors’ estimates. The neighborhood Nk for node k is defined as the set
of nodes for which aℓk 6= 0. For each time instant i ≥ 1, each node performs
the following two steps:





ψk,i = wk,i−1 − µ∇̂Jk(wk,i−1) [Adaptation] (6)

wk,i =
∑

ℓ∈Nk

aℓkψℓ,i [Aggregation] (7)

where ∇̂Jk(·) is an instantaneous approximation for the gradient ∇Jk(·).

247



In Alg. 1, each node adapts its estimate wk,i−1 of wo based on its newest

observation of the gradient vector, ∇̂Jk(wk,i−1), and combines its new estimate
with its neighbors in a convex manner to get wk,i. In this way, the estimates
for wo will diffuse through the network, allowing nodes to learn information
regarding data encountered by other nodes. Alg. 1 is stated for general individ-
ual costs Jk(w). However, for cost functions of the form (3), an instantaneous
approximation for the gradient vector ∇Jk(wk,i−1) can be chosen as [9]:

∇̂Jk(wk,i−1) = −hTk,i
(
yk(i)− hTk,iwk,i−1

)
(8)

The distributed solution of [2] the form of a consensus iteration:

wk,i =
∑

ℓ∈Nk

aℓkwℓ,i−1 − µ(i)∇̂Jk(wk,i−1) (9)

Notice that (9) performs the adaptation and aggregation steps in a single up-
date as opposed to the two-step update listed in (6)-(7). This order of the
computations has an important beneficial implication on the dynamics of the
resulting algorithm, and it allows information to diffuse more readily throughout
the network. In [2], the update (9) was shown to achieve:

lim sup
T→∞

R(T )/T = 0

when µ(i) diminishes to zero. We do not make this restriction in our distributed
solution, and keep the step-size constant, which ends up endowing the network
with a continuous learning ability — see further ahead in Fig. 1. Next, we show
that the asymptotic expected excess risk (averaged over the randomness in the
algorithm) at all nodes for Alg. 1 can be bounded by an arbitrarily small value.

4 Excess Risk Analysis

We make two assumptions regarding the cost functions Jk(w) in (4).

Assumption 1. The Hessian of the functions Jk(w) is uniformly bounded for

all k ∈ {1, . . . , N}:
λminI ≤ ∇2Jk(w) ≤ λmaxI (10)

where 0 < λmin ≤ λmax <∞.

Assumption 2. We model the perturbed gradient ∇̂Jk(w) as:

∇̂Jk(w) , ∇Jk(w) + vk(w) (11)

where, conditioned on the past history of the estimators {wk,j} for j ≤ i−1 and

all k, the noise variable vk(·) has zero mean, and its variance is upper bounded

by the squared norm of w̃k,i−1 , wo − wk,i−1. Specifically, we assume that

∃ α ≥ 0 and σ2

v ≥ 0 such that for all i and k:

E{vk(wk,i−1)|Wi−1} = 0 (12)

E{‖vk(wk,i−1)‖2|Wi−1} ≤ αE‖w̃k,i−1‖2 + σ2

v (13)

248



where Wi−1 , {wk,j : k = 1, . . . , N and j ≤ i− 1}.

Note that the quantity wk,i is now denoted in boldface since it is treated as
a random quantity due to the random noise in the perturbed gradient vector.
We note that Assumption 1 is more relaxed than the stronger bounded gradient
assumption required in [2]. The main result is listed in Theorem 1.

Theorem 1 (ǫ-Excess-Risk). Given individual cost functions Jk(w) in (4) that
satisfy Assumptions 1 and 2, and given a constant step-size µ that satisfies:

0 < µ < min

{
2λmax

λ2
max

+ α
,

2λmin

λ2
min

+ α

}
(14)

Then Algorithm 1 achieves arbitrarily small excess risk on average, i.e.,

lim sup
i→∞

Ew{ER(i)} ≤ ǫ ,

(
σ2

vλmax

4λmin

)
· µ (15)

where the bound is directly proportional to µ.

Proof. Omitted due to space limitations.

5 Simulation

We consider a simple model to evaluate the tracking performance. For all time
i ≤ T0, positive data features arise from the multivariate Gaussian distribution
N
(
[1, 0]T,Σ

)
and negative data features arise from the multivariate Gaussian

distribution N
(
[−1, 0]T,Σ

)
, where the notation N (γ,Σ) denotes a multivariate

Gaussian distribution with mean vector γ and covariance matrix Σ. For all
time i > T0, positive data features arise from N

(
[0, 1]T,Σ

)
and negative data

features arise from N
(
[0,−1]T,Σ

)
. We select Σ , diag{[0.3, 0.3]}.

For the simulations, we choose the mean-square loss (3) since it is easy to
find wo analytically. We note that even with the mean-square loss (3), the
analysis performed in [2] does not apply because this choice does not satisfy the
condition of a uniformly bounded gradient required in [2]; our analysis covers
this case.

We endow our learners with a pair of “experts”: the first expert classifies all
data along the first feature while the second expert classifies all data based on
the second feature. Clearly, with this model, the first classifier will be mostly
correct when i ≤ T0, and the second classifier will be mostly correct when i > T0.
Notice that in this non-stationary environment, the cost function Jk(·) changes
shape at i = T0+1 due to the change in the statistics of {hk,i,yk(i)} at i = T0+1.
We define wo as in (4) where the optimizer also changes at i = T0 + 1 due to
the change in the statistics of {hk,i,yk(i)}. Because our diffusion algorithm
uses a constant step-size, it will automatically change its opinion of the experts
after i = T0. In contrast, algorithms that utilize a diminishing step-size must
implement an anomaly detection routine in order to detect the time T0 +1 and

249



reset the step-size. We do not require this step and our algorithm automatically
learns the new weights of the local experts. We also simulate a non-cooperative
strategy where nodes do not interact with each other and operate individually.
The non-cooperative algorithm helps illustrate the benefit of cooperation across
the network. In the simulations, the diminishing step-size algorithm uses a step-
size that dies off as 0.3/i, while all other algorithms use a constant step-size of
µ. We set T0 = 3000. Fig. 1(a) illustrates the performance of the algorithms
when µ = 0.01. We see from Fig. 1(a) that the diminishing step-size algorithm
cannot track the changing distribution. For comparison, in Fig. 1(b) we reduce
the step-size to µ = 0.005. We notice that the steady-state value of the diffusion
algorithm indeed is decreased when a smaller step-size is used. The algorithms
use Metropolis weights [4] for the aggregation step. The curves were averaged
over 500 experiments.

0 1000 2000 3000 4000 5000 6000
−50

−40

−30

−20

−10

0

10

i

E
{
E

R
(i

)}

No-cooperation

Diffusion

[2] (Dim. µ)

(a) µ = 0.01

0 1000 2000 3000 4000 5000 6000
−50

−40

−30

−20

−10

0

10

i

E
{
E

R
(i

)}

No-cooperation

Diffusion

[2] (Dim. µ)

(b) µ = 0.005

Fig. 1: Tracking performance of several algorithms for synthetic data.

References

[1] H. Ouyang and A. Gray. Data-distributed weighted majority and online mirror descent.
Available as Arxiv preprint arXiv:1105.2274, May 2011.

[2] F. Yan, S. Sundaram, S.V.N. Vishwanathan, and Y. Qi. Cooperative autonomous online
learning: Regrets and intrinsic privacy-preserving properties. Available as Arxiv preprint

arXiv:1006.4039v3, Feb. 2011.

[3] C. G. Lopes and A. H. Sayed. Diffusion least-mean squares over adaptive networks: For-
mulation and performance analysis. IEEE Transactions on Signal Processing, 56(7):3122–
3136, Jul. 2008.

[4] F. S. Cattivelli and A. H. Sayed. Diffusion LMS strategies for distributed estimation.
IEEE Transactions on Signal Processing, 58(3):1035–1048, Mar. 2010.

[5] J. Chen and A. H. Sayed. Diffusion adaptation strategies for distributed optimization and
learning over networks. Available as Arxiv preprint arXiv:1111.0034, Oct. 2011.

[6] V. N. Vapnik. The Nature of Statistical Learning Theory. Springer, NY, 2000.

[7] C. M. Bishop. Pattern Recognition and Machine Learning. Springer, NY, 2007.

[8] S. M. Kakade and A. Tewari. On the generalization ability of online strongly convex
programming algorithms. In Proc. NIPS, pages 801–808, Vancouver, B.C., Canada, 2008.

[9] A. H. Sayed. Adaptive Filters. John Wiley & Sons, NJ, 2008.

250


