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Abstract

This paper gives an overview of a vision-based wearable
computer system ’SNAP&TELL’1 , which performs real-
time gesture tracking for recognizing objects in the scene in-
cluding outdoor landmarks. Our system uses a single cam-
era to capture images which are processed using several al-
gorithms to perform segmentation based on color, fingertip
shape analysis, robust tracking, and invariant object recog-
nition, in order to quickly identify the objects encircled by a
user’s pointing gesture. In turn, the system returns informa-
tion concerning the object such as its classification, histori-
cal facts, etc. This system provides enabling technology for
the design of intelligent assistants to support ”Web-On-The-
World” applications, with potential uses such as travel as-
sistance, business advertisement, the design of smart living
and working spaces, and pervasive wireless services and
internet vehicles.

1. Introduction

In the future, computing technology is expected to
greatly impact our daily activities. One recent computing
trend is mobile wearable computing for the design of intel-
ligent assistants to provide location-aware information ac-
cess which can help users more efficiently accomplish their
tasks. Thus imagine a user driving by a hotel or a restaurant
while on a foreign trip. By pointing at either establishment,
the assistant would be able to convey to the driver recom-
mendations about the hotel or the restaurant menu and its
hours of operation. In a not so distant future, a paramedic
using a wearable system will be able to receive assistance
from a Virtual Medical Aid by pointing at the injures on a
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victim, and getting suggestions on the most suitable treat-
ment to apply to the particular situation. Computing and
sensing in such environments must be reliable, persistent
(always remains on), easy to interact with, and configured
to support different needs and complexities. The success of
such systems will rely upon the ability to quickly process
the sensory data captured from all sensors, and automati-
cally extract the relevant information for analyzing and un-
derstanding the objects and activities occurring within the
environment. For scene understanding within wearable en-
vironments, we have developed a real-time gesture tracking
system ’SNAP&TELL’ for recognizing objects in the scene.

Visual tracking and recognition of pointing and hand
gestures are essential to interacting with a wearable sys-
tem. Therefore, the ’SNAP&TELL’ system uses several
computer vision algorithms to extract color-based segmen-
tations, and shape information from the machine’s camera
view in order to identify the user’s hand and fingertip posi-
tion. These algorithms, however, are complex and computa-
tionally intensive, and thus tend to slow down the response
of the machine to a great extent. In order to perform real-
time acquisition and tracking, ’SNAP&TELL’ uses a robust
state-space estimation algorithm to predict the future posi-
tion of the user’s pointing fingertip. Then, the system uses
these predicted coordinates to center a smaller search win-
dow during the next video frame. This reduces the search
space from the full camera view to a smaller area in a dy-
namic fashion.

The need for a robust prediction algorithm arises from
the desire to control the influence of uncertain environmen-
tal conditions on our system’s performance. For a wearable
computer system, these uncertainties arise from the camera
moving along with the user’s head motion, the background
and object moving independently of each other, the user
standing still then randomly walking, and the user’s point-
ing finger abruptly changing directions at variable speeds.
All these factors give rise to uncertainties that can influence



the design of reliable trackers, therefore we have incorpo-
rated data uncertainty modeling into SNAP&TELL’s robust
tracking algorithm. Once the user has finished encircling
the object of interest, our system uses an invariant object
recognition algorithm to identify the desired subject, and
provide the user with all pre-stored information concerning
that particular object.

2 Previous work

In the past, the applicability of computer vision algo-
rithms aimed at real-time pattern recognition and object
tracking has been hindered by the excessive memory re-
quirements and slow computational speeds. Some recent
computer vision approaches for tracking applications speed
up their computation time by reducing the image search area
into a smaller window. The window is centered around the
last known position of the moving object [1], [10]. The
main drawback of these methods is that when the object
moves faster than the frame capture rate of the algorithm,
the object will move out of the window range. This possibil-
ity leads to a loss in tracking ability and forces the algorithm
to reset the image search area to the full view of the camera
in order to recover the position of the object. The repeated
reduction and expansion of the image search area slows
down the system performance considerably. Some track-
ing solutions have attempted an improvement by gradually
varying the search window’s size according to the moving
object speed [1]. The faster the object moves, the larger the
search window becomes, while still centering the window
around the last known position of the object. Therefore, if
the object is moving fast, the search window is large and the
computation time for the vision algorithm increases, thus
further slowing down the system’s response time.

More advanced systems, such as in [5], use state-space
estimation techniques to center the smaller search window
around a future predicted position of the user’s fingertip,
rather than around its current position. In this way, as the
moving object speed increases, the predicted window po-
sition will accompany the speeding object thereby keep-
ing it inside the window’s view. The window size thus re-
mains small and centered around the object of interest re-
gardless of its speed. This in turn keeps the memory allo-
cations to a minimum, thus freeing memory space that can
be used by other simultaneous applications. However, if the
object abruptly changes its movement patterns (which in-
troduces modeling uncertainties), such systems breakdown,
and tracking of the user’s hand is lost. Therefore, a robust
estimation algorithm such as [4], which models the uncer-
tainties created by the user’s random ego motion, is more
effective in keeping the user’s hand inside the small search
window and in reducing the number of times the image
search area has to be expanded to full view, thus increas-

ing the system’s response time.

3 SNAP&TELL system overview

At HRL, we have designed a wearable computer system
’SNAP&TELL’, which aims at providing a gesture-based in-
terface between the user and the mobile computer. With
this goal in mind, we have developed a robust algorithm
to track the position of the tip of a user’s pointing finger.
This finger tracker acts as an interface to our wearable com-
puting system, which enables a user to specify, segment,
and recognize objects of interest such as landmarks, by
simply pointing at and encircling them with their finger-
tip. The ’SNAP&TELL’ system accepts input from a color
pencil camera, then applies color segmentation to each in-
put stream. The color segmented image is then fed into a
skin/non-skin discrimination algorithm to detect likely skin
toned regions, then shape and curvature analysis is used to
extract the hand and to determine the coordinate position of
the fingertip. The sequence of successive detected finger-
tip positions identifies the trajectory that the user’s fingertip
is following while encircling the object of interest. At the
conclusion of the hand motion gesture, the algorithm deter-
mines if an object has been selected by the user, and ex-
tracts it from the scene, by cropping the region of interest.
The segmented object is then compared against a database
of pre-stored objects, by using an invariant object recog-
nition algorithm which recognizes the object despite small
variations in pose, scale, rotation, and translation. Once the
object is recognized, the information associated with it is
made available to the user. The system block diagram for
’SNAP&TELL’ is shown in Figure 1.

This problem is particularly difficult because we need to
recognize the user’s hands and objects from images taken
from head-mounted cameras in real time. When the user’s
head moves so does the camera, thus introducing image jit-
ters, and dramatical changes in the unrestricted background
and the lighting conditions. Therefore, in order to track
the user’s fingertip position in the presence of ego-motion,
we incorporate the knowledge of the dynamics of human
motion to create uncertainty models, which are used with
a robust estimation algorithm to make the tracking model
less sensitive to the random motion produced by the head-
mounted camera and temporary occlusions. Furthermore,
we use the coordinates of the robust predicted fingertip po-
sition as the center of a smaller image search window. From
this point onwards, only the input image inside the smaller
search window is analyzed by the vision algorithms, thus
speeding up the response time of the system, and making
it memory and computationally efficient. If, for some rea-
son, the search window fails to display the user’s hand, the
system resets back to the full camera view.
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Figure 1. Block diagram of gesture-based in-
terface for the ’Snap&Tell’ system.
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To determine the skin-like regions in the current frame,

we first perform a color segmentation based on the fast and
robust mean shift algorithm [2]. By using the mean shift al-
gorithm the number of dominant colors can be determined
automatically, unlike the k-means clustering method where
the initial number of classes must be chosen. Here, the in-
tensity distribution of each color component in the current
frame is viewed as a probability density function. The mean
shift vector is the difference between the mean of the prob-
ability function on a local area and the center of this region.
Mathematically, the mean shift vector associated with a re-
gion )+*, centered on -. can be written as:

-/10 -.$2�354 *687�9;:<>= 0 -?;2 0 -?A@ -.$2CB -?
4 *6D7E9;:<>= 0 -?;2CB -? (1)

where = 0CF 2 is the probability density function. The mean
shift algorithm states that the mean shift vector is propor-
tional to the gradient of the probability density G = 0 -.!2 , and
reciprocal to the probability density = 0 -.!2 , such that

-/H0 -.>2�3JI G = 0 -.$2= 0 -.>2 (2)

where I is a constant. Since the mean shift vector is along
the direction of the probability density function maximum,
we can exploit this property to find the actual location of
the density maximum by searching for the mode of the den-
sity. One dominant color can be located by moving search

windows in the color space using the mean shift vector it-
eratively. After removing all color inside the converged
search window, one can repeat the mean shift algorithm
again to locate the second dominant color. This process is
repeated several times to identify a few major dominant col-
ors which segment the image into like-color regions. The
dominant colors of the current frame are used as the ini-
tial guess of dominant colors in the next frame, thus speed-
ing up the computational time (adjacent frames are usually
similar). After segmenting the current frame into homoge-
neous regions, we determine whether each region is skin-
like by considering the mean hue and saturation values and
geometric properties of the region. This region-based skin
detection procedure is more robust to varying illumination
conditions than pixel-based approaches.
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Once the skin-like regions have been segmented, we

clean up this image by applying morphological operations
to minimize the number of artifacts being considered as
having skin-like color properties. Geometric properties of
the skin-like regions are used to identify the hand. Then the
user’s hand orientation with respect to the x-axis (i.e. point-
ing direction) is derived using central T(U�V order moments,
and the fingertip position is determined as the point of max-
imum curvature along the contour of the hand.

���W���XY��Z+[O�\%���%�&'%�������P+&����^]�� ��!�_%_
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To achieve computational efficiency, memory savings

and real-time tracking, a robust state-space estimation al-
gorithm is used to reduce the search area to a smaller search
window centered around the predicted position of the fin-
gertip. This robust finger tracker [4] is based on the prin-
ciples of state-space estimation with uncertain models, see
Sayed [7]. The tracker attempts to predict the fingertip co-
ordinate positions b .>ced�fhgi?�ced�f�j in the next video frame by
using the following robust state-space model with state vec-
tor k c and measurement vector l c .

k cnm3 o .�cp?�crq ,�s ctq 6hs cru ,�s cru 6hs cAv�w (3)

l c m3 o . c ? c v w (4)

k cxdyf 3 0Lz|{~}\z c 2 k c {#0L�|{~}\� c 2C� c (5)

l c 3 � k c { q c (6)

where � c and q c denote uncorrelated zero-mean white gaus-
sian process and measurement noises, with corresponding
covariance matrices � and � . Moreover, b u ,�s c giu 6hs c j de-
note the accelerations along the x and y directions (mea-
sured in pixels per second � ), and b q ,�s c giq 6hs c j denote the
speeds along these same directions during the ���L� frame
(measured in pixels/second).
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The wearable computer uncertainties are modeled by
treating the given parameters b z g � j as nominal values,
and assuming that the actual values lie within a certain set
around them. Thus the perturbations in b z g � j in equation
(5) are modeled aso }\z c }\� c v 3 ��� c o������	� v (7)

for some matrices b � g � � g � � j and for an arbitrary con-
traction

� c , 
 � c 
��� . For generality, one could allow the
quantities b � g � � g � � j to vary with time as well. This is
useful in the case when our model changes dramatically in a
particular time instance, such as when the user starts walk-
ing, coughing, or moving his/her head abruptly while being
distracted. Then one can assign different levels of distortion
by selecting the entries of b ��� g ��� j appropriately, [4], [7].
The authors are currently investigating adaptive models for
modeling the uncertainties associated with user’s head mo-
tion, walking, and changes in lighting conditions. One such
case is when the user starts walking while pointing at an ob-
ject of interest. In this situation, the uncertainties

}\z c and}\� c will have larger values than when the user is standing
still. The ’SNAP&TELL’ system would then detect constant
movement in the camera view, hinting walking motion, and
would switch the robust tracker’s perturbation model to the
”walking” uncertainty model.

Applying the time- and measurement-update form of
our robust filter to the uncertainity model (5)–(6), where�	�����

, � ���
, � ���

are given weighting matrices,
yields the following equations, which attempt to minimize
the estimation error at the worst case possible created by
the bounded uncertainties

}\z c and
}\� c , see Sayed [7]:

Initial conditions: Set �k ��� � 3�� ��� � � w ��� f l � and � ��� � 3� � � f� { � w ��� f ��� � f .
Step 1. If � � 3 �

, then set � cA3 �
(non robust filter).

Otherwise, select u (typically 0 ! u ! 1) and set

� cy3 0  { u�2 F 
 � w � w � � f � � 
�"
Step 2. Replace b�� g � g#� c � c g � g z j by:$� � fc 3 � � f { � c � w�&%(' { � c ��� � c � c � w�*) �

f ���$� cedyf 3 � @ � � fc � �+� w � w$� c � c 3 ,�� � fc � c { � c-� w� � �/. � f
3 � c � c @0� c � c � w� 0 � � fc ' { ��� � c � c � w� 2 � f ��� � c � c$� c 3 � @ � c z $� c � c � w� ���$z c 3 0Lz @ � c $� c $� c � w� ��� 2 0 ' @ � c $� c � c � w� ��� 2

If � c 3 � , then simply set
$� c 3 � g $� ced�f 3 � ,

$� c � c 31� c � c ,$� cy3 � , and
$z c�3 z .

Step 3. Update b2�k c � c g#� c � c j as follows:

�k ced�f 3 $z c �k c � c
�k cxdyf � ced�f 3 �k cxdyf { � cxdyf � ced�f � w $� � fcxdyf43 cedyf3 cxdyf 3 l cxdyfO@ � �k cedyf� ced�f 3 z $� c � c z w { $� c $� c $� wc� cxdyf � ced�f 3 ��cxdyf+@5�ycxdyf�� w � � f6 s cxdyf �7�ycxdyf
� 6 s ced�f 3 $� cxdyf { ��� cxdyf � w

We applied this robust algorithm to a typical user’s finger tip
trajectory and display the results in Figure 2. Note that the
reduced search window is centered around the previously
predicted fingertip position, and very closely overlaps the
actual finger position.

Figure 2. Successfully tracked fingertip using
a robust state-space Kalman filter.
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Having located the scene object or landmark of interest,

we would like to recognize it irrespective of pose, scale,
rotation, and translation variations. Our current approach
to object recognition involves a multi-dimensional indexing
scheme based on characterizing its local appearance by a
vector of features extracted at salient points. Local descrip-
tors should be stable to slight changes in viewpoint, illumi-
nation, and partial occlusion. It is also desirable that the
descriptors be highly discriminant so that objects may be
easily distinguished. Crowley et al. [3] represented physi-
cal objects by an orthogonal family of local appearance de-
scriptors obtained by applying principal component analy-
sis (PCA) to image neighborhoods. The principal compo-
nents with the largest variance were used to define a space
for describing local appearance. Recognition is achieved
by projecting local neighborhoods from newly acquired im-
ages onto the local appearance space and associating them
to descriptors stored in a database. A similar approach to
local appearance modeling was proposed by Schneiderman
et al. [8], where the pattern space was first discretized by
applying clustering using Vector Quantization (VQ), and
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then a projection basis was learned for each cluster. The
approach we take improves upon these methods of mod-
eling local appearance by learning the collection of pat-
terns within a mixture of factor analyzers (MFA) frame-
work, see Keaton et al. [6]. The advantages of this ap-
proach are that the clustering and dimensionality reduction
steps are performed simultaneously within a maximum-
likelihood framework. In addition, the MFA model explic-
itly estimates the probability density of the class over the
pattern space. Therefore, it can perform object detection
based on the Bayes decision rule.

In our object recognition approach, MFA modeling is
used to learn a collection, or mixture, of local linear sub-
spaces over the set of image patches or subregions extracted
from the training set for each object class. By allowing
a collection of subspaces to be learned, each can become
specialized to the variety of structures present in the data
ensemble. The cropped image containing the object of in-
terest is first decomposed into a set of

�����
image patches

extracted at salient points. We extract the image patches at
only selected points in the image, in order to reduce the
amount of data we must process. Salient points are lo-
cal features where the signal changes two-dimensionally.
We use a technique by Tomasi and Kanade [9] for finding
salient features. In order to detect an object at any size,
we repeat the process of extracting image patches at salient
points over a range of magnification scales of the original
image.

Factor analysis is a latent variable method for model-
ing the covariance structure of high dimensional data using
a small number of latent variables called factors, where �
is known as the factor loading matrix. The factors z are
assumed to be independent and Gaussian distributed with
zero-mean unit variance, z ��� (0,I). The additive noise u
is also normally distributed with zero-mean and a diagonal
covariance matrix � , u �	� (0, � ). Hence, the observed
variables are independent given the factors, and x is there-
fore distributed with zero mean and covariance ��
�� { � .
The goal of factor analysis is to find the � and � that best
model the covariance structure of x. The factor variables
z model correlations between the elements of x, while the
u variables account for independent noise in each element
of x. Factor analysis defines a proper probability density
model over the observed space, and different regions of the
input space can be locally modeled by assigning a different
mean �� , and index ��� (where j = 1,...,M), to each factor
analyzer.

The EM learning algorithm is used to learn the model
parameters without the explicit computation of the sample
covariance which greatly reduces the algorithm’s computa-
tional complexity:

E-Step: Compute the moments � c � 3 ��� � ��� .!c�� ,

��� l � .�cCg � � � , and ��� l(l 
 � .�c�g � � � for all data points i and mix-
ture components j given the current parameter values � � ,
and ��� .
M-Step: This results in the following update equations for
the parameters:�� U 6��� 3 0�� c � c � . c ��� �l � . c g ��� � 
 2 0�� c � c � ��� �l �l 
 � . c g ��� �W2 � f�� U 6��� 3 f

U B �� �!#" � c � � c � 0 . c @ ��+U 6��� ��� �l � . c g ��� �W2C. 
c%$
See [6] for details on the derivation of these update equa-
tions. We iterate between the two steps until the model like-
lihood is maximized.

In the context of object recognition, we are interested in
calculating the probability of the object & c given a local fea-
ture measurement .�' represented by the local image patch
or subregion. Once the MFA model is fitted to each class
of objects, we can easily compute the posterior probabili-
ties for each subregion . ' . The pdf of the object class & c is
given by

= c 0 . ')(+* c�2�3-,./10 f �yc / � 0  c / g � 
c / � c / { � c / 28g
where 2 c is the set of MFA model parameters for ���L� object
class, and ��c / is the mixing proportion for the 3 �L� model
of the object class & c . The posterior probability of object
class & c given . ' can be calculated by Bayes’ rule:

� 0 & c � .4'_2�3 �yc = c 0 . ')( 2 U 2�65U 0 f � U = U 0 . '7( 2 U 2
where N is the total number of object classes and ��c is the
priori probability of object class & c which is estimated from
the training set of images. Without modeling the depen-
dencies between the local subregions . ' , lets assume we
have extracted 8 independent local feature measurements0 .$fhg " " " g .49 2 from an image, then we can compute the prob-
ability of each object class & c given the image patches by

� 0 & c � .>f g " " " gi. ' 2�3 �yc = c 0 .$fhg " " " gi. '7( 2 U 2� 5U 0 f � U = U 0 . f g " " " g .4' ( 2 U 23 : ' � c = c 0 .4' ( 2 U 2: ' � 5U 0 f � U = U 0 .4' ( 2 U 2
Then, the optimum object class label �<; for the image hav-
ing a set of local measurements

0 .'f\g " " " .49 2 , is determined
by Bayes decision rule as follows:

�<; 3  )=>!@?�ACBc � 0 & c � .$fhg " " " g .49 2 "
Figure 3 illustrates the object recognition results obtained
with the ’SNAP&TELL’ wearable system. Our method has
been found to be robust to small changes in viewpoint, scale
and 3D rotations.
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Figure 3. ’Snap&Tell’ invariant object recog-
nition.

4 Results

Figure 4 shows the final output display of the
’SNAP&TELL’ system, after successfully tracking the
user’s fingertip, extracting the object of interest at the end
of the pointing gesture, and finally recognizing the desired
object. This figure also illustrates how the robust tracker
helps to reduce the search area into a small window, thereby
speeding up the processing of the vision algorithms. In this
particular simulation, the response time of our overall sys-
tem was 68% faster than the response obtained by a system
that uses a full camera view to track the user’s fingertip,
and 23% faster when compared with a system that uses a
small search window centered around the previous finger-
tip position (rather than the predicted future position). It
should be noted that the size of the reduced search win-
dow was chosen to be at least twice the size of the max-
imum estimation errors in the x and y directions, of our
robust Kalman tracker previously applied to a training se-
quence representative of a typical pointing finger trajec-
tory (

��� ,�� T��. /��D, g ��� 6	� T
�? /��D, ). Therefore, the
more accurate the tracker is, the smaller the search win-
dow needed, and the faster the overall system response time
will be. A comparison of the MSE results between a plain
Kalman tracker and our robust Kalman tracker, showed over
15% improvement in the estimation error by using the ro-
bust algorithm. These performance results are encouraging
and merit future exploration. We are working on an on-
line learning method to develop multiple uncertainty mod-
els with an intelligent switching scheme to further speed
up our system performance. Finally, our object recognition
approach has been found to be robust to changes in scale,
illumination, and viewpoint.

References

[1] T. Brown and R. C. Thomas, ”Finger tracking for the digital
desk”, Proc. Australasian User Interface Conference, vol. 1,
Canberra, Australia, 2000, pp. 11-16.

Figure 4. ’Snap&Tell’ output display, showing
the user’s fingertip tracked in ’real-time’, and
the recognized object of interest.

[2] D. Comaniciu and P. Meer, ”Robust analysis of feature space:
color image segmentation”, Proc. Conference on Computer
Vision and Pattern Recognition, San Juan, Puerto Rico, 1997,
pp. 750-755.

[3] V. Colin de Verdiere, and J. L. Crowley, ”Visual recognition
using local appearance”, Proc. European Conference on Com-
puter Vision, Frieburg, Germany, 1998.

[4] S. M. Dominguez, T. Keaton, A. H. Sayed, ”Robust finger
tracking for wearable computer interfacing”, Proc. Perceptive
User Interfaces, Orlando, FL., Nov. 2001.

[5] C. Jennings, ”Robust finger tracking with multiple cameras”,
Proc. Conference on Recognition, Analysis, and Tracking of
Faces and Gestures in Real-Time Systems, Corfu, Greece,
1999, pp. 152-160.

[6] T. Keaton, and R. Goodman, ”A compression framework for
content analysis”, Proc. Workshop on Content-based Access
of Image and Video Libraries, Fort Collins, Colo., June 1999,
pp. 68-73.

[7] A. H. Sayed, ”A framework for state-space estimation
with uncertain models”, IEEE Trans. on Automatic Control,
vol. 46, no. 7, July 2001, pp. 998-1013.

[8] H. Schneiderman, and T. Kanade, ”Probabilistic modeling of
local appearance and spatial relationships for object recog-
nition”, Proc. Conference on Computer Vision and Pattern
Recognition, Santa Barbara, CA., 1998, pp. 45-51.

[9] C. Tomasi and T. Kanade, ”Detection and tracking of point
features”, Technical Report CMU-CS-91-132, Carnegie Mel-
lon University, Pittsburg, PA, April 1991.

[10] J. Yang, W. Yang, M. Denecke, A. Waibel, ”Smart sight: a
tourist assistant system”, Proc. Intl. Symposium on Wearable
Computers, vol. 1, Oct. 1999, pp.73-78.

6


