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Abstract—Collective motion is a remarkable phenomenon in
biological systems. There have been several models in the
literature to regenerate this type of motion, such as averaging
consensus strategies where nodes continuously average the ve-
locity vectors of their neighbors. While many models are able
to generate forms of collective motion, they nevertheless neglect
the important fact that the most informed nodes in a network
tend to modulate their information into their speeds. In this
work, we show how the speed information can be exploited and
incorporated into the design of the combination rules for mobile
networks. The analysis leads to a sigmoidal function construction,
and the results show that the proposed combination rule leads to
more effective information flow over networks of mobile agents.

Index Terms—Self-organization, adaptive networks, diffusion
adaptation, fish schools, collective motion, information flow.

I. INTRODUCTION

Self-organization is observed in several physical and bio-

logical systems [1], [2]. For example, fish join together in

schools to avoid attacks by predators and improve foraging

efficiency; birds fly in V-formation; and bees swarm towards

a new hive. In these cases, a global pattern of behavior emerges

from localized interactions among the individual components

of the network. In earlier works [3]–[6], we used the concept

of diffusion adaptation to model and regenerate these kinds of

complex behavior.

In earlier works [7], [8], it has been suggested that the

patterns of collective motion observed in nature can be mod-

eled by having each node move along the average direction

of motion of its neighbors. However, recent experiments on

the behavioral rules of fish schools appear to challenge this

traditional averaging strategy [9].

We argue in this work that in order to improve information

transfer over a network of interacting agents, nodes should give

higher weights to their most informed neighbors. In general,

nodes do not know beforehand which other nodes in their

neighborhoods are more informed. However, in biological

networks, the speed of motion of a node usually conveys

information about how well informed it is. For example, fish

move faster when they feel danger or sense food. In this paper,

motivated by this observation, we incorporate speed into the

design of the combination weights over networks. By doing

so, we show that the weights will need to be chosen according

to a sigmoidal rule. We also show that this design leads to an
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effective flow of information across the network at faster rates

than other more conventional designs.

II. DIFFUSION ADAPTATION STRATEGY

A. Algorithm Description

Consider a collection of N nodes distributed over some

region in space. Two nodes are said to be neighbors if they can

share information. The set of neighbors of node k is denoted

by Nk. The nodes would like to estimate some unknown

column vector, w◦, of size M . At every time instant, i,
each node k observes realizations {dk(i), uk,i} of a scalar

random process dk(i) and a 1 × M random process uk,i

with covariance matrix Ru,k = Eu
∗
k,iuk,i > 0. All vectors

in our treatment are column vectors with the exception of the

regression vector, uk,i. The random processes {dk(i),uk,i}
are assumed to be related to w◦ via a linear regression model

of the form [10]:

dk(i) = uk,iw
◦ + nk(i) (1)

where nk(i) is measurement noise with variance σ2
n,k and

assumed to be temporally white and spatially independent, i.e.,

En
∗
k(i)nl(j) = σ2

n,k · δkl · δij (2)

in terms of the Kronecker delta function. The noise nk(i) is

also assumed to be independent of ul,j for all l and j. All

random processes are assumed to be zero mean.

The objective of the network is to estimate w◦ in a dis-

tributed manner through an online learning process. The nodes

estimate w◦ by seeking to minimize the following global cost

function:

Jglob(w) ,

N
∑

k=1

E|dk(i)− uk,iw|
2 (3)

Several diffusion adaptation schemes for solving (3) in a

distributed manner were proposed in [11], [12]. One such

scheme is the Combine-then-Adapt (CTA) diffusion algorithm

[12]. It operates as follows. We select an N×N left-stochastic

matrix A with nonnegative entries {al,k ≥ 0} satisfying:

AT
1 = 1 and al,k = 0 if l /∈ Nk (4)

where 1 is a vector of size N with all entries equal to one. The

entry al,k denotes the weight on the link connecting node l to

node k. The CTA algorithm consists of two steps. The first step
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(5a) is a consultation (combination) step where the weight es-

timates {wl,i−1} from the neighborhood are combined through

the weights {al,k} to obtain the intermediate estimate ψk,i−1.

The second step (5b) involves local adaptation, where node k
uses its own data {dk(i), uk,i} to update the estimate at node

k from ψk,i−1 to wk,i. The algorithm is described as follows:






ψk,i−1 =
∑

l∈Nk

al,kwl,i−1 (5a)

wk,i = ψk,i−1 + µku
∗
k,i[dk(i)− uk,iψk,i−1] (5b)

where µk is the positive step-size used by node k.

In biological networks, the behavior of the network is

often influenced more heavily by a small fraction of informed

agents as happens, for example, with bees and fish [13]–

[15]. This observation motivates us to consider two types of

nodes: informed nodes and uninformed nodes. The former

receive new data {dk(i), uk,i} regularly and perform both

the consultation step (5a) and the adaptation step (5b), while

uninformed nodes do not collect data and only participate in

the consultation step (5a). To model uninformed nodes in the

network, we set µk = 0 if node k is uninformed.

B. Information Flow over Adaptive Networks

The performance of diffusion algorithms in the presence

of uninformed nodes has been studied in [16], including

questions related to how the mean-square-deviation (MSD) of

the network varies as a function of the proportion of informed

nodes. In the current work, we are interested in examining

instead the rate of the information flow, i.e., how fast the

network converges towards steady-state and how combination

weights can be chosen to speed up the flow of information

across the network. The convergence rate is denoted by r
so that the smaller the value of r is, the faster the rate of

convergence. It was shown in [10], [12], [16] that

r =
[

ρ((I −MR)AT )
]2

(6)

where ρ(·) denotes the spectral radius of its matrix argument

and

A = A⊗ IM , M = diag{µkIM}, R = diag{Ru,k} (7)

and where the operation ⊗ denotes the Kronecker product of

two matrices. Note from (6) that r depends on the combination

matrix A and on the spatial distribution of the informed nodes

through the matrix M. Under the assumption that µk = µ for

all informed nodes, Ru,k = Ru for all k, and that the step-size

is small enough such that

µρ(Ru) < 1 (8)

it can be shown that the convergence rate is bounded by [16]:

(1− µλM (Ru))
2 ≤ r < 1 (9)

where λM (Ru) is the smallest eigenvalue of Ru. We will show

that by appropriately selecting the combination matrix A in

any connected network (where a path always exists between

any two arbitrary nodes), the convergence rate (6) can achieve

the lower bound provided by (9), that is, the network is able

to converge to steady-state at the fastest rate.

Let NI denote the set of informed nodes and let NI denote

the number of informed nodes in the network. Without loss

of generality, we assume the first NI nodes are informed,

i.e., NI = {1, . . . , NI}. The combination matrix A can be

partitioned in the following manner:

A =

[

AII AIU

AUI AUU

]

(10)

where the sub-matrices AII and AUU have size NI × NI

and (N − NI) × (N − NI), respectively. Thus, the matrix

AII collects the weights among the informed nodes and AUI

collects the weights from uninformed to informed nodes;

likewise for {AUU , AIU}. The matrix (I−MR)AT can then

be written as:

(I −MR)AT =

[

AT
II ⊗ (IM − µRu) AT

UI ⊗ (IM − µRu)
AT

IU ⊗ IM AT
UU ⊗ IM

]

(11)

The following result gives a condition on A so that the

convergence rate achieves its lower bound.

Lemma 1. For any connected CTA network (5) with at least

one informed node, if the sub-matrices {AUI , AUU} of the

combination matrix A in (10) satisfy:

AUI = 0, ρ(AUU ) ≤ 1− µλM (Ru) (12)

then the convergence rate r in (6) achieves its lower bound,

i.e., r = (1 − µλM (Ru))
2.

Proof: Since AUI = 0, the matrix (I − MR)AT in

(11) becomes lower block triangular, and its spectral radius

is the maximum of ρ(AT
II ⊗ (IM −µRu)) and ρ(AT

UU ⊗ IM ).
Moreover, since AUI = 0 and using (4), we conclude that AII

becomes left-stochastic. Hence, ρ(AII) = 1 and it follows that

ρ(AT
II ⊗ (IM − µRu)) = ρ(AT

II) · ρ(IM − µRu)

= 1− µλM (Ru)
(13)

where we used assumption (8). Moreover, since ρ(AUU ) ≤
1− µλM (Ru), we get

ρ(AT
UU ⊗ IM ) = ρ(AT

UU ) · ρ(IM ) ≤ 1− µλM (Ru) (14)

Then, r = (1− µλM (Ru))
2.

Theorem 1. For any connected CTA network (5) with at least

one informed node, there exists a combination matrix A such

that the network achieves the fastest convergence rate.

Proof: From Lemma 1, it suffices to show that we are

always able to construct a combination matrix A satisfying

(12). First, we index the nodes such that the smaller the

distance (number of hops) from a node to the set NI is, the

smaller the index of the node is. This can be done by first

indexing informed nodes in any order, and then indexing the

uninformed nodes next to the informed nodes in any order,

and so on (see the middle plot of Fig. 1). Second, besides
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Fig. 1. An illustration of a connected network with three informed nodes
(left) and one way to achieve the fastest convergence rate (right).

condition (4), we further require the weights {al,k} to satisfy

the following rule:














∑

l∈NI∩Nk

al,k = 1, if NI ∩ Nk 6= ∅ (15a)

∑

l<k

al,k = 1, otherwise (15b)

That is, if there are informed nodes in the neighborhood

of node k, then it will assign positive combination weights

to those nodes only; otherwise, node k will assign positive

combination weights to neighbors with lower indices than k
(i.e., those closer to informed nodes). The example in Fig. 1

leads to a matrix AT of the form below, where the directions

of the arrows in the right plot of Fig. 1 indicate the allowed

direction of information flow, i.e., the combination weights in

the reverse directions are zero:

AT =

























1 0 0
0 a 1− a
0 b 1− b
1 0 0 0
c 1− c 0 0 0
0 d 1− d 0 0 0
0 e 1− e 0 0 0 0
0 0 0 f 0 1− f 0 0

























(16)

with a, b, c, d, e, f ∈ [0, 1]. Since the weight arriving at an

informed node from an uninformed node is always zero,

AUI = 0. In addition, for an uninformed node k, the weight

al,k is equal to zero if l ≥ k. Then, the matrix AT
UU in (10)

is a lower triangular matrix with zero diagonal entries and

ρ(AUU ) = 0 < 1− µλM (Ru).

III. MECHANISM FOR COLLECTIVE MOTION

In this section, we first describe a mechanism for mobile

nodes to perform collective motion in the plane, and later

examine the flow of information through the resulting network.

At time i, node k is at location vector, xk,i, and moves at

velocity, vk,i. Node k is able to observe the locations and

velocities of its neighbors, i.e., {xl,i, vl,i} for l ∈ Nk. Node k
updates its location according to the rule:

xk,i+1 = xk,i +△t · vk,i+1 (17)

where △t is the time step. Several factors influence the update

of the velocity vector from vk,i to vk,i+1 such as the desire to

move towards a food source or away from danger, the desire

to move in coordination with the other nodes, and the desire

to avoid collisions by keeping a safe distance from neighbors.

The determination of vk,i+1 for node k should depend only

on its observations, i.e., {xl,i, vl,i} for l ∈ Nk. Based on the

results from [3], we assume that nodes adjust their velocity

according to the following CTA diffusion algorithm:

ψk,i =
∑

l∈Nk

al,kvl,i

vk,i+1 = ψk,i + µk(v
d
k,i+1 − ψk,i) + γkδk,i

(18)

where γk is a non-negative scalar. Expression (18) involves

three components. The first component in (18) is determined

by the weighted velocity ψk,i in the neighborhood of node

k (i.e., the combination step). This component helps the

nodes move coherently [8]. The second component in (18)

corresponds to a desired velocity vector, vdk,i+1
. This direction

may be induced by the sensing by node k of the location of

food or danger (e.g., a predator). The third component in (18)

involves the term δk,i, which is defined as [3]:

δk,i =
∑

l∈Nk\{k}

bl,k (‖xl,i − xk,i‖ − r)
xl,i − xk,i
‖xl,i − xk,i‖

(19)

with a positive parameter r and non-negative weights {bl,k}
satisfying bk,k = 0 and

∑

l∈Nk\{k}

bl,k = 1 and bl,k = 1 if l /∈ Nk (20)

The term δk,i allows node k to maintain a distance r from

its neighbors. Compared to (5), we find that δk,i in (18) is an

extra term. Nevertheless, as shown in [3], the term δk,i will be

close to zero as time evolves. In the next section, we derive a

combination rule to select the weights {al,k, bl,k}.

IV. COMBINATION RULES

The choice of the combination weights {al,k, bl,k} in (18)

and (19) influences the way the nodes interact with each

other. Different choices for the weights not only lead to

different patterns of behavior, but they also influence the

flow of information through the network, as revealed by

(6). In earlier works [7], [8], the uniform combination rule

(or averaging strategy) has been employed to regenerate the

collective motion exhibited by fish schooling or bird flocking.

That is, the weights were set to

al,k = bl,k =

{

1/(nk − 1), if l ∈ Nk \ {k}

0, otherwise
(21)

if node k is uninformed, where nk denotes the size of the

neighborhood of node k (or its degree). If node k is informed,

the weights {bl,k} remain the same while the weights {al,k}
change to the rule employed in [17], [18]:

al,k =











α/(α+ nk − 1), if l = k

1/(α+ nk − 1), if l ∈ Nk \ {k}

0, otherwise

(22)
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where α is a positive weighting factor.

In this paper, we would like to select the combination

weights such that the information is transferred through the

network in the most efficient way (i.e., at the fastest con-

vergence rate). As suggested by Theorem 1, this can be

accomplished if every node employs rule (15). However,

in general, nodes do not know whether their neighbors are

informed or not, and the spatial distribution of informed nodes.

Nevertheless, the speed of a node usually reflects the quality of

its private information. For example, fish tend to move faster

when they sense food or feel danger. Thus, nodes may use

the speed of their neighbors to infer information about how

informed they are. To explain this idea, we drop the time

index, denote the velocity for node k in the 2D−plane by

vk = (v1,k, v2,k), and let sk denote its speed:

sk = ‖vk‖ =
√

v2
1,k + v2

2,k (23)

In addition, let Ik be an indicator function for node k whose

value is equal to 1 if node k is informed; otherwise the value is

equal to 0. Then, the combination weights {al,k, bl,k} can be

selected in proportion to the probability that node l is informed

given its speed sl:

al,k ∝ Pr(Il = 1|sl) (24)

and likewise for {bl,k}. Note that since node k knows whether

it possesses information or not, the probability Pr(Ik = 1|sk)
is simply zero or one. In this way, a node essentially places

positive weights only to neighboring informed nodes, as in

(15). In the following, we give a model for the velocity vector

vk and evaluate the probability Pr(Il = 1|sl).
To begin with, in the absence of neighbors, we assume that

the speed of any node k is set as follows:

s◦ =

{

c0, if Ik = 0

c1, if Ik = 1
(25)

with c1 > c0. In this way, when neighbors are not present,

node k moves at speed c0 when it is uninformed; otherwise it

moves faster at speed c1 towards a food source or away from

danger (i.e., ‖vdk‖ = c1 in (18)). However, when neighbors are

present, the motion of node k will be affected by its neighbors

according to (18); in this case, node k will not move at a

constant speed (c0 or c1). To take this effect into account, we

introduce the following model:

v1,k = s◦ cosθk + n1,k (26)

v2,k = s◦ sinθk + n2,k (27)

where θk is the moving direction of node k, and n1,k and

n2,k are Gaussian random variables with zero mean and

variance σ2
n. Moreover, θk, n1,k, and n2,k are assumed to

be independent of each other. Expressions (26)-(27) model the

perturbation caused by the neighbors of node k. Therefore, the

velocity vector vk, given θk = θk, becomes a Gaussian ran-

dom vector with mean
[

s◦ cos θk s◦ sin θk
]T

and covariance

matrix σ2
nI2. Thus, the speed sk in (23) is a Rician random

variable with parameters {s◦, σ2
n} [19] and the probability

density function (pdf) of sk, given θk = θk, can be written

as:

f(sk|s
◦, σ2

n, θk = θk) =
sk
σ2
n

exp

[

−(s2k + s◦2)

2σ2
n

]

I0

(

sks
◦

σ2
n

)

(28)

where I0(z) is the modified Bessel function of the first kind

with order zero, or

I0(z) =

∞
∑

m=0

[

(z/2)m

m!

]2

(29)

Note that expression (28) is independent of θk. Then, the pdf

f(sk|s◦, σ2
n) is identical to (28).

Using Bayes’ rule, the probability Pr(Il = 1|sl) can be

evaluated by

Pr(Il = 1|sl) =
Pr(Il = 1)f(sl|Il = 1)

∑1

m=0
Pr(Il = m)f(sl|Il = m)

(30)

where

f(sl|Il = m) = f(sl|s
◦ = cm, σ

2
n) (31)

Since nodes do not have prior information about whether

other nodes are informed or not, they simply set the prior

probabilities, Pr(Il = 1) and Pr(Il = 0), to equal values

(namely, 1/2). Substituting the pdf from (28) into (30), we

arrive at

Pr(Il = 1|sl) =



1 + exp

(

c21 − c20
2σ2

n

) I0

(

slc0
σ2
n

)

I0

(

slc1
σ2
n

)





−1

(32)

However, the Bessel function (29) is difficult to compute. We

can use the following approximation

I0

(

slc0
σ2
n

)

I0

(

slc1
σ2
n

) ≈ exp

[

−sl(c1 − c0)

σ2
n

]

(33)

and expression (32) simplifies to

Pr(Il = 1|sl) ≈

{

1 + exp

[

c1 − c0
σ2
n

(

c1 + c0
2

− sl

)]}−1

(34)

Expressions (32) and (34) are depicted in Fig. 2 with param-

eters (c1, c0, σ
2
n) = (4, 1, 1). We observe that the two curves

are close to each other. Note that expression (34) admits a

physical interpretation. The probability (34) attains the value

of 0.5 when sl = (c1+ c0)/2, which is the middle point of c0
and c1. That is, when the speed of one node passes the middle

point, it has higher probability of being informed. In addition,

the slope of the curve near the middle point is determined by

(c1− c0)/σ2
n. If the difference between the speed of informed

and uninformed nodes is large, nodes have better ability of

distinguishing whether other nodes are informed or not. We

assume that every node knows the values of the parameters

(c1, c0, σ
2
n).

We conclude from (24) and Fig. 2 that the resulting com-

bination rule exhibits a sigmoidal shape so that a node places
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Fig. 2. Sigmoidal combination rules: the larger the speed of a node, the
larger the weight assigned to it.

higher weights on faster-moving nodes. In this way, when a

fast-moving node takes a sharp turn, for example, the effect

of this behavior will ripple through the network at a faster

rate and the remaining nodes will follow suit. The choice of

the combination rule (34) is similar to the decision-making

process in animal groups. When a node makes a decision

(such as the decision to turn around and start moving in the

opposite direction), the probability of other nodes following

suit increases if the number of neighbors making a similar

decision increases. Specifically, when the number of neighbors

making the same decision passes some threshold value, the

probability of other nodes following suit increases rapidly (i.e.

sigmoidal type behavior). This phenomenon is called quorum

response in animal group behavior [20]. Motivated by [20],

another way to determine the probability Pr(Il = 1|sl) is

Pr(Il = 1|sl) =

[

1 +

(

sl
K1

)K2

]−1

(35)

Expression (35) is also shown in Fig. 2 for (K1, K2) =
(2.5, 4). Similar to (34), expression (35) attains the value of

0.5 when sl = K1 and the slope of the curve near the middle

point is determined by K2. We compare the performance of

the two sigmoidal rules (34) and (35) in the next section.

V. INFORMATION TRANSFER IN THE PRESENCE OF

DANGER

In biological systems, the motion of the network is often

influenced heavily by a small fraction of informed nodes.

The experiment performed in Fig. 1 of [21] serves as a

good example. In that experiment, when a few nodes on the

boundary of the perimeter were frightened, these nodes rapidly

changed their motion and reversed their orientation. The

behavior propagated through the network very quickly. After

a short period of time, the entire network ended up moving

in the opposite direction relative to the original motion. We

examine this effect and compare different combination rules.

We consider three combination rules: two sigmoidal rules

from (34) with (c1, c0, σ
2
n) = (4, 1, 1) and from (35) with

(K1, K2) = (2.5, 4), and the uniform rule (21) and (22)

with α = 5. The step-sizes are set to µk = 0.6 for informed

Fig. 4. Magnitude, △s(i), and orientation, △o(i), of the velocity of the
center of mass relative the the trigger velocity.

nodes. Figure 3 shows simulation results for a network with

N = 100 nodes. Initially, the velocities of the nodes are set

to vk = (1, 0) for all k. To choose NI threatened (informed)

nodes, we first pick up the node with the largest x-coordinate

and then choose NI − 1 nodes that are closest to the chosen

node. In simulations, we set NI = 2. The desired velocities

of the informed nodes are set to vdk,i = vd = (−4, 0) for

5 time steps with △t = 0.1 sec. The resulting maneuver of

the networks using the sigmoidal and uniform combination

rules are shown in Fig. 3. The dots denote the locations of the

nodes and their moving directions are indicated by the lines.

Moreover, the nodes moving towards the positive (negative) x-

direction are shown in red (blue). We observe that the motion

of the informed nodes propagates rapidly through the entire

network if the network employs the sigmoidal combination

rules (34) or (35), while the network using the uniform

combination rule (21) fails to transfer the motion through

the entire network. To compare these three combination rules

quantitatively, we measure the magnitude and orientation of

the velocity of the center of mass of the network, vgi , relative

to the desired velocity, vd. That is, we introduce

△s(i) = (‖vgi ‖ − ‖vd‖)2 (36)

△o(i) = [∠(vgi )− ∠(vd)]2 (37)

where vgi , 1

N

∑N

k=1
vk,i. These two quantities are averaged

over 100 experiments and shown in Fig. 4. We observe that

the desired velocity of the informed nodes is successfully

transferred through the network if the network adopts the

sigmoidal combination rules. Moreover, comparing the two

sigmoidal rules, we observe that rule (34) outperforms rule

(35). The results indicate that if the information of the nodes is

modulated according to their speed, this mechanism improves

the efficiency of information transfer over the network.

VI. CONCLUSION

In this paper, we studied the interaction mechanism among

agents in a mobile adaptive network. Even though the uniform

combination rule is able to regenerate collective motion in

biological systems, the sigmoidal combination rules show

advantages in transferring information over the network.
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