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Abstract—Distributed processing over networks relies on in-
network processing and cooperation among neighboring agents.
Cooperation is beneficial when all agents share the same objective
or belong to the same group. However, if agents belong to
different clusters or are interested in different objectives, then
cooperation can be damaging. In this work, we devise an adaptive
combination rule that allows agents to learn which neighbors
belong to the same cluster and which other neighbors should be
ignored. In doing so, the resulting algorithm enables the agents
to identify their grouping and to attain improved learning and
estimation performance over networks.

Index Terms—Diffusion adaptation, clustering, diffusion LMS,
combination weights, energy conservation.

I. INTRODUCTION

Several strategies that enable distributed optimization and

estimation over networks were proposed and studied in the

literature, such as consensus strategies [1], [2], incremental

strategies [3]–[6], and diffusion strategies [7], [8]. Among

them, diffusion strategies are scalable, robust, and able to en-

dow networks with real-time adaptation and learning abilities.

They were successfully applied to model various forms of

complex and self-organized behavior in biological networks

[9], [10] and to solve general optimization problems [11].

In most of these earlier studies, agents were seeking a

common objective, such as finding the global minimizer for a

cost function. There are important situations where different

agents in a network are interested in different objectives [12]–

[19]. These situations arise frequently in clustering problems

where a subset of the agents belongs to one group and another

subset belongs to a second group. Solving distributed esti-

mation problems that involve multiple clusters is challenging

because agents first need to figure out which subset of their

neighbors have the same objective as their own; otherwise,

cooperation among agents with different objectives may lead

to catastrophic results (see the simulation results in Fig. 4b).

In this work, we show how to design the combination

weights adaptively such that agents are able to cluster and co-

operate only with neighbors that share the same objective. We

formulate an optimization problem that suggests a particular

construction for the weights. Then, we examine the resulting

behavior by simulation and theory.

A. Notation

We use lowercase letters to denote vectors, uppercase letters

for matrices, plain letters for deterministic variables, and
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boldface letters for random variables. We also use (·)∗ to

denote conjugate transposition, (·)−1 for matrix inversion,

Tr(·) for the trace of a matrix, ⊗ for Kronecker products,

and ρ(·) for the spectral radius of a matrix. All vectors in

our treatment are column vectors, with the exception of the

regression vectors, uk,i, which are taken to be row vectors for

convenience of presentation.

II. NETWORKS WITH MULTIPLE CLUSTERS

We consider a connected network consisting of N nodes.

Each node k collects scalar measurements dk(i) and 1 ×M
regression data vectors uk,i over successive time instants

i ≥ 0. The measurements across all nodes are assumed to

be related to a set of unknown M × 1 vectors {wo
k} via a

linear regression model of the form [20]:

dk(i) = uk,iw
o
k + vk(i) (1)

where vk(i) denotes measurement or model noise and wo
k

denotes the parameter of interest for node k. For example,

wo
k can be the parameter vector of some underlying physical

phenomenon, the location of a food source, or a vector

modeling different groupings of nodes. The nodes in the

network would like to estimate the vectors {wo
k} by seeking

the solution for the following minimization problem:

minimize
{wk}

N∑

k=1

E|dk(i)− uk,iwk|
2 (2)

In our previous works [7], [8], a common value for all vectors,

i.e., {wo
k = θo}, was assumed so that all nodes across the

network were pursuing the same unknown parameter vector

θo. Through in-network processing and local cooperation with

their neighbors, nodes were able to estimate θo adaptively by

means of diffusion strategies.

However, when there exist multiple unknown model vec-

tors {θom;m > 1}, it becomes more challenging to enforce

meaningful cooperation among nodes. This is because nodes

do not know beforehand whether they are sensing information

originating from one model or another. They also do not know

which models are influencing the data received from their

neighbors. If nodes process these data regardless of the models

by which they were generated, then the resulting estimates will

likely be distorted.

Without loss of generality, let us assume that there are only

two possible models, say, θo1 and θo2. Nodes affected by θo1
are collected into the set N (1) and nodes influenced by θo2 are
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collected in the set N (2) — in this way, the original network is

partitioned into two non-overlapping subsets N (1) and N (2).

Then, the cost function (2) can be decoupled into two separate

problems:

minimize
θm

∑

k∈N (m)

E|dk(i)− uk,iθm|2 (3)

for m = 1, 2. In principle, each of these problems can be

solved separately by using the Adapt-then-Combine (ATC)

diffusion LMS strategy of [8] as follows:

ψk,i = wk,i−1 + µku
∗
k,i [dk(i)− uk,iwk,i−1] (4)

wk,i =
∑

l∈Nk∩N (m)

alk(i)ψl,i (5)

where k ∈ N (m) and Nk denotes the neighborhood of node

k in the original network. In (5), the coefficients {alk(i)} are

nonnegative entries of an N × N combination matrix Ai at

time i. The coefficients {alk(i)} are zero whenever node l
is not connected to node k or node l is pursuing a different

objective from node k is, i.e., l /∈ Nk ∩N (m). We require the

matrix Ai to be left-stochastic, i.e., AT

i 1N = 1N , where 1N

denotes the N × 1 vector with all entries equal to one.

Comparing (4)–(5) with the traditional ATC diffusion strat-

egy from [8], namely,

ψk,i = wk,i−1 + µku
∗
k,i [dk(i)− uk,iwk,i−1] (6)

wk,i =
∑

l∈Nk

alk(i)ψl,i (7)

we see that the key difference lies in the composition of the

neighborhoods of node k in steps (5) and (7): neighbors of

node k that are seeking another model are excluded from

the combination step (5). The challenge in implementing (5)

therefore lies in developing a procedure that would enable

node k to learn which of its neighbors should be excluded

from the combination (7) to obtain (5).

We explain in the sequel that a diffusion strategy of the

form (4)–(5) can be achieved by using a traditional strategy

of the form (6)–(7) and by designing the coefficients {alk(i)}
in (7) in such a manner that they assume relatively small

values for neighbors that are pursuing a different objective.

Specifically, we develop an adaptive procedure for adjusting

these combination weights so that nodes in the network can

learn on the fly which nodes should be excluded from their

neighborhoods.

III. MEAN-SQUARE PERFORMANCE ANALYSIS

Before we explain how to optimize the combination matrix

Ai to enable clustering, we first examine the performance of

the algorithm as a function of these combination weights.

A. Error Recursion

We introduce the error vectors at each node k:

ψ̃k,i , wo
k − ψk,i, w̃k,i , wo

k −wk,i (8)

where wo
k is either θo1 or θo2. We substitute the linear regression

model (1) into (6)–(7) to get

ψ̃k,i = (IM − µkRk,i) w̃k,i−1 − µksk,i (9)

w̃k,i =
∑

l∈Nk

alk(i)ψ̃l,i + wo
k −

∑

l∈Nk

alk(i)w
o
l (10)

where IM denotes the M ×M identity matrix and

Rk,i , u
∗
k,iuk,i, sk,i , u

∗
k,ivk(i) (11)

We collect the various quantities from across all nodes into

the following block vectors and matrices:

Ri , diag {R1,i,R2,i . . . ,RN,i} (12)

si , col {s1,i, s2,i . . . , sN,i} (13)

M , diag {µ1IM , µ2IM . . . , µNIM} (14)

wo , col {wo
1, w

o
2 . . . , w

o
N} (15)

ψ̃i , col
{
ψ̃1,i, ψ̃2,i . . . , ψ̃N,i

}
(16)

w̃i , col {w̃1,i, w̃2,i . . . , w̃N,i} (17)

From (9)–(10), the recursion for the block error vector w̃i is

found to be:

w̃i = AT

i (INM −MRi)w̃i−1 −AT

i Msi + bi (18)

where

Ai , Ai ⊗ IM (19)

bi , col{b1,i, . . . , bN,i} =
(
INM −AT

i

)
wo (20)

The entries of the block vector bi can be interpreted as penalty

terms for choosing the wrong neighbors since

bk,i = wo
k −

∑

l∈Nk

alk(i)w
o
l 6= 0 (21)

if there exists some neighbor n ∈ Nk\{k} such that ank(i) >
0 and wo

n 6= wo
k.

B. Variance Relation

We introduce the following assumption on the statistical

properties of the measurement data and noise signals.

Assumption 1 (Statistical properties):

1) The regression data uk,i are temporally white and spa-

tially independent random variables with zero mean and

covariance matrix Ru,k , Eu∗
k,iuk,i > 0.

2) The noise signals vk(i) are temporally white and spa-

tially independent random variables with zero mean and

variance σ2
v,k.

3) The regression data uk,i and the noise signals vl(j) are

mutually-independent for all k and l, i and j.

Using energy conservation arguments [20], we can establish

that

E‖w̃i‖
2
Σi

= E‖w̃i−1‖
2
Σi−1

+Tr(ZiΣi) (22)
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where Σi is an NM ×NM positive semi-definite Hermitian

matrix that we are free to choose at time i, and

Σi−1 , B∗
iΣiBi +O(M2) (23)

Zi , Yi + Bi(Ew̃i−1)b
∗
i + bi(Ew̃i−1)

∗B∗
i + bib

∗
i (24)

Yi , AT

i MSMAi (25)

Bi , AT

i (INM −MRu) (26)

Ru , ERi = diag {Ru,1, . . . , Ru,N} (27)

S , Esis
∗
i = diag

{
σ2
v,1Ru,1, . . . , σ

2
v,NRu,N

}
(28)

where the notation O(M2) denotes a term whose value is on

the order of M2 and, hence, can be ignored for sufficiently

small step-sizes. Note that the recursion for Σi−1 runs back-

ward in time. Once Σi is chosen at time i, all previous {Σj}
for −1 ≤ j ≤ i−1 are determined via (23). Iterating backward

over i, the weighted variance relation (22) gives

E‖w̃i‖
2
Σi

= E‖w̃−1‖
2
Σ

−1
+

i∑

j=0

Tr(ZjΣj) (29)

where, from (23),

Σj , B∗
j+1B

∗
j+2 . . .B

∗
iΣiBi . . .Bj+2Bj+1 +O(M2) (30)

for −1 ≤ j ≤ i− 1.

C. Mean-Square Stability

Let x be a vector consisting of N blocks of size M×1 each,

i.e., x = col{x1, x2, . . . , xN}, xk ∈ CM×1, and let ‖ · ‖2
denote the 2-norm of its vector argument. Then, the block

maximum norm of x, denoted by ‖x‖b,∞, is defined as [21]:

‖x‖b,∞ , max
1≤k≤N

‖xk‖2 (31)

The induced block maximum norm of a matrix X , denoted by

‖X‖b,∞, is defined as:

‖X‖b,∞ , max
x 6=0

‖Xx‖b,∞
‖x‖b,∞

(32)

It was shown in [21] that for left-stochastic matrices Aj ,

‖Bj‖b,∞ ≤ ρ(INM −MRu) (33)

Therefore, we can choose sufficiently small step-sizes to

ensure that the norms ‖Bj‖b,∞ are uniformly smaller than

one for all j.
Assumption 2 (Small step-sizes): The step-sizes are suffi-

ciently small, i.e., µk ≪ 1.

Let ‖X‖∗ denote the nuclear norm of a matrix X ∈ Cm×n,

which is defined as [22]:

‖X‖∗ ,

min{m,n}∑

k=1

σk (34)

where {σk} are the singular values of X . It can be verified that

‖X‖∗ = ‖X∗‖∗. Moreover, for any Hermitian and positive

semi-definite matrix X , we have ‖X‖∗ = Tr(X). Then, from

(30), (33), and Assumption 2, we get for j ≤ i:

‖Σj‖∗ ≤ ‖B∗
j+1B

∗
j+2 . . .B

∗
i ‖∗ · ‖Σi‖∗ · ‖Bi . . .Bj+2Bj+1‖∗

= ‖Bi . . .Bj+2Bj+1‖
2
∗ · ‖Σi‖∗

≤ c2 · ‖Bi . . .Bj+2Bj+1‖
2
b,∞ · ‖Σi‖∗

≤ c2 · ‖Bi‖
2
b,∞ · · · ‖Bj+2‖

2
b,∞ · ‖Bj+1‖

2
b,∞ · ‖Σi‖∗

≤ c2 · [ρ(INM −MRu)]
2(i−j) · ‖Σi‖∗ (35)

where c is some positive scalar such that ‖X‖∗ ≤ c‖X‖b,∞
because ‖X‖∗ and ‖X‖b,∞ are submultiplicative norms and

all such norms are equivalent [23]. It follows from (35) that,

for ‖Σ∞‖∗ < ∞, the weighting matrix Σ−1 tends to zero

because

‖Σ−1‖∗ ≤ lim
i→∞

c2[ρ(INM −MRu)]
2(i+1)‖Σi‖∗ = 0 (36)

Therefore, in steady-state, the weighted variance relation (29)

becomes

lim
i→∞

E‖w̃i‖
2
Σi

≈ lim
i→∞

i∑

j=0

Tr (ZjΣj) (37)

= lim
i→∞

i∑

j=0

Tr
(
Z

∗/2
j ΣjZ

1/2
j

)
= lim

i→∞

i∑

j=0

∥∥∥Z∗/2
j ΣjZ

1/2
j

∥∥∥
∗

≤ lim
i→∞

i∑

j=0

‖Z
1/2
j ‖2∗ · ‖Σj‖∗ (38)

From (18) and (33), it can be verified that the error recursion

(18) tends to a finite bias in the mean, i.e., limi→∞ Ew̃i <∞,

because the coefficient matrix Bi is uniformly stable. Since

each term on the right-hand side of (24) is uniformly bounded,

let

β , sup
j≥0

‖Z
1/2
j ‖2∗ <∞ (39)

Then, from (35), (38), and (39), we get

lim
i→∞

E‖w̃i‖
2
Σi

≤ lim
i→∞

i∑

j=0

β‖Σj‖∗

≤ c2β lim
i→∞

i∑

j=0

[ρ(INM −MRu)]
2(i−j)‖Σi‖∗

=
c2β‖Σ∞‖∗

1− [ρ(INM −MRu)]2
(40)

Therefore, the error recursion (18) is mean-square stable.

D. Steady-State Mean-Square Performance

We define the network MSD as

MSD , lim
i→∞

1

N

N∑

k=1

E‖w̃k,i‖
2
2 (41)

Selecting the steady-state weighting matrix as Σ∞=INM/N
and substituting it into (37), the network MSD is found to be

MSDadaptive≈ lim
i→∞

1

N

i∑

j=0

Tr(Bi . . .Bj+1ZjB
∗
j+1 . . .B

∗
i ) (42)
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IV. SELECTING THE COMBINATION WEIGHTS

The optimal combination matrix sequence {Ai} can be

obtained by solving:

minimize
{Ai}

MSDadaptive in (42) (43)

subject to the topology constraints

AT

i 1N = 1N , alk ≥ 0, alk = 0 if l /∈ Nk (44)

From (42), it is seen that the solution of problem (43) is

non-causal since the choice of Ai depends on the past and

future choices of {Aj}. To motivate a causal solution, we

instead consider a sequential procedure that minimizes the

instantaneous network MSD at each time i:

minimize
Ai

1

N

N∑

k=1

E‖w̃k,i‖
2
2 (45)

subject to (44).

A. Minimizing Instantaneous MSD

From the combination step (7), we get

E‖w̃k,i‖
2
2 = E

∥∥∥∥∥w
o
k −

∑

l∈Nk

alk(i)ψl,i

∥∥∥∥∥

2

2

=
∑

l∈Nk

∑

n∈Nk

alk(i)ank(i)E(w
o
k −ψn,i)

∗(wo
k −ψl,i) (46)

Let Wk,i be an N × N matrix for each node k such that its

(l, n)th entry is formed by the cross-covariances:

[Wk,i]ln,




E(wo

k−ψn,i)
∗(wo

k−ψl,i), l, n∈Nk

0, otherwise
(47)

It can be shown that Wk,i is positive semi-definite. Let

ak,i , col {a1k(i), a2k(i), . . . , aNk(i)} (48)

Then, the minimization problem (45) can be decoupled into

N sub-problems, and each one of them can be formulated as

minimize
{alk(i); l∈Nk}

aTk,iWk,iak,i

subject to aTk,i1N = 1, alk(i) ≥ 0,

alk(i) = 0 if l /∈ Nk

(49)

The solution is given by

ak,i =
W−1

k,i 1N

1
T

NW
−1
k,i 1N

(50)

However, evaluating the off-diagonal entries of Wk,i is gen-

erally non-trivial. Instead, we replace Wk,i by its diagonal

matrix and approximate (50) as:

alk(i) ≈
(E‖wo

k −ψl,i‖22)
−1

∑
n∈Nk

(E‖wo
k −ψn,i‖22)

−1
, l ∈ Nk (51)

Fig. 1. Illustration of the adaptive rule (51) and its implementation (53)
where wo

k
is assumed to be equal to θo

1
.

This solution admits a physical interpretation: the combination

weight assigned by node k to node l is inversely proportional

to the (squared) displacement between the objective of node

k and ψl,i. Fig. 1 illustrates this construction.

Implementation of the combination rule (51) by node k re-

quires knowledge of the objective wo
k and the cross-covariance

terms, which are generally not available beforehand. Neverthe-

less, we can employ an instantaneous approximation argument

to address these two difficulties. We first use the previous

estimate at node k, wk,i−1, to replace wo
k in (51). Then, we

introduce the instantaneous metric:

γ2lk(i) , ‖wk,i−1 − ψl,i‖
2
2 (52)

and approximate the combination rule (51) by

alk(i) ≈
γ−2
lk (i)∑

n∈Nk
γ−2
nk (i)

, l ∈ Nk (53)

We can further smooth the quantity γ2lk(i) through a first-order

filter, say,

γ2lk(i) = (1− νk)γ
2
lk(i − 1) + νk‖wk,i−1 − ψl,i‖

2
2 (54)

where {νk} are forgetting factors that are smaller than but

close to one.

B. Summary of the Proposed Scheme

ATC Diffusion LMS with Adaptive Weights

Initialize wk,−1 with random values and set γ2lk(−1) = 0
for all k ∈ {1, . . . , N} and l ∈ Nk.

for i ≥ 0 do

ek(i) = dk(i)− uk,iwk,i−1

ψk,i = wk,i−1 + µku
∗
k,iek(i)

γ2lk(i) = (1− νk)γ
2
lk(i − 1) + νk‖wk,i−1 − ψl,i‖

2
2

alk(i) =
γ−2
lk (i)∑

n∈Nk
γ−2
nk (i)

wk,i =
∑

l∈Nk

alk(i)ψk,i

end for

C. Learning Behavior

It turns out that there are essentially two stages during the

learning phase of the proposed diffusion clustering strategy.

Significant cooperation among nodes occurs mainly during the
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second stage. To see this, we reconsider the combination rule

(53), namely,

alk(i) =
‖wk,i−1 − ψl,i‖

−2
2∑

n∈Nk
‖wk,i−1 − ψn,i‖

−2
2

(55)

The combination weight assigned to node k is given by

akk(i) =
‖wk,i−1 − ψk,i‖

−2
2∑

n∈Nk
‖wk,i−1 − ψn,i‖

−2
2

=
µ−2
k |ek(i)|−2‖uk,i‖

−2
2∑

n∈Nk
‖wk,i−1 − ψn,i‖

−2
2

(56)

The contribution of node l to the new estimate wk,i, relative

to that of node k itself, can be assessed by the ratio rlk(i):

rlk(i) ,
alk(i)

akk(i)
=
µ2
k|ek(i)|

2‖uk,i‖22
‖wk,i−1 − ψl,i‖22

(57)

where |ek(i)|2 ∼ O(σ2
v,k) and ‖uk,i‖22 ∼ O(Tr(Ru,k)). Let

B(x; δ) denote a 2-norm ball in the vector space CN×1

centered at x with radius δ > 0, i.e., B(x; δ) , {y ∈
CN×1; ‖y − x‖2 < δ}. We refer to this ball as the δ-near-

field of x. Then, for a certain value of δ, say,

δ =
√
Dµ2

kσ
2
v,kTr(Ru,k) (58)

where D ≫ 1, whenever ψl,i /∈ B(wk,i−1; δ), we get

rlk(i) <
µ2
k|ek(i)|

2‖uk,i‖22
δ2

= O

(
1

D

)
≪ 1 (59)

It means that before ψl,i enters the δ-near-field B(wk,i−1; δ),
the relative ratio rlk(i) is negligible and thus the estimate

wk,i is dominated by ψk,i — the cooperation among nodes

is insignificant during this stage. During this “far-field” stage,

each node updates its estimate based mainly on its own data

{dk(i), uk,i}. The update gradually drives the estimate towards

B(wo
k; δ). Since only nodes sharing the same objective, say, θo1,

are able to converge to B(θo1 ; δ) and cluster there, effective

cooperation among nodes will only occur in a meaningful

manner within the clusters. The closer nodes get into B(wo
k; δ),

the larger the ratios {rlk(i)} will be. In this way, the ATC

diffusion algorithm endows each node with the ability to

differentiate its behavior with respect to its neighbors. The

analysis suggests two conditions for convergence:

• The initialization of each wk,−1 needs to be sufficiently

away from the other initializations by at least δ, i.e.,

‖wk,−1 − wl,−1‖2 > δ for all k and l.
• The clustering vectors {θom} need to be sufficiently apart

from each other by at least δ, i.e., ‖θo1 − θo2‖2 > δ.

where

δ2 = max
k

Dµ2
kσ

2
v,kTr(Ru,k), D ≫ 1 (60)

The quantity δ reflects the discrimination ability of the network

with respect to multiple clusters: if the objectives {θom} are too

close to each other, then nodes will not be able to distinguish

them from each other. Note from (60) that the value of δ is

proportional to the step-sizes. In practice, for small step-sizes,

selecting the initializations {wk,−1} randomly in space tends

to be sufficient to guarantee convergence.

(a) Network topology. (b) Statistical profiles.

Fig. 2. Network topology with 20 nodes and related statistical profiles.

V. SIMULATION RESULTS

We simulate the ATC diffusion algorithm versus non-

cooperative stand-alone LMS at each node over the connected

network with N = 20 nodes shown in Fig. 2a. The two

unknown parameters are θo1 = θ and θo2 = −θ, where θ is

of length M = 3 and is randomly generated. Nodes with odd

index numbers (in red circles) are affected by data generated

by θo1 while nodes with even index numbers (in blue circles)

are affected by data generated by θo2. The regression data are

circular complex Gaussian with zero mean and covariance

matrices {Ru,k} that are randomly generated; their traces are

shown in the upper part of Fig. 2b. The noise signals are

also zero-mean circular complex Gaussian, whose variances,

{σ2
v,k}, are shown in the lower part of Fig. 2b. Both the

regression data and the noise signals are temporally white

and spatially independent. The step-size µ = 0.05 and the

forgetting factor ν = 0.1 are uniform across the network. The

initial values {wk,−1} are randomly generated.

Simulation results are shown in Figs. 3 and 4. We plot

the trajectories for the values of {wk,i} in the complex plain

in Figs. 3a–3c (the horizontal axis for the real part and the

vertical axis for the imaginary part). These trajectories are

averaged over 50 experiments with the same initial values for

{wk,−1}. They illustrate that the proposed diffusion algorithm

guides each estimate wk,i towards its objective without being

confused by irrelevant neighbors interested in different objec-

tives.

In steady-state, we mapped the values of the estimates

{wk,i} into the color of the circles in Fig. 4a. Edges are

dropped if there weights are below a threshold value, say,

alk(i) < 0.05. Compared to the topology in Fig. 2a, it can be

seen that all nodes attain their desired objectives and cooper-

ation only occurs among nodes sharing common objectives.

The MSD learning curves are obtained by averaging over 50

experiments and are plotted in Fig. 4b. The theoretical result

for the diffusion algorithm is obtained from (42), and the

theoretical result for the non-cooperative LMS is obtained by

[20, Ch. 16]:

MSDnoncooperation ≈
1

N

N∑

k=1

µkσ
2
v,kTr(Ru,k)

2
(61)

under Assumption 2. It can be seen that the proposed algorithm

improves the network MSD performance by about 5 dB over

2012 3rd International Workshop on Cognitive Incromation Processing (CIP)



(a) First entry of wk,i. (b) Second entry of wk,i. (c) Third entry of wk,i.

Fig. 3. Trajectories of the entries of {wk,i} over time.

the non-cooperative stand-alone LMS. In addition, we also plot

the simulation results for the traditional diffusion algorithm

(6)–(7) with uniform combination coefficients in Fig. 4b to

illustrate the catastrophic result caused by uniform cooperation

without discrimination.
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