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Abstract—Fish organize themselves into schools as a way to
defend against predators and improve foraging efficiency. In this
work we develop a model for food foraging and explain how
a school of fish can move as a group if every fish were to
employ a distributed strategy, known as diffusion adaptation.
The algorithm assumes the fish sense the general direction of
food and can also infer the general direction of motion of their
neighbors. The result indicates that a simple diffusion algorithm
can account for the foraging behavior. The study also reveals
that some form of communication among the fish is crucial to
achieve schooling.

Index Terms—Distributed signal processing, self-organization,
diffusion, adaptation, fish schools, adaptive networks.

I. INTRODUCTION

Self-organization is a remarkable property of nature and it
has been observed in several physical and biological systems.
Examples include fish joining together in schools, chemicals
forming spirals, and sand grains assembling into rippling dunes
[1]. In self-organizing systems, a global pattern emerges from
interactions among the individual components of the system.
In this work we focus on the schooling behavior of fish while
searching for food.

Fish form schools and move together in remarkable har-
mony. Biologically, there are advantages provided by the
schooling behavior such as defense against predators and
foraging efficiency [2]. Many models have been proposed in
the literature to explain the schooling behavior of fish [3]-[8].
Most of the models assume that a fish adjusts its swimming
direction along the average direction of its neighboring fish.
While these models can help explain the group behavior,
they nevertheless neglect the influence of local information
processing by the fish and how coordinated processing can
help direct the fish school towards a particular food source.
In other words, we are not only interested in explaining
the pattern formation of fish moving together; we are also
interested in explaining how the fish school moves towards
a food source (i.e., towards a specific destination). To do so,
we model the fish group as a dynamic network and employ
diffusion strategies to explain the foraging behavior in the
presence of a food source.

Our analysis employs distributed estimation algorithms over
cognitive, adaptive networks [10]-[12]. Distributed estimation
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algorithms are based on the principle that the network nodes
obtain their estimates by communicating only with their
neighbors. One class of distributed estimation algorithms is
known as diffusion algorithms, whereby nodes perform an
adaptation step using the available measurements, followed by
a diffusion step which requires combining the estimates from
the neighboring nodes [9][12]. We show that by employing
the diffusion algorithm, the fish are able to move as a group
in the direction of a food source.

The diffusion algorithm consists of two steps: adaptation
and diffusion. Let ψk,i and ωk,i be adaptation and diffusion
results for the kth fish at time i. The algorithm is generally
described as follows:{

ψk,i = fa (ωk,i−1, pk,i) (Adaptation)
ωk,i = fd (ψl,i, l ∈ Nk,i) (Diffusion)

(1)

In adaptation, ψk,i is updated by combining the previous
diffusion result, ωk,i−1, with a current local estimation of the
desired parameter vector, pk,i, via some adaptation function
fa. In diffusion, ωk,i is updated by fusing adaptation results
from the neighboring nodes including itself, Nk,i, via some
diffusion function fd. Note that, in general, the neighbors of
the kth fish vary with time.

The organization of the paper is as follows. In Section II,
we describe the foraging algorithm in detail. Simulation results
are presented in Section III. Finally, conclusions are made in
Section IV.

II. ALGORITHM

A. Food Detection Model

The signal intensity from a food source is assumed to
be inversely proportional to a certain order of the distance
between a fish and the food. Let d be the distance between
the fish and the food source. Then the intensity is modeled as
Gd−α, where G is a constant and α is a path loss exponent.
To take uncertain fluctuations into account, the intensity is
modeled as an exponential distribution, say,

y(n) =

{
v0(n), if food does not exist
v1(n), if food exists

(2)

where v0(n) and v1(n) are both exponential random variables
with means σ2 and Gd−α + σ2, respectively.
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Fig. 1. Phase sectorization of a fish with Z = 8 (dash lines). The arrow
represents the swimming direction of the fish.

Each fish detects the existence of food in the ambient area
by conducting a hypothesis test. The detector is given by

T =

N∑
n=1

y(n)
H1
≥
<
H0

τ (3)

where N and τ denote the number of samples and the
threshold of the detector, respectively. To choose the threshold,
we have to specify an optimal criterion. Due to lack of a priori
probability and cost functions, we adopt the Neyman-Pearson
criterion. Under the null hypothesis, y(n) has exponential
distribution with mean σ2, and thus 2y(n)/σ2 becomes a χ2

random variable with 2 degrees of freedom. Therefore, 2T/σ2

is χ2-distributed with 2N degrees of freedom. The probability
of false alarm can be represented by the right-tail probability
of a χ2 random variable, i.e.,

PFA = Pr

(
2T

σ2
≥ 2τ

σ2

∣∣∣∣H0

)
= Q2N

(
2τ

σ2

)
(4)

where Qn(x) is the probability of a χ2 random variable with
n degrees of freedom being greater than x. Thus, under a
desired probability of false alarm, the optimal threshold and
the corresponding probability of detection can be evaluated as:

τopt =
σ2

2
Q−1

2N (PFA) (5)

PD = Q2N

(
2τopt

σ2 +Gd−α

)
(6)

B. Food Position

To locate the position of food, each fish needs to estimate
the direction and distance of the food with respect to itself. To
do this, each fish constructs its own coordinate system with
the origin at the current position of the fish and the x-axis
coincident with the swimming direction of that fish.

It is reasonable to assume that the fish are capable of
inferring the general direction of food. Suppose the ambient
area of a fish is divided equally into Z regions, as shown
in Fig. 1 for Z = 8. A fish senses the existence of food

within each region. If there are multiple regions indicating
the existence of food, it will select the region with maximum
signal intensity, which corresponds to the nearest location of
food in probability. Then, the fish selects the direction of food,
ϕ, simply as the direction of the line that bisects that region.
Therefore, we have

ẑ = argmax
z

{Tz} (7)

ϕ = ϕẑ (8)

where Tz denotes the received signal intensity in the zth region
and ϕz is the corresponding direction of bisection; ϕz = (z−
1)π/4 in this case. In general, we could consider non-uniform
regions because a fish should have higher sensitivity in the
forward direction than in the lateral direction. Furthermore, a
fish may not be able to sense signal intensity in a backward
direction. However, our simple model is sufficient to capture
the idea of fish behavior.

When a fish detects the existence of food, the distance
of food, d, can be estimated under the maximum likelihood
(ML) criterion as follows. Since the mean of y(n) under the
alternative hypothesis is a function of d (namely, Gd−α+σ2),
we use the ML estimator of the mean (i.e., Tẑ/N ) and estimate
d as:

d =

(
G

Tẑ/N − σ2

)1/α

(9)

Note that the result in parenthesis is always positive if we
choose a reasonable probability of false alarm, specifically,
PFA < Q2N (2N). The two parameters (d, ϕ) are used to
determine the rough position of food and are spread through
the fish school via the diffusion algorithm.

C. Diffusion Adaptation

The desired parameters are the coordinates of the food
source. Therefore, ψk,i and ωk,i are 2 × 1 vectors with x-
coordinate in the first element and y-coordinate in the second
element. In addition, the estimate pk,i is defined as the current
estimated position of the food, i.e.

pk,i =
[
dk,i cosϕk,i dk,i sinϕk,i

]T (10)

The subscripts of dk,i and ϕk,i represent the kth fish at time
i. However, due to the movement of fish, the coordinate
system of each fish changes over time. As figure 2 shows,
Coordinate 1 represents the coordinate system at the previous
step while Coordinate 2 is at the current step. Therefore, the
diffusion result at time i− 1 has to be adjusted via coordinate
transformation. With the assumption that the speed of fish is a
constant v and the time duration of one step is △t, we have:

ω
(2)
k,i−1 = U(δk,i−1)ωk,i−1 − v△te1 (11)

where δk,i−1 denotes the swimming direction adjustment of
the kth fish between time i− 1 and time i, which is specified
in (18) below, e1 is the 2× 1 basis vector with 1 in the first
element, and U(x) represents the rotation matrix:

U(x) =

[
cosx sinx
− sinx cosx

]
(12)
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Fig. 2. Coordinate systems in adaptation. Coordinate 1 and coordinate 2
represent the coordinate system in the previous and current steps, respectively.

In addition, the superscript of ω(2)
k,i−1 represents the diffusion

result with respect to Coordinate 2. Then

ψk,i = ω
(2)
k,i−1 + µ

(
pk,i − ω

(2)
k,i−1

)
= (1− µ)ω

(2)
k,i−1 + µpk,i

(13)

where µ is the step size of the adaptation. The second
equality shows that the adaptation step is simply the convex
combination of the previous diffusion result with the current
estimate.

Before discussing the diffusion step, we have to specify the
neighbors of a fish. Let r1 represent the maximum distance
within which two fish can be assumed to “communicate”
successfully. All fish within a radius r1 of one fish are
candidate neighbors. However, due to limited computational
ability and communication overhead, the number of neighbors
will be constrained, say to B. There are different criteria
for a fish to choose its neighbors, such as, front priority,
distance priority [5], etc. In this work, we adopt front priority
because it helps the fish to swim in the same direction and
to form a school. Specifically, let q(k)l,i be the position of the
lth fish at time i with respect to the kth fish. Then, fish k

chooses its neighbors from the smallest |∠(q(k)l,i )| under the
constraint ∥q(k)l,i ∥ ≤ r1, where ∠ and ∥ · ∥ denote the angle
and the Euclidean norm of a vector. Note that the range of the
operation ∠ is (−π, π]. Since the neighboring relationship is
asymmetric, in general, this leads to a directional topology. In
addition, due to the movement of fish, the topology is highly
dynamic.

Now, after the adaptation step (13), each fish broadcasts
its estimate ψk,i and receives information from its neighbors,
Nk,i. Assume a fish is capable of knowing the coordinate
vector, q(k)l,i , and the swimming direction, θ(k)l,i , of its neighbors
(see Fig. 3). Note that these values are with respect to the
kth fish. Fig. 3 shows the coordinate system of the kth fish

Fig. 3. Coordinate systems in diffusion. Coordinate 1 and coordinate 2
represent the coordinate systems of a neighboring fish and the reference fish,
respectively.

(Coordinate 2) and that of its neighbor (Coordinate 1).
Therefore, fish k has to perform coordinate transformation on
the adaptation information from its neighbors as follows:

ψ
(k)
l,i = U(−θ(k)l,i )ψl,i + q

(k)
l,i (14)

where ψ(k)
l,i denotes the adaptation result of the lth fish with

respect to the kth fish. Note that ψ(k)
k,i = ψk,i because both

θ
(k)
k,i and q(k)k,i are equal to zero. Finally, the results are linearly

fused together as:

ωk,i =
∑

l∈Nk,i

a
(k)
l,i ψ

(k)
l,i (15)

where the a(k)l,i ’s are nonnegative combination coefficients from
the lth fish to the kth fish at time i with

∑
l∈Nk,i

a
(k)
l,i = 1.

Note that if the kth fish or its neighbors have no information
about the position of food, the corresponding combination
coefficient is set to 0. In addition, a(k)l,i can be set depending
on the estimated distance of food. However, we adopt equal
weights in the simulations and this results in the desired
behavior.

D. Swimming Direction Adjustment

In above discussion, we developed a method to estimate
the position of food. Therefore, a fish can easily adjust its
swimming direction as follows:

δfoodk,i = ∠(ωk,i) (16)

In order to protect itself from predators or to benefit from its
peers, a fish tries to swim together with other fish and to form
a school even without the existence of food. Therefore, a fish
will align its swimming direction with its neighbors.

Alternatively, reference [3] proposed another model to ex-
plain the grouping behavior. As we mentioned before, a fish
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adjusts its swimming direction by averaging the directions of
those fish that are within a certain radius. In this paper, we
adopt this method but here a fish only takes a fraction of com-
municable fish into consideration. The direction adjustment
due to neighbors then becomes

δnbk,i = ∠

 ∑
l∈Nk,i

b
(k)
l,i exp

(
jθ

(k)
l,i

) (17)

Like {a(k)l,i }, the b
(k)
l,i ’s are nonnegative combination coeffi-

cients with
∑

l∈Nk,i
b
(k)
l,i = 1.

Now, if there is a fish falsely claiming existence of food and
diffusing the information to the other fish, soon, the group will
be trapped into an erroneous position. To solve this problem,
each fish must have the capability to verify the authenticity
of the information from other fish. Thus, note first that if the
distance of food is less than a certain value, say r2, food can be
detected with high probability. Therefore, if a fish is informed
of the existence of food, it can estimate the position of the
food by (15). However, if the distance of food is less than r2
(i.e., ∥ωk,i∥ < r2) and the fish does not detect the existence
of food, the fish just discards the false information and resets
the estimation of food position.

After checking the truth of the received diffusion infor-
mation, a fish adjusts its swimming direction by convexly
combining the effects of the neighbors and of food, i.e.,

δk,i = νδnbk,i + (1− ν)δfoodk,i + ξk,i (18)

where ξk,i is used to model uncertain effects, such as temper-
ature and flow, and is modeled as a Gaussian random variable
with zero mean and variance ρ2. The choice of coefficient
ν is important. It should be set large enough such that the
school will not disperse in foraging. In addition, if a fish
has no information about the position of food or treats it as
false alarm, it simply follows the swimming direction of its
neighbors, i.e., ν = 1 in (18).

E. Summary of Algorithm

We summarize the procedure of the algorithm in this
section. Assume there are K fish in a school and we introduce
three indicator vectors:

1) IINFO: obtaining information of the food position.
2) IFOOD: detecting the existence of food.
3) IDIFF : detecting diffusion from other neighbors.

Each indicator is a K × 1 vector. The kth element is equal
to 1 if the corresponding statement is true for the kth fish;
otherwise, it is equal to 0. The detail of the algorithm is
summarized as follows:

1) Initialization: IINFO = 0, IFOOD = 0, IDIFF = 0.
2) (Adaptation) At every time step, for k = 1 to K do:

a) Determine neighbors and their positions and swim-
ming directions (i.e., Nk,i, q

(k)
l,i , θ

(k)
l,i , l ∈ Nk,i).

b) Compute the direction adjustment due to neigh-
bors, δnbk,i, by (17).

c) Detect the existence of food, IFOOD(k).

Fig. 4. Probability of detection versus distance between fish and food under
the Neyman-Pearson criterion with probability of false alarm PFA = 0.01.

d) If IFOOD(k) = 1, then
i) Estimate the position of food by (7)-(10).

ii) If IINFO(k) = 1, adapt ψk,i by (11) and (13),
else, determine it by (13) with µ = 1 and set
IINFO(k) = 1.

e) Else
i) If IINFO(k) = 1, adapt ψk,i by (13) with µ =

0.
3) (Diffusion) For k = 1 to K do:

a) Determine the diffusion from other neighbors,
IDIFF (k).

b) If IDIFF (k) = 1 then
i) If IINFO(k) = 1, fuse ωk,i by (14) and (15),

else, fuse it by (14) and (15) with a(k)k,i = 0 and
set IINFO(k) = 1.

c) Else
i) If IINFO(k) = 1, determine ωk,i by (15) with
a
(k)
k,i = 1.

d) Compute the direction adjustment due to food,
δfoodk,i , by (16).

e) If (∥ωk,i∥ < r2) and (IFOOD(k) = 0), reset
IINFO(k) = 0.

f) If IINFO(k) = 1, determine δk,i by (18), else,
determine it by (18) with ν = 1.

III. SIMULATION RESULTS

In this section, we compare two fish schools with and
without the diffusion mechanism. The fish without diffusion
mechanism simply estimate the position of food individually
and the information will not be broadcast. More precisely,
the diffusion step of the algorithm just applies (15) with
a
(k)
k,i = 1. The parameters are set as follows. The radius of

successful communication between two fish is r1 = 5 with
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the unit equal to the body length of a fish and the maximum
number of neighbors B = 6. In modeling the food source, let
G = 100, α = 2, and σ2 = 0.5. In addition, the number of
samples in detection is N = 10 and the probability of false
alarm is PFA = 0.01, which results in an optimal threshold
under the Neyman-Pearson criterion of τopt = 9.39. We set
r2 = 2r1 = 10 in checking the truth of the information from
other fish. This results in a probability of detection of about
0.9 at this distance, as shown in Fig. 4. In estimating the
direction of food, the number of regions is Z = 8. For the
diffusion algorithm, the step size is µ = 0.7 and the adaptation
results are equally weighted at the diffusion step. In direction
adjustment, the combination coefficient is ν = 0.6 and the
standard deviation of uncertainty effects is ρ = π/12. Finally,
the speed of fish is v = 1, and the time step of the algorithm
is △t = 0.5 sec. The coefficients, a(k)l,i and b(k)l,i , are specified
as follows. Let Dk,i be the set of neighbors that diffuse the
adaptation result to fish k. Obviously, Dk,i ⊆ Nk,i. Then we
set

a
(k)
l,i =

1

|Dk,i|
∀l ∈ Dk,i

b
(k)
l,i =

1

|Nk,i|
∀l ∈ Nk,i

(19)

where |N | denotes the number of elements in the set N .
In Figs. 5 and 6, we construct a global coordinate system,

whose unit length is body length of a fish. Initially, there are
40 fish, which are uniformly distributed in a square region
centered at the origin and with length 10 and their swimming
directions are set moving towards the x-axis. The position
and the swimming direction of a fish are indicated by “•” and
“−”, respectively. In addition, one food source is located at
(50, 30) and is marked “�”. Two schools with (Fig. 5) and
without (Fig. 6) the diffusion mechanism are compared over
time.

For the school with the diffusion mechanism, the whole
group searches for food and moves together. We observe that
the school always moves within a 15 × 15 square range.
In addition, the arrows in Fig. 5(a) (c) indicate the moving
direction of the school. Eventually, the school successfully
finds food and moves around the food source. However, for
the school without the diffusion mechanism, the group spreads
out and even separates into fragments (see Fig. 6(b)). This is
because some fish falsely detect the existence of food and then
these fish may move toward the wrong position of food. Since
the information is not diffused, fish in the front of a false-
alarm fish do not notice the deviation of this fish and keep
moving forward. However, fish in the rear of the false-alarm
fish follow this fish and form a subgroup. This fault suggests
that the diffusion mechanism is essential for fish to form a
group in foraging.

IV. CONCLUSION

In this paper, we proposed an algorithm for fish to form
a school while foraging for food. The diffusion algorithm
is applied to illustrate self-organization in fish schooling. A
fish detects the existence of food, estimates the position of

food, and broadcasts the information. To release the burden
of communication and computation in diffusion, a fish only
selects a limited number of candidate fish as its neighbors.
Furthermore, due to the constant movement of fish, this results
in a distributed algorithm over a dynamic and directional
network topology. The simulations indicate that fish foraging
without a diffusion mechanism does not result in schooling.
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Fig. 5. Maneuvers of fish schools with diffusion over time: (a) t = 0.5 sec,
(b) t = 25 sec, (c) t = 50 sec, and (d) t = 75 sec

Fig. 6. Maneuvers of fish schools without diffusion over time: (a) t = 0.5
sec, (b) t = 25 sec, (c) t = 50 sec, and (d) t = 75 sec
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