
DIFFUSION STRATEGIES FOR DISTRIBUTED KALMAN FILTERING:

FORMULATION AND PERFORMANCE ANALYSIS

Federico S. Cattivelli Cassio G. Lopes Ali H. Sayed

Department of Electrical Engineering

University of California, Los Angeles, CA 90095

Emails: {fcattiv, cassio, sayed}@ee.ucla.edu

ABSTRACT

We consider the problem of distributed Kalman filtering, where a

set of nodes are required to collectively estimate the state of a linear

dynamic system from their individual measurements. Our focus is

on diffusion strategies, where nodes communicate with their direct

neighbors only, and the information is diffused across the network.

We derive and analyze the mean and mean-square performance of

the proposed algorithms and show by simulation that they outper-

form previous solutions.

1. INTRODUCTION

In this work we consider the problem of distributed Kalman filtering

over a network of nodes (for example, a sensor network). It is as-

sumed that some system of interest is evolving according to a linear

state-space model, and that every node in the network takes measure-

ments that are linearly related to the unobserved state. The objective

is for every node to estimate the state of the system.

The performance of the state estimation will depend heavily on

the collaboration strategy employed. In the centralized solution, all

nodes relay their measurements to a fusion center, which uses a con-

ventional Kalman filter to obtain the optimal state estimate, and then

sends the global estimate back to every node. This strategy requires

a large amount of energy for communications [1] and has a potential

failure point (the central node). Distributed strategies are an attrac-

tive alternative, since they are in general more robust, require fewer

communications, and allow for parallel processing.

Decentralized Kalman filtering has been proposed previously in

[2] for a decentralized control problem, where it is assumed that the

network is fully connected. The same assumption is used in [3] and

[4], though the latter considers the case of severely quantized com-

munications. In [5], the Kalman filtering iterations are parallelized

over a set of sensors. However, the algorithm is aimed at multi-

processor systems, and still requires a fusion center to combine the

estimates. Recent work in [6] employs reduced state-space models

and suggests an aggregating procedure based on average consensus.

The work of [7] is also based on average consensus.

Our focus is on diffusion Kalman filtering, where nodes com-

municate only with their neighbors, and no fusion center is present.

Inspired by the connection between Kalman and RLS filtering [8,

9, 10], we extend our previous work on diffusion RLS on adaptive

networks [11, 12] to the KF domain. Our algorithm computes, for

every measurement and for every node, a local state estimate using

This material was based on work supported in part by the National Science Foun-

dation under awards ECS-0725441 and ECS-0601266.

the data from the neighborhood. Subsequently, every node com-

putes a local average of the estimates of the neighborhood. This sec-

ond step makes the resulting algorithm considerably different from

consensus-based algorithms, where, in the general case, several av-

eraging iterations are required to obtain the estimate [13]. We moti-

vate and derive the algorithm, and analyze its mean and mean-square

performance. We also compare the theoretical expressions with sim-

ulation results, and show performance improvement over prior solu-

tions.

2. DISTRIBUTED KALMAN FILTER

2.1. The Kalman filter

Consider a state-space model of the form:

xi+1 = Fixi +Gini

yi = Hixi + vi
(1)

where xi ∈ C
M and yi ∈ C

PN denote the state and measurement

vectors of the system, respectively, at time i. The signals ni and vi

denote state and measurement noises, respectively, and are assumed

to be zero-mean and white, with covariance matrices denoted by

E

�
ni

vi

� �
nj

vj

�∗
=

�
Qi 0
0 Ri

�
δij

where ∗ denotes conjugate transposition. The initial state x0 is as-

sumed to have zero mean, covariance matrix Π0, and to be uncorre-

lated with ni and vi, for all i.

Let x̂i|j denote the linear minimum mean-square error estimate

of xi given observations up to and including time j. The Kalman

filter in its time- and measurement-update forms can be computed by

starting from x̂0|−1 = 0 and P0|−1 = Π0 and iterating the following

equations [9, 10]:

Measurement-Update:

Re,i = Ri +HiPi|i−1H
∗
i

x̂i|i = x̂i|i−1 + Pi|i−1H
∗
i R

−1

e,i [yi −Hix̂i|i−1]

Pi|i = Pi|i−1 − Pi|i−1H
∗
i R

−1

e,iHiPi|i−1

Time-Update:

x̂i+1|i = Fix̂i|i

Pi+1|i = FiPi|iF
∗
i +GiQiG

∗
i

(2)

where Pi|j denotes the covariance matrix of the estimation error

x̃i|j , xi − x̂i|j .

36

k

yk,i

Nk

Fig. 1. At every time i, node k collects a measurement yk,i.

2.2. Distributed Kalman filter

Consider the case where a set of N nodes are spatially distributed

over some region. Let Nk denote the closed neighborhood of node

k (i.e., the set of nodes connected to node k including itself). It is

assumed that at time i, every node k collects a measurement yk,i ∈
C

P according to model (1) as follows:

yk,i = Hk,ixi + vk,i k = 1, ..., N (3)

The process is shown in Figure 1. It is assumed that model (1) cor-

responds to collecting all N measurements from (3) as follows:

yi =

264 y1,i

...

yN,i

375 , Hi =

264 H1,i

...

HN,i

375 , vi =

264 v1,i

...

vN,i

375 (4)

We further assume that the measurement noises vk,i are spatially

uncorrelated, i.e.,

E

�
ni

vk,i

� �
nj

vl,j

�∗
=

�
Qi 0
0 Rk,i

�
δijδkl

The objective in a distributed Kalman filter implementation is for

every node k in the network to compute an estimate of the unknown

state xi, while sharing data only with its neighbors {l ∈ Nk}. We

will denote the predicted and filtered estimates of xi obtained by

node k as x̂k,i|i−1 and x̂k,i|i, respectively. It is also desirable that

the quality of the estimates be comparable to the global estimate

of xi had node k had access to all measurements across the entire

network and not just its neighborhood.

3. DIFFUSION KALMAN FILTER

3.1. Local Kalman filtering

In order to motivate the diffusion Kalman filter we start by assuming

that every node is able to share data with its neighbors, and uses

the data to obtain the optimal state estimate given the data from the

neighborhood only. We call this estimate the “local” Kalman filter

estimate at the neighborhood of node k. It can be computed from (2)

by running several measurement-updates, one for every neighbor [9,

p. 329]. The iterations are shown in (5):

ψk,i ← x̂k,i|i−1

Pk,i ← Pk,i|i−1

for l ∈ Nk repeat:

Re ← Rl,i +Hl,iPk,iH
∗
l,i

ψk,i ← ψk,i + Pk,iH
∗
l,iR

−1
e [yl,i −Hl,iψk,i]

Pk,i ← Pk,i − Pk,iH
∗
l,iR

−1
e Hl,iPk,i

end

x̂k,i|i ← ψk,i

Pk,i|i ← Pk,i

x̂k,i+1|i = Fix̂k,i|i

Pk,i+1|i = FiPk,i|iF
∗
i +GiQiG

∗
i

(5)

where the arrow “←” denotes a sequential, or non-concurrent as-

signment. We also refer to (5) as the incremental step [14], since an

optimal local estimate is generated by incrementally incorporating

estimates and data sequentially from the neighborhood. The itera-

tions (5) compute the optimal estimate for every neighborhood only,

but do not take into account the fact that the neighborhoods are in-

terconnected. In the following section, we add a diffusion step to

the process that enhances the performance considerably, and allows

information to be propagated throughout the network.

3.2. The diffusion Kalman filter algorithm (diffKF)

In a diffusion implementation, nodes communicate with their neigh-

bors in an isotropic manner and cooperate to obtain better estimates

than they would without cooperation. Diffusion algorithms for adap-

tive filters such as LMS and RLS have been proposed in [15, 16, 11].

The connection between Kalman filtering and RLS was established

in [8, 10]. Here we follow similar guidelines to derive a diffusion

Kalman filtering algorithm (diffKF) which is closely related to the

diffusion RLS algorithm of [11, 12].

The diffusion KF algorithm and its variants require the definition

of a diffusion matrix C ∈ R
N×N with the following properties:

1
∗C = 1

∗ cl,k = 0 if l 6∈ Nk cl,k ≥ 0, ∀l, k (6)

where 1 is a N × 1 column vector with unity entries, and cl,k is the

(l, k) element of matrix C. We call C the diffusion matrix, since

it governs the diffusion process, and plays an important role in the

steady-state performance of the network.. The entries in C repre-

sent the weights that are used by the diffusion algorithm to combine

nearby estimates. We also define a link matrix L as follows:

[L]l,k =

�
1 if l ∈ Nk

0 otherwise
(7)

Drawing a parallelism with the diffusion RLS algorithm of [11,

12], and keeping in mind the local Kalman filter (5), the diffusion

Kalman filter can be derived, by adding a diffusion step after the

Kalman filter update. This diffusion step could be a convex combi-

nation of the estimates of the neighborhood, i.e.,

x̂k,i|i =
X

l∈Nk

cl,kψl,i with

NX
l=1

cl,k = 1 (8)

The diffusion step is an attempt to achieve the global KF perfor-

mance via local node interactions. It can be shown that combina-

tions of the form (8) are least-squares optimal [11]. The diffusion

KF algorithm is presented below.

37

Incremental update Diffusion update

- Exchange local data

H1,i, y1,i

H2,i, y2,i

H3,i, y3,i

H4,i, y4,i

- Iterate the KF with local data

- Exchange estimates

ψ1,i

ψ2,i

ψ3,i

ψ4,i

- Calculate weighted average:

x̂1,i|i =
P

l
cl,1ψl,i

11

22

33

44

Fig. 2. Diffusion Kalman filter update (transmission of Rk,i has

been omitted to simplify the figure).

Algorithm 1: Diffusion Kalman filter

(time- and measurement-update form)

Consider a state-space model as in (1) and a diffusion matrix as

in (6). Start with x̂0|−1 = 0 and P0|−1 = Π0 and at every time

instant i, compute:

Step 1: Incremental Update:

ψk,i ← x̂k,i|i−1

Pk,i ← Pk,i|i−1

for every neighboring node l ∈ Nk, repeat:

Re ← Rl,i +Hl,iPk,iH
∗
l,i

ψk,i ← ψk,i + Pk,iH
∗
l,iR

−1
e [yl,i −Hl,iψk,i]

Pk,i ← Pk,i − Pk,iH
∗
l,iR

−1
e Hl,iPk,i

end

Step 2: Diffusion Update:

x̂k,i|i ←
P

l∈Nk
cl,kψl,i

Pk,i|i ← Pk,i

x̂k,i+1|i = Fix̂k,i|i

Pk,i+1|i = FiPk,i|iF
∗
i +GiQiG

∗
i

Algorithm 1 requires that at every instant i, nodes communicate

with their neighbors their measurement matrices Hk,i, the covari-

ance matrices Rk,i, and the measurements yk,i for the incremental

update, and their pre-estimates ψk,i for the diffusion update. The

total communication requirement for every node and for every mea-

surement is PM + M + P 2/2 + 3P/2 complex scalars, and it

requires one matrix inversion per incremental update.

This process is shown schematically in Figure 2, where the trans-

mission of Rk,i has been omitted to simplify the figure, and due to

the following argument. Note that communication of Rk,i may not

be necessary if its Cholesky factor is computed, Rk,i = Lk,iL
∗
k,i,

and H̄k,i = L−1

k,iHk,i and ȳk,i = L−1

k,iyk,i are transmitted instead

of Hk,i and yk,i. In this case, the error covariance is updated us-

ing Re ← I + H̄l,iPk,iH̄
∗
l,i, and the remaining recursions replace

Hk,i and yk,i by H̄k,i and ȳk,i. In this scenario, Algorithm 1 re-

quires transmission of PM +M + P complex scalars per node per

measurement.

It is important to note that even though the notation Pk,i|i and

Pk,i|i−1 has been retained for simplicity, these two matrices do not

represent the covariance of the estimation error any longer, since the

diffusion update is not taken into account in the recursions for these

matrices. Exact expressions for the covariances of the estimates will

be derived in Section 4.

An alternate formulation of Algorithm 1 may be obtained by

using the information form of the Kalman filter. In this case, the

incremental update (5) is replaced by a sum of terms of the form

H∗
l,iR

−1

l,i Hl,i and H∗
l,iR

−1

l,i yl,i. We call this form Algorithm 2 , and

present it below.

Algorithm 2: Diffusion Kalman filter (information form)

Consider a state-space model as in (1) and a diffusion matrix as

in (6). Start with x̂0|−1 = 0 and P0|−1 = Π0 and at every time

instant i, compute:

Step 1: Incremental Update:

Sk,i =
P

l∈Nk
H∗

l,iR
−1

l,i Hl,i

qk,i =
P

l∈Nk
H∗

l,iR
−1

l,i yl,i

P−1

k,i|i = P−1

k,i|i−1
+ Sk,i

ψk,i = x̂k,i|i−1 + Pk,i|i

�
qk,i − Sk,ix̂k,i|i−1

�
Step 2: Diffusion Update:

x̂k,i|i =
P

l∈Nk
cl,kψl,i

x̂k,i+1|i = Fix̂k,i|i

Pk,i+1|i = FiPk,i|iF
∗
i +GiQiG

∗
i

The total communication required per measurement per node, is

M2/2 + 3M/2 + P scalars, and it requires two matrix inversions

per incremental update. Algorithm 1 and Algorithm 2 are mathemat-

ically equivalent and will produce the same estimation results.

The incremental update of Algorithm 2 is similar to the update

proposed in [7]. An important difference in the algorithms is in the

diffusion step. In [7], the author uses a consensus-based approach

for averaging as follows (Algorithm 2 in [7]):

x̂k,i|i = ψk,i + ǫ
X

l∈Nk

(ψl,i − ψk,i)

On the contrary, we use a convex combination of the estimates of the

neighbors as in (8). This difference produces a significant improve-

ment in the performance of our algorithm for the reasons we state

next.

In average consensus methods, the network must perform re-

peated averaging steps before arriving at a consensus. When these

methods are used for distributed estimation, the nodes update their

local estimates (using, for instance, a Kalman filter [6] or a least-

squares update [13]) and then they run a consensus step with several

iterations to fuse the estimates. After the data have been fused, a

new measurement is taken, the estimates are updated again, and so

on. Thus, in consensus estimation algorithms there are two time-

scales: one for collecting the measurements, and one for running the

averaging consensus.

In the proposed diffusion KF, on the other hand, the operations

are done in real-time using a single time-scale. This feature allows

for better adaptation and tracking abilities and leads to improved per-

formance; see also [15, 16].

4. PERFORMANCE ANALYSIS

In this section we analyze the mean and mean-square performance of

the diffusion Kalman filter (Algorithm 1). We provide closed form

38

expressions for the mean-square deviation (MSD) for every node,

which is defined for node k as:

MSDk,i = E||xi − x̂k,i|i||2

The MSD is indexed by time i and node k, since for diffusion algo-

rithms, different nodes produce different estimates in general. Also,

since the model dynamics may be changing with time, the MSD is a

function of time.

For our analysis, we use the information form of the diffusion

KF (Algorithm 2) to derive the expressions. The analysis holds for

both Algorithms 1 and 2, since they are mathematically equivalent.

Let ψ̃k,i = xi − ψk,i denote the estimation error at the end of the

incremental update. Then, it holds that

ψ̃k,i = x̃k,i|i−1 − Pk,i|i

X
l∈Nk

H∗
l,iR

−1

l,i

�
Hl,ix̃k,i|i−1 + vl,i

�
= Pk,i|i

h
P−1

k,i|i − Sk,i

i
x̃k,i|i−1 − Pk,i|i

X
l∈Nk

H∗
l,iR

−1

l,i vl,i

= Pk,i|iP
−1

k,i|i−1
x̃k,i|i−1 − Pk,i|i

X
l∈Nk

H∗
l,iR

−1

l,i vl,i (9)

where x̃k,i|i−1 = xi − x̂k,i|i−1 denotes the estimation error at node

k. We also have

x̃k,i|i−1 = Fi−1x̃k,i−1|i−1 +Gi−1ni−1 (10)

Combining (9) and (10) into the diffusion step of Algorithm 2 , we

obtain

x̃k,i|i =
X

l∈Nk

cl,kψ̃l,i

=
X

l∈Nk

cl,k

�
Pl,i|iP

−1

l,i|i−1

�
Fi−1x̃l,i−1|i−1 +

Gi−1ni−1

�
− Pl,i|i

X
m∈Nl

H∗
m,iR

−1

m,ivm,i

�
(11)

4.1. Mean performance

Taking expectations of both sides of (11), we obtain the following

recursion for the expectation of the estimate of the diffusion KF al-

gorithm:

Ex̃k,i|i =
X

l∈Nk

cl,kPl,i|iP
−1

l,i|i−1
Fi−1Ex̃l,i−1|i−1 (12)

Since Ex̃k,0|−1 = 0 and Ex̃k,−1|−1 = 0, we conclude from (12)

that the diffusion KF estimate is unbiased.

4.2. Mean-square performance

Consider the augmented state-error vector χ̃i|i and the block-diagonal

matricesHi, Pi|i and Pi|i−1 defined as follows:

χ̃i|i ,

264 x̃1,i|i

...

x̃N,i|i

375
Hi , diag{H1,i, . . . , HN,i}
Pi|i , diag{P1,i|i, . . . , PN,i|i}

Pi|i−1 , diag{P1,i|i−1, . . . , PN,i|i−1}

Consider also the extended matrices (from (6) and (7)):

C , C ⊗ IM L , L⊗ IM

where ⊗ denotes Kronecker product. We may now express (11) in a

global form that captures the evolution of the entire network:

χ̃i|i = CT

2664 P1,i|iP
−1

1,i|i−1
[Fi−1x̃1,i−1|i−1 +Gi−1ni−1]

...

PN,i|iP
−1

N,i|i−1
[Fi−1x̃N,i−1|i−1 +Gi−1ni−1]

3775−
CT

264 P1,i|i

. . .

PN,i|i

375LT

264 H1,iR
−1

1,i v1,i

...

HN,iR
−1

N,ivN,i

375
or equivalently:

χ̃i|i = CTPi|i

�
P−1

i|i−1
(I ⊗ Fi−1)χ̃i−1|i−1 +

P−1

i|i−1
(I ⊗Gi−1)(1⊗ ni−1)− LTH∗

iR
−1

i vi

�
(13)

where vi was defined in (4) and Ri = Eviv
∗
i is a block-diagonal

matrix. Equation (13) can be rewritten more compactly as:

χ̃i|i = Aiχ̃i−1|i−1 +Bi(1⊗ ni−1)−Divi

where

Ai , CTPi|iP−1

i|i−1
(I ⊗ Fi−1)

Bi , CTPi|iP−1

i|i−1
(I ⊗Gi−1)

Di , CTPi|iLTH∗
iR

−1

i

Let Pχ̃,i = E{χ̃i|iχ̃
∗
i|i} denote the covariance matrix of χ̃i|i. From

(14) and the whiteness assumptions on the state and measurement

noises, we obtain

Pχ̃,i = AiPχ̃,i−1A
∗
i +Bi(11

∗ ⊗Qi−1)B
∗
i +DiRiD

∗
i (14)

where we have used the property of Kronecker products that (A ⊗
B)(C ⊗D) = (AC)⊗ (BD).

In order to analyze the mean-square steady-state performance,

we introduce the following assumptions.

Assumption 1 The matrices in model (1) are time-invariant, i.e.,

the matrices F,G,H,R and Q do not depend on time i. Moreover,

we assume that the matrix F is stable, i.e., all of its eigenvalues lie

inside the unit circle.

Assumption 2 A Kalman filter that uses data from a neighborhood

converges for every neighborhood, i.e., limi→∞ Pk,i|i−1 , P−
k and

limi→∞ Pk,i|i , Pk, k ∈ {1, . . . , N} (see [9] for conditions on

Kalman filter convergence).

Under these assumptions, the matrices Ai, Bi and Di also con-

verge in steady-state, and their steady-state values are given by

P , lim
i→∞

Pi|i = diag{P1, . . . , PN}

P−
, lim

i→∞
Pi|i−1 = diag{P−

1 , . . . , P
−
N }

A , lim
i→∞

Ai = CTP(P−)−1(I ⊗ F) (15)

B , lim
i→∞

Bi = CTP(P−)−1(I ⊗G)

D , lim
i→∞

Di = CTPLTH∗R−1

39

Assumptions 1 and 2 are sufficient to guarantee the convergence

of the diffusion KF algorithm, i.e., we can show that the matrix A in

(15) is stable, and that (14) converges to the unique solution of the

Lyapunov equation:

Pχ̃ = APχ̃A
∗ +B(11∗ ⊗Q)B∗ +DRD∗

(16)

Complete proofs of these statements will be provided elsewhere due

to space considerations.

Now we can solve for the steady-state covariance of the esti-

mation error of the diffusion KF algorithm, Pχ̃. The solution may

be expressed using the vec operator, which vectorizes a matrix by

stacking its columns, and the property that vec(PΣQ) = (Q ⊗
PT)vec(Σ). In this case, we have

vec (Pχ̃) =
�
I −A∗ ⊗AT

�−1

vec (B(11∗ ⊗Q)B∗ +DRD∗)

and we can recover Pχ̃ from vec (Pχ̃). Note that since A is stable,

the matrix I −A∗ ⊗AT is non-singular.

The MSD at node k may now be expressed as:

MSDk = lim
i→∞

E||xi − x̂k,i|i||2 = Tr (Pχ̃Ik) (17)

where Ik is anNM×NM block matrix with blocks of sizeM×M ,

with an identity matrix at block (k, k) and zeros elsewhere. Finally,

the average MSD across the network is:

MSD
ave =

1

N
Tr (Pχ̃) (18)

We summarize our results with the following Lemma, which fol-

lows directly from the convergence of Pχ̃,i in (14) to the solution of

(16) and the derivation of (17).

Lemma 1 Under Assumptions 1 and 2, the diffusion KF algorithm

(Algorithm 1) is unbiased and converges, and the steady-state mean-

square deviation for every node is given by (17).

5. SIMULATIONS

We now show simulation results for the diffusion KF algorithm (Al-

gorithm 1) and compare them to the distributed solution of [7]. We

use a similar example to the one presented in [7], where the network

is attempting to track the position of a rotating object. The state of

the system is the unknown position of the object, a 2-dimensional

vector where the first and second entries are the x and y coordinates,

respectively. The state-space model matrices in (1) are:

F =

�
0.992 −0.1247
0.1247 0.992

�
, G =

�
0.625 0

0 0.625

�
, Q = I2

The nodes take measurements of the unknown position of the object

either in the x or y direction. Thus, the measurement matrix Hk,i

is chosen to be either [0 1] or [1 0], at random, but with the

requirement that every neighborhood should have nodes with both

types of matrices (to guarantee convergence of the local Kalman fil-

ter as in Assumption 2). Finally, the measurement noise matrices are

Rk,i = 10
√
k, k = 1, . . . , N . Note that node 1 will be the one with

the least amount of measurement noise, and nodeN will be the nois-

iest. The network hasN = 20 nodes, and the connections are shown

schematically in Figure 3. In all cases, the MSD was averaged over

200 experiments. The diffusion matrixC was chosen such that every

Fig. 3. Network graph.

Centralized

Alg. 2 from [7]

Alg. 3 from [7]
diffKF (Alg. 1)

Local (5)

Time instant i

M
S

D
(d

B
)

0

5

5

10

10

15

15

20

20

25

25 30 35 40 45 50

Fig. 4. Average MSD over the entire network as a function of time,

averaged over 200 experiments.

Centralized

Alg. 2 from [7]

Alg. 3 from [7]
diffKF (Alg. 1)

Local (5)

Time instant i

M
S

D
(d

B
)

0

5

5

10

10

15

15

20

20

25

25 30 35 40 45 50

Fig. 5. MSD for node 1 as a function of time, averaged over 200

experiments.

neighbor is weighted according to the number of neighbors it has, as

follows:

clk =

�
αk|Nl| if l ∈ Nk

0 otherwise

where |Nk| is the cardinality of the closed neighborhood of node k
(i.e., the number of neighbors including itself), and αk is a parameter

chosen such that 1∗C = 1
∗.

40

Centralized
diffKF (Alg. 1)

Local (5)

Centralized (theory)

diffKF (Alg. 1, theory)

Local (theory)

Node

M
S

D
(d

B
)

0

5

10

10

15

20

20

25

2 4 6 8 2 4 6 8

Fig. 6. Steady-state MSD for all nodes after 50 iterations, averaged

over 200 experiments.

Figure 4 shows the average MSD (Equation (18)) over the entire

network for different algorithms. The algorithm denoted “Local” is

computed assuming there is no diffusion process, but every node has

access to the data of its neighbors as in (5). Therefore, every node

would run a conventional Kalman filter using the data from its neigh-

borhood. This algorithm is included for comparison, to evaluate

the performance improvement introduced by the diffusion exchange.

Also shown are Algorithms 2 and 3 from [7], which are consensus-

based. The algorithm denoted “diffKF” corresponds to our proposed

Algorithm 1, and finally the algorithm denoted “Centralized” corre-

sponds to the best we can do, i.e., a conventional Kalman filter that

has access to all the data. It can be observed from the plots that the

diffusion KF algorithm improves considerably over the “Local” and

consensus-based algorithms by about 2-4 dB in this example.

Figure 5 shows the MSD for node 1 in the network. Again, the

diffusion KF algorithm outperforms the remaining distributed solu-

tions (and this is true for every other node).

The steady-state expressions from Section 4 are compared to the

simulation results in Figure 6, where we show the individual steady-

state MSD for every node. The theoretical expression for the diffu-

sion KF algorithm was obtained using (17), and the theoretical ex-

pressions for the local and centralized Kalman filters can be readily

obtained as the trace of the error covariance matrix of every node.

The expressions derived show good agreement with the simulation

results.

6. CONCLUSIONS

We presented a diffusion Kalman filtering strategy for distributed

state estimation in linear systems. The algorithm requires every node

to communicate with its neighbors: first to share the data, and sec-

ond to share the estimates. The diffusion procedure ensures that in-

formation is propagated throughout the network. We also provided

steady-state mean and mean-square analysis of the algorithm, and

showed by simulation that it outperforms previous solutions.

7. REFERENCES

[1] D. Estrin, L. Girod, G. Pottie, and M. Srivastava, “Instrument-

ing the world with wireless sensor networks,” in Proc. ICASSP,

Salt Lake City, UT, May 2001, pp. 2033–2036.

[2] J. L. Speyer, “Computation and transmission requirements

for a decentralized linear-quadratic-Gaussian control problem,”

IEEE Transactions on Automatic Control, vol. AC-24, no. 2,

pp. 266–269, April 1979.

[3] B.S. Rao and H.F. Durrant-Whyte, “Fully decentralised algo-

rithm for multisensor Kalman filtering,” IEE Proceedings-D,

vol. 138, no. 5, pp. 413–420, September 1991.

[4] A. Ribeiro, G. B. Giannakis, and R. I. Roumeliotis, “SOI-KF:

Distributed Kalman filtering with low-cost communications us-

ing the sign of innovations,” IEEE Transactions on Signal Pro-

cessing, vol. 54, no. 12, pp. 4782–4795, 2006.

[5] H. R. Hashemipour, S. Roy, and A. J. Laub, “Decentralized

structures for parallel Kalman filtering,” IEEE Transactions on

Automatic Control, vol. 33, no. 1, pp. 88–94, January 1988.

[6] U. A. Khan and J. M. Moura, “Distributed Kalman filters in

sensor networks: Bipartite fusion graphs,” in Proc. of the 14th

IEEE Workshop on Statistical Signal Processing, Madison, WI,

August 2007, pp. 700–704.

[7] R. Olfati-Saber, “Distributed Kalman filtering for sensor net-

works,” in Proc. 46th IEEE Conf. Decision and Control, New

Orleans, LA, December 2007.

[8] A. H. Sayed and T. Kailath, “A state-space approach to adap-

tive RLS filtering,” IEEE Signal Processing Magazine, vol. 11,

no. 3, pp. 18–60, July 1994.

[9] T. Kailath, A. H. Sayed, and B. Hassibi, Linear Estimation,

Prentice Hall, NJ, 2000.

[10] A. H. Sayed, Fundamentals of Adaptive Filtering, Wiley, NJ,

2003.

[11] F. S. Cattivelli, C. G. Lopes, and A. H. Sayed, “A diffusion RLS

scheme for distributed estimation over adaptive networks,” in

Proc. IEEE SPAWC, Helsinki, Finland, June 2007, pp. 1–5.

[12] F. S. Cattivelli, C. G. Lopes, and A. H. Sayed, “Diffusion re-

cursive least-squares for distributed estimation over adaptive

networks,” to appear, IEEE Transactions on Signal Processing,

2008.

[13] L. Xiao, S. Boyd, and S. J. Kim, “Distributed average con-

sensus with least-mean-square deviation,” in Proc. 17th Inter-

national Symposium on Mathematical Theory of Networks and

Systems (MTNS), Kyoto, Japan, July 2006, pp. 2768–2776.

[14] C. G. Lopes and A. H. Sayed, “Incremental adaptive strate-

gies over distributed networks,” IEEE Transactions on Signal

Processing, vol. 55, no. 8, pp. 4064–4077, August 2007.

[15] C. G. Lopes and A. H. Sayed, “Diffusion least-mean squares

over adaptive networks,” in Proc. IEEE ICASSP, Honolulu,

Hawaii, April 2007, pp. 917–920.

[16] C. G. Lopes and A. H. Sayed, “Diffusion least-mean squares

over adaptive networks: Formulation and performance analy-

sis,” to appear, IEEE Transactions on Signal Processing, 2008.

41

