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Abstrace—This paper addresses the problem of robust exponen-
tial filtering for discrete uncertain systems with mixed stochastie
and deterministic uncertainties, in addition to unmodelled nonlin-
earities and measurement and process noises with bounded vari-
ances.
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I. INTRODUCTION

State estimation is a fundamental problem in system the-
ory, control and signal processing. As is well-known, the
Kalman filter is the optimal linear least-mean-squares estima-
tor for linear Markov models [1]. However, the central premise
in Kalman filtering is that the underlying state space model is
accurate. When this assumption is violated, the performance
of the filter can deteriorate appreciably. This filter sensitivity
to modeling errors has led to several works in the literature on
the development of robust state-space filters; robust in the sense
that they attempt to limit, in certain ways, the effect of model
uncertainties on the overall filter performance; see for example
[2]-18].

In this paper, we move beyond earlier robust formulations
and design a robust filter for linear systems with mixed stochas-
tic and deterministic parametric uncertainties in the state-space
model. Robustness is enforced by ensuring exponential stabil-
ity of the error system in the mean square sense and by simulta-
neously minimizing an-.upper bound on the error variance. We
pursue this objective by employing the stochastic framework
of stability through the use of expectation decreasing martin-
gales. Our formulation also allows for unmodelled nonlinear-
ities and it incorporates process and measurement noises that
are assumed to be white and uncorrelated but have unknown
bounded variances.

I1. PROBLEM FORMULATION
_ Consider an n—dimensional state-space model of the form:
(A+Adx)ay + Buk + Df(ze) (1)
Crp+uv, k=20 )

where {uy, ;. } are uncorrelated white zero-mean random pro-
cesses with unknown but bounded variances, say

Tk+1 =
Ye =

Buguy < pud, Eugvg < pod
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The initial condition xpy is also a zero-mean random variable
that is uncorrelated with {uy, vy} forall k. 7

The state matrix A and the cutput matrix C are unknown but
are assumed to lie inside a convex bounded polyhedral domain
K described by p vertices as follows:

i=p - t=p
= {(A: C)y= Zai(Aini)w a; > 0, Zai = 1} 3
=1 .=l

The vertices 4;,7 = 1, ..,p, are assumed to be bounded, say
il4i]] < B. Note that although the A; are constant, the coeffi-
cient matrix in (1) is itself time variant due to the presence of
the uncertainties AAg.

The multiplicative uncertainties A Ay, are stochastic and are

-modelled as

DA = EALG @

where E and (7 are known matrices, while Ay, is a random ma-
trix whose entries have zero mean and are uncorrglated with
each other. The variances of the entries of Ay are assumed un- -
known but bounded by p so that

EAAL < pal

The function f(-) in (1) accounts for unmodelled nonlineari-
ties. It is assumed to satisfy

1 (ze)ll < Ul (5)

for some matrix IJ. - C o

‘We thus see that the only parameters that are assumed known
in model (1)<2) are the matrices {B D, U, E,G}. The other
parameters

{A, C, AAk, f, Euku;, E’Uk't},:, EAkAE}

are all unknown but are either subject to randomness or lie in a
bounded set.

Our objective is to design a robust linear esumator for the
state variable . of the form

Eey1 = AfEr + By, £20 (6)

for seme matrices Ay and By to be determined according to the
criteria explained in the sequel.

First, we denote the state estimation error by:

ik =Tk — ﬁk

M
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and use (1), (6) and (7) to note that the extended state vector
ni = col{xy, T} satisfies the recursion:

| Msr = (A+ A + Bux + Df (M), k20 ®

“with the following definitions:

A Q
A-Af—B;C Ay

-

5= (30,)

> - (3

e - (1)

G = (¢ o)

we = (1)

M = (1 o)
AAy = EAG @

We are interested in determining the filter parameters
{Ag, By} such that, for aill admissible uncertainties in the
model (1)-(2), the augmented system (8) is stable in the sense
explained in the sequel. Since (8) includes both deterministic
and stochastic quantities, we need to resort to stochastic notions
of stability, defined as follows.

Definition I The stochastic process 7 of (8) is said to be
stable with probability 1 if, and only if, for any § > 0 and
‘e > 0, there exists a o(6,2) > 0 such that if |[mp]| < o(8,£),
then Plsup ||l = €] < & If Plsup|ink|| = £] < 4 holds for
~ all g, then we say that the origin is stable at large.

Definition 2 The stochastic process 7 of (8) is said to be
asymptotically stable at large with probability 1 if, and only if,
it is stable at large with probability 1 and {|7(k, n)| — O with
probability 1 as k — oo for any 7.

Definition 3 The stochastic process 7 of (8) is said to be ex-
ponentially bounded in mean-square, if there are real numbers
v > 0and 0 < ¢ < 1such that E|jm|1? < pllmol|?c* + v for
every k > 0.

‘With these definiions in mind, our objective is to deter-
mine {A;, Bs} in order to guarantee that for all admissible
uncertainties in the model (1)-(2), the augmented system (8)
is asymptotically stable with probability 1 in the absence of
noises. And, when noises are present, we would also like the
state estimation error &3, to be exponentially bounded in mean-
square sense. Actually, we shall seek {A¢, By} in order to min-
imize a bound on the error variance, E ||k ||°.

IIT. RoBUST FILTER DESIGN
Assume initially that the matrices {4, C} are known (i.e.,
ignore the polytope X for now). Assume further that the noise
component wy is absent from (8) so that

1 = (A + AA + DF(Mn), k20 (10)

In order to determine {Ay, By} to ensure asymptotic stability
of n¢ we proceed as follows. We first construct a Lyapunov
function V (r;) that satisfies the inequality

| BV @maa)/m) = Vi) < —v(imil) <0]  an

for alf 79 and for all k. Such a V' (.} would ensure asymptotic
stability in view of the foillowing result.

Lemma 1: If for a stochastic process V{1 ). there exists a con-
tinuous non-negative function +(.) of real numbers vanishing
only at zero and

E(V (s)/me) = V) < —v(Imelf?) < 0

for all g, then ny, is asymptotically stable with probability 1.

(12)

Proof: See [i0].

We shall construct V(‘ ) in the form

V) = nf Pk

for some positive-definite matrix P.

(13}

Theorem 1: For any positive-definite matrix P and positive
scalars {e€, £}, and for given scalars {1 > 1,72 > 1}, define
the matrix

R = NPNT —p,\GTETPEG - ATPA
—Amex (DT PDYTT — £

—eAmax (DT P2DYTTT

(14

withll = UM and N = diag{'rl_l”g,'r{l/z}. If there exist
matrices {Ay, By, P} and positive scalars {€, €} such that

(i{ *‘}T) >0

R>0

(15)

and
(16

then V(ni) = ni Pn satisfies (11) and consequently, the
process {nx } of (8) will be asymptotically stable in the absence
of noise, -

Proof: Note that
E(V(T{k+1)/fik) —Vim) £
ny AT P Ang -y Pry
+ pant GTET PEGn,
+ iy ATPDf(Mm) + f7(Mni) DT P Am
+ fT (M) DT PDf(Mny)

Now it is known [9] that for any real matrices {X,Y, J} with
JTJ < ul, it holds for any scalar ¢ > 0 that

XY +YTIXT <e'uXXT +eYTY

an

(18)
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Using this result along with the cond'ition (15) gives
nf ATPDf(Mny) + FT(Mny) D PAny
<e'enime + eFT{Mm) DT P2Df(Mny)
<& Mk + EAmax (DT PEDYNE T Ty

(19)

for some € > 0 and
FT(Mn)DTPD (M) € Anax (DT PDYTTT T, (20)
Using (19) and (20) we can write (17) as

E(V(nre1)/m) — Vi) <
nf AT PAn; — nf Py

+ panf GTETPEGH, @n
+ eI i + Amax (DT POV U T Uny.
+ Amax(DT PDWT OT Ty
or, more compactly,
BV (ks1)/me) = V (e} < —ne B¢ (22)

where
R=P - paGTETPEG - ATPA
— Amax (DT PDYUTT — £€7 ] — edmax( DT P2DYOTT
(23)

Now the inequality (16), and the fact that R < R, imply that
A > 0 and we have ’

E(V(ner1/m)) = Ving) < —e{llm|*) < 0

as desired.

(24)

<

Now assume that we restrict our search over positive-definite
matrices £ with block diagonal structure, say

P- (3 8)
and let
G = ATP,  Q:=B[P, (26)
We can then rewrite the requirement (16) as below:
( g 'Yz_lngﬁﬁlff ‘ Agpl 51\
PA 0 P, 0 >0 @D
Jr Qf 0 P
where
Z = v 'Pi—paGTET(PL+ P)EG

~Amax(DT (P, + P)DYWTU — e 21
—EAmax (DT (P + PHDUTU

and N C

J=-CTQ:~ Q1+ ATP (28)
It can be seen that condition (27) can be satisfied by seeking
matrices { Py, Py, @1, @2} and positive scalars {o}, 02,6 £} in
order to satisfy the following inequalities:

0'1! .DT.Pl DTPE
PD A 0" ]>0 29)
’ PQ.D 0 Pg !
0'2)r DTP1 DTP2
PD I 0°]>0 (30)
BD 0 I
(z' -0 r ATP,
0 AP —e gl 0 @ 0 6D
PA 0 P
JT QT 0 P
where
Z' = 'Pi—paGTET (P + P)EG

—(o1 + ea)UTU — 7161

Once {Q1,Q2} are determined, the desired filter matrices
{As, By} can be found from (26).

IV. PERFORMANCE ANALYSIS

Let us now examine the performance of any filter {A;, B, }
that results from the above conmstruction in the presence of
measurement and process noises. It turns out that the process
{m} is not only asymptotically stable, but is also exponentially
stable. In.order to prove this result, we rely on the following
lemma.

Lemma 2: If there exist real numbers A\, g, > 0and 0 < °
« < 1 such that

plinll® < Vim) < vliml® (32)
and

EV{mksalme) — Vime) € A= aV(m) (33)
then the process V(1) is exponentially bounded and, more-
over,

v A
Elml? € —Elnolf*(1 ~ )* + (34)
li72e I " Imoll“(1 - @) s
Proof: This result is a combination of Thm, 1 from [11] and
Thm. 2 from [12].

We now have the following result.

Theorem 2: For any given {y1 > 1,v2 > 1}, let {As, By}
be a solution to (15) and (29)-(31). Then the resulting process
{nx} is exponentially stable in the presence of measurement
and process noises. Moreover, its variance is bounded as fol-
lows:

Ellmell® < smogpy sup {Lf_—l,n{Png}—l (35)
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where

L= p,Te(BT(P, + P3)B) + p, Te(B] P,Bs)  (36)

and v = min(y, 12).

Proof: We first show the exponential stability of (8). In the
presence of measurement and process noises, with {Ay, B} a
feasible solution of (15) and (29)—(31), we have the following
fory > 1:

V(

BV ima)me) — 2 < o 47 P

WEPm‘ TAT 7T o o T AT R
- + pany G° E* PEGn, +ng AT PD f(Mng)

+ E(wf BTPBuwy) + FT (Mn,) DT P An,

+ FT(Mn) DT PD f( M)
G7
Using (15) and (29)+31) , equation (37) becomes
v
EV(thet1lme) — @
< B(u BT PBuwy) 8

< puTe(BT (P, + P2)B) + p, Te(B] P, By)

Now from this inequality, we see that there exists an 0 < o < 1
such that

EV{neialme) — Vim)
< PuTr(BT(Pl + PL’)B) + vaI‘(B?Png)
- aV(n)

(39)

The desired result now follows from Lemma 2. The bound on
the state error variance can be shown using (38) and the follow-
ing observation [11]. If V{n;) satisfies

Vim)

E(V(ra|ne)) — - L<0 as. (40)

for some 4 > 1 and L > 0, then V (n;) is bounded with proba-
bility 1, and E'V () remains bounded for all k with

V(o) v 1
EVOR) < =3 +_L7_1(1—7k+1) (41)

EV(m) < mm{ngjuVMM} (42)

Applying this result to (38) we obtzin the bound on the state
error variance,
<

V. POLYTOPIC UNCERTAINTIES

Let us now incorporate the fact that the matrices {A, C} are
not known but lie within the polytopic set X..

Theorem 3: Any filter defined by the matrices
A = (@P7), By=(@PR )T

where {Q, Qz, P2} are a feasible solution of the inequalities
(15) and (29)-(31) for all { A, C} taking values in [Ay,.....Ap)
and [Ch,......Cy] ensures the following:
(1) Asympiotic stability of (8} with probability 1 for all admis-
sible parameters {A,C}.
(i) El|nk|? is bounded as giver in Thm. 2.

(43

Proof: From the definition of @1 and Q)5 and from the fact that
the inequalities (15) and (29)-(31) are linear in A and C, the
result easily follows.

o

The result (35) in Thm. 2 suggests that we can attempt to
minimize the upper bound on the error variance by seeking filter
coefficients {Ay, B;} that solve

. L
min su(bje;it(togcondigo)ns (—T—TI)
15}, (29) — (31
and P) > 5

One way to solve this optimization problem is as follows. Start
with a value v > 1 that is close to L.
1. Step 1. Solve the following convex optimization problem
over the variables {P1, P2, @1,Q2, W,01,02,¢,£}:

min (Tr(BT(P, + P)B + W)q/—j_1 (44)
subject to conditions (15) and (29)—(31) and
W QY
G @
with P > T

2. Step 2. Compute the resulting cost of (44)and compare it
with the previous cost.

3. Step 3. If the new cost is less than the previous cost in-
crement v by v (say .01) and go to step 1, otherwise
stop. .

VI. SIMULATION

To illustrate the developed filter, we choose a state-space
model of order 2 with parameters :

A4 = ('%2 .31) Ay = (g 751) s Ay = (‘%4 Aéﬁ)
a={% 5)c=(% 5)
p=(3 9)
E=c=(1 1)

(zl,kﬂ) = (A+ A4y (11‘,,) fwp+D (Jsin(zl_,,))

T2, k+1 T2,k Asin{zzk)
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Actusl state

" Estimated stete

Fig. 1.

Kl Fittes

Mean Square Erray (dB)
5

Fig. 2. Mean square error behavior of Kaiman filter and the robust filter -

w=C (xl"‘) + v

T2.k

The bound 3 on the norm of the state matrices A; in the exam-
ple is 1 and £ is also 1. The performance of the filter is illus-
trated in the figures. Figure 1 shows a plot of the first element
of the actual state vector and that of the estimated state vector.
Figure 2 compares the mean square error in dB when the actual
state matrix is Ay, for both the Kalman filter operating at the
centroid of the polytopic region and the robust filter. In both
Figures I and 2 the noise variances are 1.

VII. CONCLUDING REMARKS

In this paper we developed a procedure for designing a robust
state estimator for uncertain discrete-time systems with mixed
deterministic and stochastic uncertainties, The procedure guar-
antees almost-sure bounded error variance and exponential sta-
bility of the state error vector, ’
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