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Abstract

The paper describes a procedure for improving the robustness
margins of robust filters via parameter scaling. The scaling pa-
rameter is chosen as the square-root factor of the inverse of a
positive-definite solution to certain matrix inequalities, This
choice is motivated by the desire to generate an estimator dy-
namics with a stable closed-loop matrix whose maximum singu-
tar value is bounded by unity; a step that enhances the robust-
ness of the filters,
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1 Introduction

This paper focuses on three classes of robust fil-
tering algorithms and describes a procedure for
improving their robustness via parameter scaling,
along the lines employed in [1, 2] for the design of
stabilizing robust controllers,

The first class of robust filters we consider is
based on the H,, criterion. In this framework, the
designer constructs filters that bound the 2-induced
norm of the operator mapping the disturbances to
the estimation error (see, e.g., [3, 4, 5]). The sec-
ond class of robust filters we consider is based on
the guaranteed-cost criterion. In this approach, the
designer constructs filters that guarantee that the
steady-state variance of the state estimation error
is upper bounded by a certain constant value for
all admissible uncertainties in the model (see, e.g.,
[6, 7]). Both classes of filters involve certain pa-
rameters that need to be adjusted and that define
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the robustness levels of the filters, e.g., the pa-
rameter  in M, filtering and the parameter ¢ in
guaranteed-cost designs (see also [8]). For H, fil-
ters it is necessary to decrease the value of « for
increased robustness, while for guaranteed-cost fil-
ters it is necessary to increase the value of ¢ for
increased robustness. However, there are limits on
how far these parameters can be adjusted without
violating certain existence conditions that are as-
sociated with such filters.

The third class of robust filters we study is the
one developed in {8); it is based on minimizing the
worst-case residual energies at each iteration sub-
ject to bounds on data uncertainties. The filters
of [8] differ from H and guaranteed-cost filters in
that they perform data regularization as opposed to
data de-regularization, In this way, they are partic-
ularly suitable for on-line operations since they do
not require continuous testing of existence condi-
tions. Simulations suggest that this class of filters
tends to lead to closed-loop estimators with larger
robustness margins.

The contribution of this work is to show how
the robustness of H., filters, guaranteed-cost fil-
ters, and the filters of [8] could be further im-
proved via scaling. The scaling parameter is cho-
sen as the square-root factor of the inverse of
a positive-definite solution to certain matrix in-
equalities. This choice is motivated by the desire
to generate an estimator dynamics with a stable
closed-loop matrix whose maximum singular value
is bounded by unity. Accordingly, the design pro-
cedure attempts to decrease the value of the struc- .
tured singular value of the closed-loop dynamics in
the presence of model perturbations; a step that
enhances the robustness of the resulting filters. We
explain the procedure by examining first the Ho
filtering problem and later study the other classes
of filters.
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2 H, Filtering
Consider a state-space model of the form

Fz; + Gu,,
Hzx; + v,

Li+1 =
no o= (1)

where F' ¢ C™**® G ¢ C**™ and H € CP*"
are known nominal matrices; zp (initial condition),
u; (process noise), and v; (measurement noise) are
unknown quantities; and y; is the measured output.
Let

o,
£ 20,

L:E,‘, (2)

"where I, € C7%" i given, denote a desired linear
combination of the state vector that we wish to
estimate using the observations {y;,0 < j <i-1}.
We denote the estimate by

8 =

5 = Flyo,n, .- bic1)

for some operator F, and introduce the correspond-
ing prediction error

€pi = §; — Lﬂ}:‘.

3)

The suboptimal H., problem is defined as follows.
Given a scalar v > 0 and @ > 0, one seeks an
estimation strategy F that satisfies the robustness
bound

sup
zo
uj
( vj
for all 0 < < N. It is well-known that an estima-

tor that satisfies the above requirement is given by
(see, e.g., |3, 3)):

Bio s = Lasf? 2
-1 N—=1_Tm—1 N—1.T <
) g5 2o + 5 wf Q7 us + 005 v w

Fa; + FEHT (1 + HP.HT )Y [y — H#;)

Tit1 =
ﬁi—l - Pi—'l _ 7_2LTL
Pitn = FARFT+GQGT — KR7IKT
) (4)
Ry = [; 2121]+[f]P.'[HT L'I‘]
Ki = FPR[HT 7]

&; = L.

This filter guarantees the robustness bound for all
0 <i < N if, and only if, the following conditions
are satisfied

Pt —y7*LTL >0 for

0<i<N. (5)

It is also known that large values for v may be
necessary to satisfy (5}. However, larger values of
v correspond to decreased robustness. To further
improve the robustness of the filter, we apply pa-
rameter scaling as explained below.

Let P denote the steady-state stabilizing solution
of the Ricecati recursion {4), when it exists. We then
rewrite the steady-state estimator from (4) in the
equivalent form

Ziv1 = Fpéi + Kpyi (6)
where
F, = F [I - PHT(I + HPHT)—lﬂ]
K, = FPHT(I+HPH")™.

Here F), € C™*" is a stable matrix and K, € C"*?.
The matrix F,, determines the dynamics of the state
estimator. It is also the same matrix that deter-
mines the dynamics of the state estimation error,
&; = z; — Iy, since we also have

(7}

Now note that in the Ho, formulation described
above, the robustness of the filter is attained
by treating the noise processes {u;,vi} as un-
known disturbances. This formulation requires ex-
act knowledge of the nominal model parameters
{F,G,H}. We could envision, however, modeling
errors in these parameters. The immediate conse-
quence of such errors would be the fact that the
actual measurements that are available for filter-
ing are not the {y;}, which are the cutputs of (1),
but some other values {z;} that are the outputs of
a perturbed mode! with unknown perturbations to
{F,G,H}. We can then seek to further improve the
robustness of the filter by attempting to account for
this additional scurce of uncertainty.

Thus assume that the measurements that are
available for filtering are not the actual {y;} that
arise from (1), but rather a perturbed version, say
{2:}, that is assumed to be related to {y:} via (see

Fig. 1) -

for some p X p uncertainty A,. Now the actual
filtering operation should be described not by (6)
but by

Eip1 = p.'f,' + Gu; ~ vai-

=y + Ao, §i= HEy,

(9)

B = Fpdi + Kpz
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Figure 1: Block diagram describing robust stability
analysis on filtering problems

with 2; replacing y;. The perturbation model (8)
assumes that the discrepancies between y; and z;
can be modeled via cutput feedback.

iFrom (8) and (9) we arrive at the following de-
scription for the dynamics of the ‘M, estimator:

53,‘.}.1 = [Fp + KpAOH].’Ei -+ Kp'y,'. (10)
This relation shows that the presence of A, affects
the dynamics of &; and can deteriorate the robust-
ness of the filter. Now define a transformed state
vector
gi g DI{,

for some n x n nonsingular matrix D that we shall
explain how to determine further ahead. It follows
from (1) that y; also satisfies the model

&ip1 = DED '+ DGuy,
i = HD—1£i+'Ui1 i 201

&o,
{11)

with the system matrices {F,G, H} replaced by

{DFD™', DG, HD™1Y. (12)

We can thus proceed to design an H, filter, using
equations (4), with the modified parameters (12) in
order to estimate

§; = L:E,j = LD_ltEi.

That is, the L in (2) should be replaced by LD—1
in this new design as well. Our choice of D will be
motivated by the desire to increase the robustness
of the resulting filter by decreasing the maximum

singular value (MSV) of the corresponding P. It
is straighforward to verify that by decreasing the
MSYV of P, the gain K, in (10} decreases and the
influence of the perturbation on the filter can be
reduced. Also, it is easy to verify that DPDT is
a solution of the Riccati equation of the H, filter
that is based on model (11). We will thus require
two conditions for increasing the robustness of the
Heo filier (i.e., for selecting D):

#(DPDT) < 5(P) (13)

and

a(DF,D™Y) <1 (14)

where () denotes the largest singular value of its
argument. The second condition is motivated by
the desire to enhance the robustness and stability
of the closed-loop system in the presence of uncer-
tainties. The following statement shows how the
choice of D relates to determining the solution YV
of certain linear matrix inequalities.

Theorem 1. Let P > ( and Fy be given. A non-
singular scaling D satisfying (13) and (14) exists
if, and only if, @ matriz ¥ ezists such that

Y=YT>0
Y YF?
FY Y

EX

where a = [6(P))?. Furthermore, if Y is a solution
to (15), D is obtained from Y ! = DTD. That is,
D7 is a square-root factor of Y L.

(15)

Proof: By definition, D must be such that

#(DFED™Y) < 1
DTTFE(DTD)FeD™t < I =
DD FiD"DFp > 0 +—
DTy Y DPTD - FEDTDFA)(DTD)™' > 0 «—
Y-YFEY 'FpY > 0 =
T T
Y YTF] > o
FpY Y
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Furthermore, from (13),

a(DPDTy < &(P) <=
(DPDTYDPDT) < ol <
_ ol - DPDTDPDT > 0 =
DYal = DPDTDPDTYD™T > 0 =
o(DTD) ' -PDTDP > 0 =
aY —PY7'P > 0 &
aYy P
(7] 5
[+

 Remark. We may add that additional structural
constraints on D and the set of uncertainties could
be added, such as requiring D to have a block
diagonal structure.

[+]
The result of the above theorem suggests the fol-
lowing procedure.

Algorithm 1. The D-scaling procedure for Hoo fil-
tering involves the following steps:
1. Given the system (1), define a minimal v such
that the N -suboptimal filter (4} has a steady-
state solution with stable F,.

2. If 6(Fp) < 1, stop. If not, go to the next step.”

3. If there exists a solution Y to the inequalities
(15}, compute D for the filter ({) applied to
the modified parameters
{DFD~Y,DG,HD~', LD, DIy DT}.

&

We may remark that while the procedure defined
by Algorithm 1 does nct change the matrix @, the

value of v can be decreased if we replace @ by
DQDT.

3 Guaranteed-Cost Filter

We apply a similar procedure to guaranteed-cost
filtering and, in particular, to the guaranteed-cost
filter of [6](p.44). Thus consider a state-space model
with parametric uncertainties of the form:

i1 = (F+8F)zi+u
y = Hz;+vy
§F = MSE; (16)

where M and Ey are known matrices and S is an
arbitrary contraction, ||S{| < 1. The GC filter is
described by the following equations (where {¢}, B}
are given positive-definite matrices):

#iv1 = F{I+e(P7'+ HIR™'H — E] Ef) 'Ef Egé: +
+F(P '+ HTR™'H - BT E;y 'HTR™ (y; = Hi) (17)

where P is taken as the positive-definite stabilizing
solution of the Riccati equation

P = F(P'+H'R'H-eE]E;)'FT +
Q+e TMMT. (18)
The value of ¢ is picked from within an open in-

terval (0,¢%), where €® > 0 is chosen such that the
following additiona! Riccati equation,

P = FPF'-ETENT'FT Q7" MMT (19)
has a positive-definite stabilizing solution satisfying

Pl - ¢EYE; > 0. (20)

This condition guarantees P~ — eEfE § > 0 since
it can be shown that P < P.

The closed-loop matrix that determines the dy-
namics of the GC estimator is now given by

Fp=
FU+(P '+ HTR-'H ~ ¢E] E;} " (¢E[ E; — HTR™ H))
with
Ky=F(@P '+ H'R'H - ¢E[E;)'"H"R™.
(21)
The D-scaling procedure that we employ is one

that replaces the parameters {F,G,H,M,E;,Q}
by

{DFD™Y,DG,HD™',DM,E;D~}, DQD"}

: k (22)
so that the corresponding state-space model be-
comes

€inr (DFD™! +6Fp)&; + DGu;
y = HD &+
6Fp = DMSE;D™! (23)

with & = Dx;. Following the same arguments that
we used in the H,, case we end up with the follow-
ing algorithm:
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Algorithm 2. The D-scaling procedure for
guaranteed-cost filtering involves the following
steps:

1. (Given the model (16), choose € such that the
guaranteed-cost filter (17) has a solution setis-
fying the requirements on (18}, (19), and (20).

2. If 8(F,) < 1, stop. If not, go to the next step.

3. If there exists a solution Y to (15), with the Fp
from (21), compute D and search for a new €
using the modified parameters

{DFD™',DG,HD™',DM,E;D™,DQD"}.

<

4 Robust Filter from (8]

We now apply a similar procedure to the bounded
data uncertainty filter of [8]. As mentioned in the
introduction, this filter is based on minimizing the
worst-case residual energy at each iteration subject
to bounds on data uncertainties. The filter dif-
fers from #, and guaranteed-cost filters in that it
performs data regularization and does not require
existence conditions.

We again consider the uncertain state-space
model (16), where only §F (and hence S) is allowed
to change with time. The filter is described by the
following equations {8]. A correction parameter A;
is first chosen as

A=Q+a)|MTHTR'HM|

for some scalar parameter a > 0 that is chosen
freely by the designer. Here, the notation || - || de-
notes the maximum singular value of its matrix ar-
gument (or the Euclidean norm of a vector argu-
ment). Then the steady-state form of the filter is
given by (again, {Q, R} are given positive-definite
matrices):

#i41 = F{I-PHTR;'HY:; + FPHTR; Hy;
(24)
where
R, = R+ HPHT
R' = RV _\'HMMTHT

and P is the stabilizing solution of the Riccati equa-
tion

P = FPFT —_KR'KT +GQGT
K = FpPHT
R. I+ BPHT
AT = [aTRTe V3ET].  (29)
Moreover,
F = F[I-XI+PH"H)7'PETE/]. (26)

The closed-loop matrix that determines the dynam-
ics of the filter is given by

£
Ky

F{I - PHTR'H]
FPHTR;'H.

and
(27)

The D-scaling procedure that we employ to im-
prove the robustness margin of the filter replaces
the parameters {F,G,H, M, E;} by

{DFD"',DG,HD™',DM,E;D"'} (28)
so that the corresponding (equivalent) state-space
model becomes (23). Following the same argu-
ments that we used in the H,, and GC cases we
end up with the following construction.

Algorithm 3. The D-scaling procedure for the fil-
ter of [8] involves the following steps:

1. Given the model (16}, choose a > 0 and com-

puter the corresponding correction parameter
A; through (24).

2 If&(F,) <1, stop. If not, go to the next step.

3. If there exists a solution Y to (15), with the F
from (£7), compute D and design a new filter
with the modified parameters

{DFD ', DG,HD™' DM,E;D™'}.
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5 A Numerical Example

Consider the 2-dimensional time-invariant model

from [6):
_ [ 09802 0.0196 T10
F= [U 0.9802]’0“[01],
= [ I ];
1.9608 0.0195 o
@ = [0.0195 1.9605]’ Oo=1, £ =0.

Applying the Mo, solution (4), the minimal v
that satisfies the existence condition (5) for large
‘N (e.g., 1000) is around ¥ = 54. With this value,
we find o(F,) = 1.3318, which is larger than unity.
Solving the inequalitlies of Thm. 1 we redesign the
Hoo filter using the modified parameters given by
Alg. 1 and we obtain 5(Fp,) = 0.9811. We used the
same matrix ¢ and the smallest - in both cases is
the same, ¥ = 54.

Applying the guaranteed-cost filter with B =1,
e =08x%x10"% ¢=0.7x 1078,

(.0198
M = [ 0],3,:[0 51

and using {17)—(20) we get &(F,) = 1.3951. Solv-

ing the inequalities of Alg. 2, we redesign the GC --

filter using the parameters (22}, and with the new
solution for the Riccati equation we obtain §(F,) =
0.9954.

Applying the robust Filter from [8], choosing a =
0.5 and using (24) and (25), we get A = 5.88 > 10~*
and 5(F,} = 0.8873. We see that, in this case,
the condition a{F,) < 1 is attained prior to the
application of the D-scaling procedure.

6 Concluding Remarks

In this work we described procedures for improving
the robustness margins of robust filters via param-
eter scaling. The procedure was applied to three
robust filters, Hy, filter, guaranteed-cost filter and
the filter of [8].
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