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Abstract 

This paper develops a robust estimation procedure for state- 
space models with parametric uncertainties. Compared 
with existing robust filters, the proposed filter performs 
data regularization rather than de-regularization. It is 
shown that, under certain stabilizability and detectability 
conditions, the steady-state filter is stable and that, for 
quadratically-stable models, it guarantees a bounded error 
variance. 

1. INTRODUCTION 

The Kalman filter is widely recognized as the optimal lin- 
ear least-mean-squares state estimator for linear state-space 
models [l]. When the underlying model is subject to para- 
metric uncertainties, the performance of the filter can dete- 
riorate appreciably. This fact has motivated over the years 
a variety of ingenious robust estimation techniques such as 
Xm filters, guaranteed-cost filters, and set-valued estima- 
tion methods (see, e.g., [2]-[6] and the references therein). 

In recent work [7], we have discussed a robust formulation 
for state-space estimation. Compared with the standard 
Kalman filter, which is known to minimize the regularized 
residual norm at each iteration, the new formulation 
minimizes the worst-possible regularized residual norm over 
the class of admissible uncertainties. In addition, compared 
with other robust formulations, the resulting filter performs 
data regularization rather than de-regularization; a prop- 
erty that avoids the need for existence conditions. In this 
paper, we shall first review the filter of [7] and then provide 
new results concerning its steady-state stability. We shall 
also show that the filter meets a certain guaranteed-cost 
property in the case of quadratically-stable models. We 
start our exposition by reviewing a least-squares problem 
for uncertain data from [7,8].  

2. UNCERTAIN LEAST-SQUARES ~ 

As is well-known, many estimation techniques rely on solv- 
ing regularized least-squares problems of the form 

min X [zTQz + ( A z  - b)TW'(Az - b ) ]  (1) 

where zTQz is a regularization term with Q = QT > 0, and 
W = WT 2 0 is a weighting matrix. The unknown vector 
z is n-dimensional, while A is N x n and b is N x 1. Both 
A and b are assumed known with A called the data matrix 
and b the measurement vector. The solution of (1) is 

5 = [Q + ATWA]-'ALTWb. (2) 

In practice, the nominal data { A ,  b }  are often subject to 
uncertainties. Such errors can degrade the performance of 
the estimator (2) - see [9]. This motivated us to introduce 
in [8] a generalization of (1) that can account for uncertain- 
ties in { A ,  b}.  Thus let J ( z ,  y) denote a cost function of the 
form J ( z ,  y) = xTQx + R(z,  y), where 

R(z,  y) 2 (ax - b + Hy) TW (a, - b + Hy) 

Here H is an N x m known matrix and y is an m x 1 unknown 
perturbation vector with a bound on its Euclidean norm, 
say llyll 5 d(z), for some known nonnegative function +(z). 
Consider then the problem of solving 

P = argmin max J(x,y). 
llu116$(=) 

(3) 

We shall assume that H and 4(z) are not identically zero, 
i.e., H # 0 and +(.) # 0, since if either is zero, the problem 
(3) trivializes to (1). The statement (3) can be interpreted 
as a constrained two-player game problem, with the designer 
trying to pick an estimate P that minimizes the cost while 
the opponent {y} tries to maximize tlhe cost. In the sequel 
we focus on a special case of (3), namely (see [ 8 ] ) :  

( A  + dA)z - ( b  + db) 
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where the compact notation ( e )  refers to  the term ( A  + 
SA)z - ( b  + Sb). Here {SA} denotes an N x n perturbation 
to A, Sb denotes an N x 1 perturbation to b, and {SA,Sb} 
are assumed to satisfy a model of the form 

[ SA 6b ] = H A [  EO Eb ] ( 5 )  

where A is an arbitrary contraction, IlAll 5 1, and 
{H, E., Eb} are known quantities of appropriate dimensions 
(e.g., Eb is a column vector). The following result is proven 
in [8]. 

Theorem 1 (Solution) The problem (4)-(5) has a unique 
solution P that is given by (compare with (2)) 

P = [G + A T F A ]  -' P W b  + Ah':&,] (6) 

where {G,E} are obtained from {Q,  W }  via 

(7) 
A A 

Q = Q+iE:Ea 
h 

w 2 w + W H ( ~  - H ~ W H ) + H ~ W  (8) 

and the scalar parameter 
tion 

is determined from the optimiza- 

X = arg min G(X). (9) 
A 2  llH=WHll 

Here the cost function G(X) i s  defined as follows: 

G(X) f xT(X)Qx(X) + X ~ ~ E ~ X ( X )  - & 1 1 2  + 
+ [Ax(X) - b ] T W ( X ) [ A ~ ( X )  - b] (10) 

where 

W ( X )  w + W H ( X I  - H ~ W H ) + H ~ W  (11) 

&(A)  2 Q+XE,TEa (12) 

and 

x(A) 2 &(A)  + ATW(X)A]  [ATW(X)b + XEZEb] (13) 

[The notation X i  denotes the pseudo-inverse of X . ]  

-1  

[ 

0 
We shall denote the lower bound on X in (9) by = 
((HTWHII.' The function G(X) can be shown to have a 
unique global minimum (and no local minima) in the in- 
terval (Xi, m). Moreover, in the state-space context de-' 
scribed below, the matrix W will be positive-definite so that 
W(X) > 0. Therefore, if we restrict the minimization in (9) 
to the open interval (Xl, co), then the pseudo-inverse opera- 
tion in (11) can be replaced by the normal matrix inversion, 
so that it holds that 

w-'(X) = w-' - X-lHHT. (14) 

'The notation )I 
of its matrix argument. 

is also used to denote the induced 2-norm 

3. ROBUST STATESPACE ESTIMATION 

In the work [7], we described one way to incorporate the 
uncertain least-squares formulation into a Kalman filtering 
context. Thus consider a state-space model of the form 

~ i + l  = Fix, +Giui, i 2 0 (15) 
yi = Hixi +vi (16) 

where {XO, U,,  vi} are uncorrelated zero-mean random vari- 
ables with variances 

E [  :][ 
0 T 

= [ ?  Qi6ij 0 O ] (17) 
0 0 RiSij 

that satisfy no > 0, Ri > 0,  and Qi > 0. Let further 

A 

A 
& 

Pili 

= 

= 

1.l.m.s. estimate of xi given { y o , .  . . , yi-1)  

1.l.m.s. estimate of i, given {yo,. . . , y,} 

with corresponding error variances Pi and Pili, respectively. 
The notation 1.l.m.s. stands for "linear least-mean-squares". 
Then {&,P,l,} can be constructed recursively via the fol- 
lowing time- and measurement-update form of the Kalman 
filter (see, e.g., [I]): 

Pj+l = Fjfili, i 2 0 (18) 

&+lIi+l = Pi+l+ p i + l l i + l H ~ i R ~ 1 e i + l  (19) 
ei+i = yi+l - Hi+lPi+l (20) 
Pi+l = FiPiljF: + GiQiGT (21) 

Re,i+l = Ri+l+ Hi+lPi+lHiT+I (23) 

pi+lli+l = Pi+l - Pi+lH$1R,i++,Hi+lPi+1 (22) 

with initial conditions 

P~~~ = P,;,'H:R;~~~, polo = (n;l+ HT%-~H~)- I  
It can also be verified that these equations are equivalent to 
the following prediction form of the Kalman filter: 

Pi+l = FiPi + KiRe:!ei . (24) 
P;+I = FiPiFT + GiQiGT - KiRCfKT (25) 

Ki = FiPiHT, Re,, = Ri +Hip iHT (26) 

with initial conditions 

$0 = 0, Po =no 

Each step (18)-(23) of the time- and measurement-update 
form admits a useful deterministic interpretation as the so- 
lution to a regularized least-squares problem (e.g., [lo]). 
Given {Pilj,Pili > O,yi+l}, consider the problem of esti- 
mating xi again, along with U , ,  by solving 

If we make the substitution xi+l = Fixi + Giui, then the 
cost in (27) reduces to a regularized least-squares cost of the 
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form (1) with the identifications 

2 t COl{Zi - i i l i ,  U i } ,  b t yi+l - Hi+lFiLili 

A t Hi+l [ Fi Gi 1 ,  Q+(pi;i'@QI.') 
W t R,?'' 

The solution of this problem can be shown to lead to 
(18)-(23). 

Consider now an uncertain state-space model of the form 

~ i + l  = (Fi + 6Fi)Zi + (Gi + 6G,i)Ui (28) 

9, = H i ~ i  + v i -  (29) 
[ 6Fi 6Gi ] = MiAi [ Ef,i Eg,i ] (30) 

for some known.matrices {Mi ,  E f , , ,  Eg , i }  and for an arbi- 
trary contraction Ai ,  IlAjll 5 1. Assume further that a t  
step i we are given an a priori estimate for xi ,  say &I,,  and 
a positive-definite weighting matrix Pili. Using y i + l ,  we 
propose to update the estimate of q from 2ili to 2++1 by 
solving 

( 6Gi ) 

subject to (28)-(30). This problem can be seen to be the 
robust version of (27) in the same way that (4)-(5) is the 
robust version of (1). Now (31) can be written more com- 
pactly in the form (4)-(5) with the identifications: 

z t col{z: - ut}, b +- ys+1 - H:+lF:ssl: 
6A t H:+lMzAa [ Ef , :  Eg,a ] 
Sb + -H:+1MtA:Ef,.2,1a, Q t (PT,l@ Qi-') 

W + Rr:1, H +- H,+iM:, Ea t [ Ef,,  E,,, ] 
Ea +- -Efs , f , l , ,  A + A , ,  A + Ht+i [ Ft G ,  ] 

This leads, after some algebra, to the equations shown in 
Table 1 where we defined2 

The major step in the algorithm of Table 1 is step 3, which 
consists of recursions that are very similar in nature to the 
prediction form of the Kalman filter. The main difference 
is that the new recursions operate on modified parameters 
rather than on the given nominal values. In addition, the 
recursionJoor_PL is not a standard Riccati recursion since the 
product G,Q,G? is also dependent on P,.  However, in the 
special case Eg, ,  = 0 (no uncertainties in G : ) ,  it is easy to 
see that we get 

6% = Q s ,  GI,  = G,, g: Fa(Z - i ,palsEE,Ef,,).  

Without much loss in generality, we are considering here the 
scenario described at the end of Sec. 2, viz., that the minimization 
of G(X) is performed over the open interval (Xi,:, CO). 

Likewise, in the case Ex,Eg, ,  = 0, we obtain the same sim- 
plifications for {Ga, F,} while 6, becomes 

6, = (Q:' + i ,E : ,Eg , , ) - ' .  

In both cases, the recursion for P, becomes a standard 
Riccati recursion. In the work [7], we have further pre- 
sented alternative equivalent implementations of the robust 
filter of Table 1 in information form and in time- and 
measurement-update form. 

A . .  

Assumed uncertain model. Eqs. (28)-(30). 

Initial conditions: 20 = 0 ,  Po = no, iind Ro = Ro. 

Step l a .  Using { E i , H i , P i }  compute pili: 

h 

Pili = (Py' + HTE;'H;)-' 
= Pa - PiHY(2i  + H i P a H y H i P i  

Step l b .  If Hi+lMi = 0 ,  then set A, = 0. Otherwise, 
determine A, by minimizing G(X) over the interval 
( h , i ,  00). 

Step 2. Compute the corrected parameters: 

. A  

Q r l  = QT1 + [ I  + A,Ej:,,PiiiEx,]-' Eg,i 

= R , + ~  - A; H ~ + ~  M~ M: H,T,, 
-1 

pili = (Pc: + AiEZiEf,;) 

= Pili - P,liE&(AL'Z + ,Ff , iPi l iE~, ) - lEf , iPi l i  
GI, = G,  - A,F&E&E~~, 

Ei = (Fi - &GliQ^iEEiEf,i)(l- &FiljExiEf,i) 
A 

If A Ai = 0,Jhen simply ?et Qi := Qi ,  Ri+l = Ri+l ,  
Pili = Pili, G ,  = G i ,  and F, = Fi. 

Step 3.  NOW update { s i ,  Pi} to {?i+l,  Pi+1} as fOllowSI 

2i+l = Fi2j + FiPiHTEi:,fei 

Pi+l = F,P~F? - K ~ R , , ; ~ :  + G ~ Q ~ G T  
K i  = F,PiBT, ze,i == I +giP,RT 

ei = y. - H . ^ .  t a Z a  - -_ A h -  

- 

-T where Hi = [ HFE;T/2 & , E x i  ] . 

Table 1: Listing of the proposed robust filtering algorithm in 
prediction form. 

Observe further that the algorithm of Table 1 requires, at 
each iteration i ,  the minimization of G(X)  over (Xl,,,  CO). It 
turns out that a reasonable approximation that avoids these 
repeated minimizations is to choose 

i i  = ( l + C x ) A l , i .  (33) 

That is, we set Ai at a multiple^ of the lower bound 7 if 
the lower bound is zero, we set A i  to zero and replace A T 1  

4668 



by (which is also zero). The parameter a could be made 
time-variant; it serves as a "tuning" parameter that can be 
adjusted by the designer. In our simulations (e.g., [7 ] ) ,  we 
have observed that this approximation leads to good results. 

4. STEADY-STATE RESULTS 

We now examine the steady-state performance of the filter 
of Table 1 when the model parameters are constant, say 
{ F ,  G, H ,  M ,  E f ,  E,, Q ,  R}. [Only the contraction A, is 
allowed to  vary with time.] In particular we shall estab- 
lish that, under certain detectability and stabiliaability 
assumptions, the steady-state filter is stable and that, in 
addition, for quadratically-stable models it guarantees a 
bounded error variance. 

4.1 Stable Performance 

We consider first the special case that involves uncertain- 
ties in the system dynamics only. That is, we consider an 
uncertain model of the form 

X i + l  - - ( F  + b F i ) ~ ;  + Gui, i 2 0 (34) 
yi = H z ,  + v i  (35) 

6Fi = M A i E f  (36) 

where only A ,  (and hence bF,) is allowed to change with 
time. This is a model that is often studied in the literature 
of robust fi!tering. We further assume that the correction 
parameter X i  is set to a constant value that is equal to a 
multiple of the admissible lower bound, i.e., 

Ai = (1 ++ = (1 + a ) l l ~ T ~ T ~ - l ~ ~ ~ ~  e i (37) 

for some a > 0 chosen by the designer, and for all a .  

The prediction form of the robust filter in this case becomes 
(cf. Table 1):3 

it;+' = Fik; + F;P,HTRi:[y; - HP,] 
= g ; [ I  - P,HTRi fH]P;  + FiPiHTR,fyi 

where 

E = R - A - ~ H M M T H T  

R,,, = ii+ H P ~ H ~  

= F P , F ~  - K , R ; , ~ ~ T  + G Q G ~  
-T - 

Ki FP;H 
- 
Ri,i = I + HP,WT 
-T H = [ HTg-T/Z ] 

and 

where the second form is independent of Pi-'. 

3Note that even though the coefficient matrix F is constant, 
the matrix that appears multiplying &, is time-variant and equal 
to F,. This is in contrast to a Kalman filtering implementation. 

h 

Lemma 1 (Two useful identities) The following two 
identities hold: 

FII - Pip? le ; t f i ]  = Fi[I - PiHTR,fH]  

E P ~ H ~ R ~ ; !  = F , , ~ P ~ H ~ R ^ - '  

Proof: Introduce, for compactness of notation, the two ma- 
trices 

A -T-- 1- A -  
Fc,i = F[I  - PiH &,i HI, Fp,i = Fi[I - PiHTR,fH]  

We want to  show that they coincide. Thus using the identity 
+--1- -1 

[I - PiH Re,, H ]  = I + P , g T w  
--T- 

we get Fc,i[I + PiH H ]  = F. Likewise, a similar argument 
shows that Fp,i[I + P , H T k l H ]  = E .  It also follows from 
the expression for p; that 

h 

Fi = F - i F ( I  + Pi?iTE)-'P;ETEf 

= F - AF,,;P;ETEf 

so that 

Fp,i(I + PiHTR- lH)  = F - iFc,iPiETEf 

= Fc,i(I + P;HTR-'H)  

Now since the matrix I + P,HTR-'H is invertible, we con- 
clude that Fp,; = Fc,;. The second equality of the lemma 
follows from a straightforward calculation. 

0 

Using the second identity in the lemma we can rewrite the 
recursion for the state estimate as 

gi+' = + F , , ~ P , H ~ R ^ - ~ ~ ~ .  (38) 
We are now in a position to establish the main result of this 
section concerning the convergence of the robust filter to a 
stable steady-state filter (i.e., we show that Fp,i becomes 
stable in steady-state). 

Theorem 2 (Stable steady-state filter) Consider the 
uncertain state-space model (34)-(36) with the coIrespond- 
ing robust filter (38). Assume further that { F , H }  is de- 
tectable and { F ,  GQ1I2} is stabilizable. Then, for any initial 
condition Po = no > 0 and for any CY > 0 in (37), the Ric- 
cati variable Pi tends to the unique stabilizing and positive 
semi-definite solution P of the DARE 

P = FPFT - F P ~ ~  I + R P R ~ ) - '  RPFT + GQGT. ( 
The solution P is stabilizing in the sense that the steady- 
state closed-loop matrix, Fp & F [ I  - P H T R L I H ] ,  is stable, 
where 

F = F I - ~ ( P - P R ~ R ; ' Z P ) E ~ E  

R, = Z + H P H ~  
[ f l  

- 
Re = I + R P R T  
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Proof: _The condition a > 0 guarantees a positive-definite 
matrix R so that its Cholesky factor, and hence g,  are well 
defined. Now the detectability of { F , Z }  and the stabiliz- 
ability of {F ,  GQ'"} are known to guarantee the conver- 
gence of PI to the unique positive semi-definite solution P 
of the DARE that stabilizes the following matrix (see, e.g., 
PI): 

F, F [  I - P E T ( I  + E P g T ) - ' H ] .  
But we know from the first identity in the previous lemma 
that this matrix coincides with Fp, and the result is therefore 
established. 

0 

A similar conclusion can be obtained for the more general 
uncertain model 

zZ+i = ( F  + 6F,)z ,  + (G + 6GI)uI (39) 

yr = H I ,  + vl (40) 
[ 6F+ 6GI ] = M A ,  [ Ef Eg ] (41) 

E ~ E ,  = o (42) 
with uncertainties in both F and G that satisfy E T E  = 0. 
In this case, the same recursions as above will hold 
with the only exception that the term GQG' in the 
recursion for Pl+l should be replaced by GQG" where 

= (Q-' + i E , E ; ) - l .  The conclusion of Thm. 2 will 
continue to hold. 

f .  

4.2 Bounded Steady-State Error Variance 

We continue with the model (34)-(36) and further assume 
now that it is quadratically stable, i.e., that there exists a 
positive-definite matrix V such that 

V - [F + MAEflTVIF + M A E f ]  > 0 

for all contractions A.  By the small gain theorem of' [12,13], 
this condition is equivalent to the combined conditions of a 
stable F and a bounded norm I ( E f ( z I -  F)- 'M(lm < l.4 
For such systems we now argue that the steady-state robust 
filter of the previous section guarantees a bounded error 
variance. 

Introduce the estimation error & = z; -Pi. Then subtract- 
ing the equations 

zi+l = ( F  + M A i E f ) z ;  + Gu; 

= ~~2~ + F , P H ~ ~ - ~ [ H ~ ~  + v i ]  

we arrive at the extended recursion 

where 

3 + 6 3 i  = 1 F - F , P H ~ ~ - ' H  F - F~ - F , P H ~ ~ - ' H  
F~ + ~ ~ p ~ ~ 2 - l ~  

M A i E f  M A i E f  

1 G - F , P H ~ ~ - '  
G = [  o F,PH~Z- '  

4Here, 1 1 .  Ilm denotes the peak singular value of its argument 
over values of z along the unit circle. 

L e m m a  2 (Stability of extended system) The model 
(43) is quadratically stable. 

Proof: Introduce the similarity transformation 

T = [ :  4, T - l = [ o  I - I  I ]  

Then the system matrices (3 + 6 7 i ,  9)  reduce to 

[ MYf 1 

The stability of F and Fp guarantees that the nominal ma- 
trix 

F 

is stable. Moreover, the equality 

E f ( z I  - F)-'M 

shows that the matrix function on the left-hand side has 
"-norm strictly less than one. We thus conclude that the 
extended system (43) is quadratically stable. 

0 

By the result of the above lemma, 'we also conclude that 
there exists a positive-definite matrix V such that 

U - ( . F + 6 F i ) V ( F + + 6 . F i ) T  > O  

for any A , .  Now let Mi denote the! covariance matrix of 
the extended vector col{&, 2 , ) :  

It then follows from (43) that Mi satisfies the Lyapunov 
recursion 

Mi+l = (7 + 6 7 i ) M i ( 7  + + G [ f 1 ] G T .  

Now using arguments that are common in guaranteed-cost 
designs (e.g., as in [5, SI), it is immediate to establish the 
following conclusion. 

Theorem 3 (Bounded error-variance) Under the con- 
ditions of Thm. 2, and for a quadratically stable model (34)- 
(36), the variance of the estimation error of the steady-state 
robust filter satisfies 

lim E E ~ E ?  5 . -  
i+oo 
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where P11 is the (1,l) block entry with the smallest tmce 
among all (1,l)  block entries of positive-definite matrices P 
that satisfy the inequality 

for all contractive matrices A. 

Proof: We use an argument similar to the one in [5, pp. 39- 
401. The existence of U > 0 also guarantees the existence of 
a positive scaling parameter p such that 

so that a P exists (P = pU) satisfying 

Subtracting this inequality from the recursion for M i  we 
get 

P - Mi+l 2 (F + 6Fi) (P - M i )  (F + SFiIT 

or, equivalently, 

for some Q, 2 0. The quadratic stability of 7 + SF, then 
implies that in the limit, as i --t 00, P - M;+I  2. 0 or 
Mi+i I P. 

0 

5. Concluding Remarks 

There are several issues that deserve investigation. One is- 
sue is to pursue more guided selections of the tuning param- 
eter a, e.g., by dfFecting the value of the bound in Thm. 3. 
Another issue is to extend the results to other classes of 
model uncertainties, such as replacing (30) with conditions 
of the form 

ll6FiII I qf , i ,  116GiII 5 qg,i 
for some known bounds {qn,i ,qf ,;}.  This corresponds to a 
different choice of the function 4(z) in (3). A third issue is 
a closer examination of the stochastic properties of the filter 
and a more explicit characterization of the error variance. 
A fourth issue is the development of array variants, in ad- 
dition to fast algorithms. The former would tend to exhibit 
better numerical properties while the latter would be more 
appropriate for large-scale problems. 
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