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Abstract 

This paper uses feedback and system theory concepts 
to  study the tracking performance of a widely used class 
of (nonlinear) adaptive algorithms for blind equaliza- 
tion. These algorithms are normally used in highly 
nonstationary environments (e.g., wireless fast fading 
channels), and it is therefore important to study their 
ability to  track changes in the environment characteris- 
tics. Due to  their inherent nonlinear nature, there have 
been essentially no results in the literature on the track- 
ing performance of these algorithms. The approach 
proposed in this paper is based on studying the energy 
flow through a feedback cascade that is induced by any 
such adaptive algorithm. A key feature of the feedback 
approach is that it bypasses the need for working di- 
rectly with the nonlinear recursion for the weight error 
vector of the adaptive equalizer. 

1 Introduction 

There has been an increasing interest in adaptive algo- 
rithms for blind equalization purposes in digital com- 
munications. These algorithms avoid the initial train- 
ing phase of an adaptive equalizer and, therefore, avoid 
potential losses in valuable channel capacity. Such al- 
gorithms are usually employed in highly nonstationary 
environments (e.g., wireless fast fading channels), and 
it is therefore important to  study their ability to track 
changes in the environment characteristics. However, 
due to  their inherent nonlinear nature, there have been 
essentially no results in the literature on the tracking 
performance of blind adaptive algorithms. 

In this paper, we use feedback and system theory con- 
cepts to  derive new expressions for the steady-state 
mean square error (MSE) of blind adaptive equalizers. 

~~ ~~ 
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Such expressions are useful for quantifying the ability 
of the adaptive equalizers to  track variations in the en- 
vironment. 

We focus on the class of constant modulus (CM) al- 
gorithms, which are among the most widely used algo- 
rithms for (fractionally-spaced) blind equalization (see, 
e.g., [l, 2, 31). The update equations for the weight- 
error vector in these algorithms are highly nonlinear 
(see Sec. 3),  which makes it difficult to evaluate the 
steady-state MSE using conventional techniques. A 
major feature of the approach proposed herein is that it 
bypasses the need for working directly with the weight- 
error vector. This is achieved by exploiting a funda- 
mental energy-preserving relation that in fact holds for 
a general class of adaptive algorithms (e.g., [4, 5, 61). 

The paper is organized as follows. In the next section, 
we describe the model for fractionally-space channel 
equalization. In Sec. 3, we describe two of the main 
CM algorithms that we study in this paper, and which 
are known by the names of CMA2-2 and CMA1-2. In 
Sec. 4 we motivate and derive the aforementioned fun- 
damental energy-preserving relation, which we then ap- 
ply to CMA2-2 and CMA1-2 in Secs. 5 and 6 ,  respec- 
tively. Simulation results are presented in Sec. 7. A 
comparison between the tracking properties of the two 
algorithms is given in Sec. 8. Conclusions are given in 
Sec. 9. 

2 The Channel-Equalizer Model 

Equalization algorithms can be implemented in 
symbol-spaced form or in fractionally-spaced form 
(FSE). In this paper we concentrate on fractionally- 
spaced implementations due to their inherent advan- 
tages (see, e.g., [a, 3, 71). Figure 1 shows the channel- 
equalizer model that arises when :-fractionally spaced 
equalization is used; a similar structure applies to  more 
general $-FSES. 



Thus consider an FIR channel c of length 2M and an 
FIR equalizer w of length 2N.  We split the coefficients 
of the channel into even- and odd-indexed entries and 
denote them by 

c, = [c(O), c(2), ..., c(2M - 2)IT 
c, = [c(l),c(3), ..., c(2M - 1)IT . 

In a similar way, we define the two sub-equalizers 

we = [@(O), a(2), ..., S ( 2 N  - 2)]’ 
W, = [@(1),@(3), ..., @(2N - 1)IT . 

The system in Figure 1 then corresponds to  what is 
called a multichannel model for a 5-fractionally-spaced 
equalizer. This model is well motivated and explained 
in the survey article [3]. 

Figure 1: A multichannel model for :-fractionally spaced 
equalization. 

We further define the equalizer weight (column) vector 

and the (regressor) input row vector ui = [ U,,* U+ 1, 
where 

U,,i = 
U,,g 

[u,(i),u,(i - l),  ..., u,(i - N + l)] , 
[u,(i),u,(i - l),  ..., ue(i - N + l)] . = 

Then y(i) = uaw. 

Perfect Equalization. An important result for such 
fractionally-spaced equalizers is the following (see, e.g., . -  

[3]). Let ce ( z )  and CO(~) denote the polynomials asso- 
ciated with the even- and odd-indexed sub-channels, 

c, (z )  2 c(0) + c(2)z + . . . + c(2M - 2)zM-’ , 
A 

c,(z) = c(1) + c(3)z + . . . + c(2M - 1)zM-1 . 
Then it can be shown that if these polynomials do not 
have common zeros, and if N >_ M - 1, then there 
exists an equalizer w that leads to  an overall channel- 
equalizer impulse response of the form 

h D  = e je  col[o, ..., 0,1, O, ..., 01 , j = J-i , (1) 

for some constant phase shift 0 E [ 0 , 2 ~ ] ,  and where 
the unit entry is in some position D, D 5 M + N - 1. 
Equalizers w that result in overall impulse responses 
of the above form are called zero-forcing equalizers and 
will be denoted by WO. Thus under such conditions, 
the output of the channel-equalizer system will be of 
the form y(i) = s(i - D)eje ,  for some { D ,  e} .  

3 Constant Modulus Algorithms 

A blind adaptive equalizer is one that attempts to  ap- 
proximate a zero forcing equalizer without knowledge 
of the channel impulse response c and without direct 
access to the transmitted sequence {s(.)} itself. This is 
achieved by seeking to minimize certain cost functions 
that are carefully chosen so that their global minima 
occur a t  zero forcing equalizers. 

The most popular adaptive blind algorithms are the 
so-called constant modulus algorithms [8, 91. They are 
derived as stochastic gradient methods for minimizing 
the cost function: 

where R, is suitably chosen in order to guarantee that 
the global minima of JCM(W) occur at zero forcing 
solutions (see, e.g., [8, lo]). In this paper we focus on 
the following two stochastic gradient variants, known 
as CMA2-2 and CMA1-2. 

CMA2-2. In this case, we select p = 2, 

and the update equation for the weight estimates is 
given by 

Wi+l = wi + puf Y(i) [R2 - lY(i)I2] , (2) 

with a step-size p. The row vector ui is the input data 
regressor to  the adaptive equalizer and y(i) = uiwi is 
the output of the adaptive equalizer. The symbol * 
denotes complex conjugate transposition. 

CMA1-2. In this case, we select p = 1, 

and the update equation for the weight estimates is 
given by 

Wi+l = wa + puz * [R1$ -Y(i)] . (3) 

Since these algorithms are based on instantaneous ap- 
proximations of the true gradient vector of the cost 
function JcM(w), the equalizer output y(i) need not 
converge to  a zero forcing solution of the form s( i  - 
D)eje  due to the presence of gradient noise. Therefore, 
the steady-state MSE, 
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is usually used as a performance index of the adaptive 
equalization algorithm. 

Moreover, in nonstationary environments, the channel 
actually varies with time and therefore the zero forcing 
weight vector W O  itself may also assumed to vary with 
time, say wp. It is customary to  assume a first-order 
random walk model for wp of the form (e.g., [ll]): 

w:+l = wp + qi , (4) 

for a sequence of i.i.d. random vectors {si}, with a 
positive-definite covariance matrix, Q = E qiqf . We 
are therefore interested in evaluating the steady-state 
MSE under the assumption (4). For this purpose, we 
shall propose a method that evaluates the MSE without 
directly using the weight error vector wi = wp - wi. 

4 A Fundamental Energy Relat ion 

Introduce the so-called a-priori and a-posteriori esti- 
mation errors, 

Now consider a general stochastic algorithm of the 
generic form 

w i + ~  = wi + P fe(i) 7 ( 5 )  

where fe (i) denotes an instantaneous error function. 
CM algorithms are special cases of the above for differ- 
ent choices of fe(i). If we subtract wr from both sides 
of (5) and multiply by U, from the left, we find that 
the errors {ep(i) ,ea( i )}  are related via: 

where we defined, for compactness of notation, p ( i )  = 
l / ~ ~ u ~ ~ ~ 2 .  Using (4)-(6), we easily find that w i  satisfies 

Wi+l = w i  - p(i)u2[ea(i) - e,(i)] + qi . 

By evaluating the energies of both sides of this equation 
we obtain the energy preserving relation [4, 5 ,  61: 

IIwi+l - qiI12 -t pL(i)Iea(i)12 = IIwiI12 + p(i)lep(i)I2 (7) 

This relation holds for adaptive algorithms whose re- 
cursions are of the form given by ( 5 )  - for any choice 
of fe(.); it shows how the energies of the weight er- 
ror vectors at two successive time instants are related 
to  the energies of the a-priori and a-posteriori esti- 
mation errors. It also establishes that the mapping 
from {G;, m e p ( i ) )  to  { ~ i + l  - qi, m e a ( i ) }  is en- 
ergy preserving (or lossless). Furthermore, combining 
(7) with (6), we see that any adaptive algorithm of 
the form ( 5 )  induces a feedback structure of the form 

Figure 2: Lossless mapping and a feedback loop. 

shown in Figure 2, where 7 denotes a lossless map and 
4-l denotes the unit delay operator. It could be seen 
from the figure that the system nonstationarity vector 
qi acts as a disturbance input t o  the system. 

We now show the relevance of the energy relation 
(7) to  the evaluation of the steady-state MSE of an 
adaptive equalizer. First, we impose the following 
modeling assumption, which is typical in the context 
of tracking analysis of adaptive filters (see, e.g., [ll]). 

- M . l  The sequences {U*} and {e} are mutually statisti- 
tally independent. 

Imposing the equality E Ilwi+ll12 = E llwi112 in steady- 
state, and using (6) and M. l ,  it is straightforward to  
verify that the energy relation (7) leads to  the following 
important equality, which we shall extensively use in 
the sequel: 

This equation can now be solved for the steady-state 
MSE: 

The procedure of finding the MSE through (8) com- 
pletely avoids the need for evaluating E ]]wm1/’. This 
is because in steady-state, and in view of the energy- 
preserving relation (7) and the feedback structure, the 
effect of the weight error vector is canceled out! 

5 Tracking Analysis  of C M A 2 - 2  

We now apply the above results to  the CMA2-2 recur- 
sion (2). For mathematical tractability of the analysis, 
we impose the following two reasonable assumptions 
in steady-state (i + m) - for more motivation and 
explanation on these two assumptions, see [13] and 
also [6, 121: 
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- 1.1 The transmitted signal s( i  - D )  and the estimation 
error e a ( i )  are independent in steady-state so that 
E s * ( i  - D)e,(i) = 0, since s ( i  - D )  is assumed zero 
mean. 

- 1.2 The scaled regressor energy p211ui1(2 is independent 
of y(i) in steady-state. 

We consider first the case of real-valued data 
{s(.),y(.),ui}. In this case, we can assume that the 
zero forcing response h D  that the adaptive equalizer 
attempts to  achieve (cf. (1)) can be of either form 
h D  = f [ O  ,..., 0,1,0,  ..., 01. In the following, we con- 
tinue with the choice h~ = [0, ..., 0,1,0, ..., 01, which 
yields e,(i) = s(i - D )  - y(i) .  A similar analysis holds 
for the case ho = [0 ,..., 0,-1,O ,... ,O]. 

Now relation (8) in the CMA2-2 context leads to the 
equality, for i -+ 00, 

We shall write more compactly (here and throughout 
the paper) 

A A - .  A A A e, = e,(i), p = p(z),  y = y(i) ,  U = U*, s = s(i - D ) ,  

for i + CO, so that (9) becomes, after expanding, 

Using this equality we can now obtain an expression for 
the steady-state MSE, E leal2. Replacing y by s - e,, 
using assumptions 1.1-1.2 and neglecting 2p E et ,  for 
sufficiently small p and small e:, it  is straightforward to  
show that the steady-state MSE can be approximated 
by 

CCMA2-2 N” 
T r ( Q ) / p  + pE(s2R; - 2R2s4 + s6) El l~11~ 

2E(3s2 - R2) 

This result implies that the steady-state MSE is com- 
posed of two terms. The first term decreases with p 
and increases with the system nonstationarity variance 
Tr(Q). The second term increases with p and the re- 
ceived signal variance, E(Iu1I2. Thus, unlike the sta- 
tionary case (see, e.g., [12, 13]), the steady-state MSE 
is not a monotonically increasing function of p. We can 
also see that in the noiseless case, and for non-constant 
modulus data { s ( . ) } ,  there exists a finite optimal value 
of the step size, po, that minimizes the above expres- 
sion for the steady-state MSE, which is given by 

This expression shows that po decreases with the signal 
variance, Ell~11~, and increases with the system nonsta- 
tionarity variance Tr(Q) . The corresponding minimum 
value of the steady-state MSE is then given by 

Tr(Q) E(s2R; - 2R2s4 + s6) E l(u1I2 cMA2-2 = E(3s2 - R2) 

Here we may add that for complex-valued data, the 
steady-state MSE will have a different expression than 
that in the real-valued case. Following the same deriva- 
tion, and assuming signal constellations that satisfy the 
circularity condition Els( i ) I2  = 0, in addition to  the 
condition E(2ls(i)I2 - R2) > 0 (both of which hold for 
most constellations [SI), we can show that the steady- 
state MSE for complex-valued data, and for sufficiently 
small step-sizes, can be approximated by 

In this case, the optimum value of the algorithm step 
size still has the same value as in the real-valued data 
case, while the minimum achievable steady-state MSE 
is given by 

n(Q)E(ls12R; - 2RzlsI4 + ls16) EIIu112 
E(21s12 - R2) 

cMA2-2 = 

6 Tracking Analysis of CMA1-2 

We now extend the earlier results to  the CMA1-2 
recursion (3). In this case, the expressions for the 
steady-state MSE for both real and complex-valued 
data will coincide. For this reason, we shall consider 
only the real-valued case. In addition to  assumptions 
1.1-1.2, we need the following two assumptions (also in 
steady-state) - see [13]: 

- 1.3 The output y(i) of the equalizer is distributed 
symmetrically around the transmitted signal s ( i  - D) in 
steady-state, so that E Iy(i)l = E Is(i - D)l. 

- 1.4 The a-priori error e,(i) is independent of signy(i) 
in steady-state, and Esigny(i) = 0, SO 
Ee,(i) signy(i) = 0. 

For the CMA1-2 recursion (3), the basic equation 
given, in steady-state, by 

2p E e,(& sign(y) - Y) = WQ) 
+P2 E [(RI sign(y) - Y N 2  . Ilul12] 

that 

(8) is 
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Using assumptions 1.1-1.4 and ignoring the term 
p2 E llu112 . Eeg, when p and e, are sufficiently small, 
leads to 

011- 

0 1  

O W -  

0 0 8 -  

0 0 7 -  

UI gam- 

Again we can see that the steady-state MSE is com- 
posed of two terms. The first term decreases with p, 
while the second increases with p. Therefore, for non- 
constant modulus data {s(.)}, there exists a finite op- 
timal value of the step size, po, that minimizes the 
steady-state MSE, and is given by 

, 
- 

'i' 

The corresponding minimum achievable value of the 
steady-state MSE is then given by 

= dTr(Q) E (R: + - 2RlIsI) E llu112 . 

7 Simulation Results 

We now provide some simulation results that com- 
pare the experimental performance with the one 
predicted by the derived expressions. The chan- 
nel considered in this simulation is given by c = 
[0.1,0.3,1,-0.1,0.5,0.2]. A 4-tap FIR filter is used 
its a $-fractionally spaced equalizer. The standard 
deviation of each element of the environment non- 
stationarity vector, q,, is In this simulation, 
the transmitted signal was 6-PAM constellated, s ( i )  E 
{5,3,1, -1, -3, -5) with Es6 = 5451.7, Es4 = 235.7, 
Es2 = 11.67, and Rz = 20.2. The value of llu,J12 is the 
norm of the received signal vector. The value of E llui112 
was computed as the average over 10,000 realizations 
of l l ~ i 1 1 ~ .  The value of experimental MSE was obtained 
as the average over 100 repeated runs. Figure 3 is a 
plot of the experimental MSE and the theoretical MSE 
versus the step-size p for CMA2-2. It can be seen from 
the figure that the theoretical results match reasonably 
well the experimental results. We can also see that the 
experimental MSE reaches a minimum value of 0.017, 
which corresponds to an optimal value of p that lies 
between and 1.5 x l o w 5 .  These values reasonably 
match our theory, which predicted a minimum achiev- 
able MSE of 0.0201 at po = 1.3448 x 

Figure 4 is a plot of the experimental MSE and the 
theoretical MSE for CMA1-2 versus the step-size p for 
the same simulation environment we used for CMA2-2. 
Again, we see from the figure that the theoretical and 
simulation results are in good match. We can also see 
that the experimental MSE reaches a minimum value 
of 0.0182, which corresponds to an optimal value of 
p that lies between 1.8 x and 2 x These 

0' 
0.2 0.4 0.6 0.8 

)I a 1c 

Figure 3: Theoretical and simulation MSE of CMA2-2. 

values reasonably match our theory, which predicted a 
minimum achievable MSE of 0.021 at po = 1.9016 x 

Comparing the minimum achievable MSE of the 
CMA1-2 with that of the CMA2-2, we note that CMA2- 
2 outperforms CMAl-2 by approximately 0.29 dB. This 
result will be verified by the comparison given in the 
next section. 

8 Comparison of the Tracking Properties of 
the CM algorithms 

We now compare the ability of the CMA2-2 and CMA1- 
2 to track variations in nonstationary environments for 
various types of transmitted sequence {s(.)}. We use 
the ratio of the minimum achievable steady-state MSE 
of both algorithms, which is given by 

q=-.  A C,'MA2-2 
C:MA1-2 
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Such a measure is conventionally used as a comparison 
index of the tracking performance of various adaptive 
algorithms (see, e.g., [ l l ] ) .  For real valued-data, the 
ratio of the minimum achievable steady-state MSE of 
the CMA2-2 and CMA2-2, q,, is given by 

On the other hand, the same ratio for complex-valued 
data, qc, is given by 

We can see from (10) and (11) that the ratio of the 
minimum achievable steady-state MSE of the CMA2-2 
and CMA1-2 depends only on the statistical properties 
of the transmitted sequence {s(.)}. We now compare 
the tracking performance of both CM algorithms for 
the following classes of sequences that are frequently 
encountered in blind equalization applications. 

4-PAM. In this case, the transmitted sequence, {s(.)}, 
has 4 real-valued symbols { -3a, -a, a,  3a}, where a is 
a positive real number. For such transmitted sequence, 
we can verify from (10) that 

= 12/17 FZ -1.5dB . 

This indicates that the minimum achievable value of 
steady-state MSE of CMA2-2 is less than that of CMA1- 
2 by approximately 1.5 dB, for all values of the param- 
eter a. This reflects the superiority of CMA2-2 over the 
CMA1-2 in this case. 

6-PAM. For 6-PAM transmitted symbols of the form 
{ -5a, -3a, -a, a, 3a, 5a}, where a is a positive real 
number. In this case, we get from (10) that 

x -0.2 dB , 
which indicates that the minimum achievable value of 
steady-state MSE of CMA2-2 is less than that of CMA1- 
2 by approximately 0.2 dB for 6-PAM signals. 

16-QAM. In this case, the transmitted symbols lie on a 
grid of 16 complex-valued symbols that are separated 
by 2a, where a is a positive real number. In this case 
we get from (11) that 

q:6-QAM x 2 3 d B  . 

Thus, unlike the 4-PAM and 6-PAM cases, CMA1-2 is 
superior to  CMA2-2 by approximately 3 dB for all val- 
ues of the parameter a,  in the case of 16-QAM signals. 

9 Conclusions 

In this paper we studied the tracking performance of 
two blind adaptive algorithms of the constant modulus 
type, namely, CMA2-2 and CMA1-2. Analytical expres- 
sions for the steady-state MSE were derived and verified 
by computer simulations. It is found that there ex- 
ists a step size that minimizes the steady-state MSE in 
each case. Expressions for the optimal step size values 
are derived along with the minimum achievable steady- 
state MSE for both algorithms. A comparison between 
the tracking properties of CMA2-2 and CMA1-2 is per- 
formed for various classes of the transmitted sequence. 
It is found that for the cases of 4-PAM and 6-PAM sig- 
nals, the tracking performance of CMA2-2 is superior to  
that of CMA1-2 by 1.5 and 0.2 dB, respectively. On the 
other hand, for the case of 16-QAM signals, CMA1-2 is 
superior to  CMA2-2 by 3 dB. 
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