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Abstract—We provide a time-domain robustness anal-
ysis of Gauss-Newton recursive methods that are often em-
ployed in identification and control. Several free parameters
are included in the filter description while combining the
covariance update and the weight-vector update, with the
exponentially weighted recursive-least-squares (RLS) algo-
rithm being an important special case. One of the contri-
butions of this work is to show that by properly selecting
the free parameters, the resulting filter can be made to im-
pose certain bounds on the error quantities, thus resulting
in desirable robustness properties (cf. H*-theory). We
also show that an intrinsic feedback structure, mapping the
noise sequence and the initial weight error to the apriori es-
timation errors and the final weight error, can be associated
with such recursive schemes.

I. INTRODUCTION

This paper provides a time-domain feedback analysis of the
class of Gauss-Newton (GN) recursive schemes, which have
been employed in several areas of identification, control,
signal processing, and communications (e.g., [1]-[4]). These
are recursive estimators that are based on gradient-descent
ideas and which involve two update relations: one updates
the weight estimate while the other updates the inverse of
the sample covarlance matrix. Several free parameters are
also included in the filter description, which allows for a
reasonable degree of freedom in setting up a filter config-
uration. One of the contributions of this work is to show
that by properly selecting the free parameters, the resulting
filter can be made to impose certain bounds on the error
quantities. These bounds are further shown to result in de-
sirable robustness properties, along the lines of H*-filters
[5, 6, 7].

We also establish that an intrinsic feedback structure,
mapping the noise sequence and the initial weight error to
the apriori estimation errors and the final weight error, can
be associated with such schemes. The feedback configu-
ration is motivated via energy arguments and is shown to
consist of two major blocks: a time-variant lossless (i.e., en-
ergy preserving) feedforward path and a time-variant feed-
back path.
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It is then shown that the feedback configuration lends
itself rather immediately to stability analysis via a so-called
small gain theorem, which is a standard tool in system the-
ory (e.g., [8, 9]). It provides contractivity conditions that
are shown to guarantee the I —stability of the algorithm,
with further implications on the convergence behaviour of
the estimator. This is demonstrated by studying the energy
flow through the feedback configuration and by exploiting
the lossless nature of the feedforward path.

We use small boldface letters to denote vectors and cap-
ital boldface letters to denote matrices. The notation A!/?
denotes a square-root factor of A, viz., any matrix satis-
fying A1/2A*/? = A. Also, the symbol “#” denotes Her-
mitian conjugation (complex conjugation for scalars), and
the notation ||x||2 denotes the squared Euclidean norm of a
column (or row) vector x, e.g., |[x|fZ = x*x .

I[I. THE GAUSS-NEWTON
RECURSIVE METHOD

There is an abundant literature on the analysis and design
of GN methods, especially in the area of parametric system
identification (see, e.g., [2, 3]).

We consider a collection of noisy measurements {d(i)}/,
that are assumed to arise from a linear model of the form

d(i) = wiw + vi), 1)

where v(i) denotes the measurement noise or disturbance
and u; denotes a row input vector. The column vector w
consists of unknown parameters that we wish to estimate.
In this paper we focus on the following so-called GN recur-
sive method.

Algorithm 1 (Gauss-Newton Procedure) Given mea-
surements {d(1)}{L,, an initial guess w_1, and a positive-
definite matriz Ilo, recursive estimates of the weight vector
w are obtained as follows:

wi = wi1+p() Pial (d(3) —wiwisy), (2)

where P; satisfies the Riccali equation update

1 PiiujuiPiy
Pi= o [Pioj— Wi} p 1, (3
A ( ' %+U;Pi_1u;‘> ! ° ®)

and {A(i), u(3), B(?)} are given positive scalar time-variant
coefficients, with A(i) < 1.



The effect of the coefficients {A(3), u(i), B(i)} on the
performance of the algorithm will be studied in the sequel.
Here we note that, by applying the matrix inversion formula
(e-g., [10]) to (3), the inverse of P; satisfies the simple time-
update

P71 = ()P +B() uiu, (4)
which establishes that P; is guaranteed to be positive-definite
for A(1), B(i) > 0 since I > 0.

An important special case of (2) is the so-called Recursive-
Least-Squares (RLS) algorithm (see, e.g., [10, 11]), which
corresponds to the choices f(i) = p(i) =1 and A(l) = A =
cte. In this case, the Riccati recursion (3) reduces to

‘ - PijufuwiP;y
P, = A t fm] — ——t T
P (P AT uw;P;—ju? )

which leads to the update equation

P,'_lll‘

A ruPiar (d(s) - wiwi-1),

wi = Wi+
the standard form of the RLS algorithm.

The difference [d(1) — uiwi_1] in (2) will be denoted by
éa(i) and will be referred to as the estimation error. The
following error measures will also be useful for our later
analysis: W; will denote the difference between the true
weight w and its estimate w;, W; = w — w;, and ea(i) will
denote the apriori estimation error, ea(f) = uiW;y. It then
follows from the update equation (2) that the weight-error
vector W;_ satisfies the recursive equation:

Wi = Wi—1 — p(i)Piujéa(i) . (5)

It is also straightforward to verify that the apriori estima-
tion error, eq(i), and the estimation error, é.(s), differ by
the noise v(1), i.e., &a(s) = ea(i)+v(i). We further define the
aposteriori estimation error, ep(i) = u;W;, and note that if
we multiply (5) by u; from the left we get the following
relation (used later in (13)) between ep(i), ea(s), and v(3),

ep(i) = [1 = p(HuiPiu] ] ea(i) — p()uiPiu; v(3). (6)
I11. A TIME-DOMAIN ANALYSIS

We now pursue a closer analysis of the GN recursion (2).
For this purpose, we invoke the time-domain update recur-

sion (5), multiply by P‘_% from the left, and compute the
squared norm (i.e., energies) of both sides of the resulting
expression, i.e.,

WP W = P Wi - wGPFEGE . ()
If we now replace é,(t) by éa(3) = ea(i) + v(s) and use
[6a(i)I? =ea()0" (5) + v(i)ei(s) + lea(i)” + |o(s)I?
we conclude that the following equality always holds,
WP + p(i) lea(D + 8() (1 — p(DuiPiuf) |2a ()]
= Wi P Wisa + i) oG . (8)
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- Substituting (4) for P;?

in the right-hand side, the last
equality can be rewritten as

(8(5) = B Jea@)[* + 1(5) (1 = p(i)wiPiu; ))lea(zgl

= AW Py Wiy — WP Wi + p(d) [o()° - (9)
Equality (9) involves “energy” terms and allows us to es-
tablish that the following error bounds are always satisfied
for the GN recursion (2) — in the statement of the Lemma,
we employ the quantity (i) = (w;Pyuf)™!.

Lemma 1 (A Local Passivity Relation) Consider recur-
sion (2). It always holds that

SPTN+ (u(i) = B fea@P [ ST 40 <A
AW P Wiy + (i) (i) >1;  u(i) > a@).
(10)

Such relations also arise in the case of instantaneous-gradient-
based algorithms, as detailed in [12].

The first two bounds in the above lemma admit an inter-
esting interpretation that highlights a robustness property
of the GN recursion (2). To clarify this, we assume that
B(i) < u(3) in order to guarantee (u(i) — B(z)) > 0 and,
hence, the factor (8(5) — B(9)) lea(d)]* can be regarded as
an energy term. In this case, we can interpret the first two
bounds in the lemma as stating that no matter what the
value of the noise component (%) is, and no matter how far
the estimate w;_; is from the true vector w, the sum of the
weighted energies of the resulting errors, viz.,

Wi + (8(3) = B(3)) lea(i)I*,

will always be smaller than or equal to the sum of the
weighted energies of the starting errors (or disturbances),

A@)WI_ P Wioa + (i) o)

wiP;!

The relations of Lemma 1 are local conclusions but sim-
ilar results also hold over intervals of time. Indeed, if we
assume p(#) < ji(s) for all 4 in the interval 0 < i < N, then
the following inequality holds for every time instant in the
interval,

(6(3) = BG) Jea ()2
< /\(Z)W._1P._1 Wi-1 — wl P Wi+ /l'( ) I‘U( )I

Summing over i we conclude that
N
WRPY WA + ) (w(i) — BENFM [ea ()
i=0 v
WLPIIWo + ) a@A M), (1)
i=0
which establishes a passivity relation over the interval 0 <
i < N. Here, we have used the notation A1 = [T2_. A(k).

< Al

As a special case, assume A(3) = p(:) = B(¢) = 1 (which
corresponds to an RLS problem in the absence of exponen-
tial weighting). Then the above conclusion implies that the



mapping from {v(-),]I{,'l/zv'i/_l} to {P;,l/zv'vzv} is always
a contraction. That is,
N
WRPR Wy < WL e + D ()
=0

which is a known result.

IV. THE FEEDBACK STRUCTURE

Before proceeding, we first establish the following fact.

Lemma 2 (A Lower Bound on j(i)) Consider the GN
algorithm (2) with the positive parameters {A(3), u(4), 8(:)}.
Define (i) as before, (i) = (wiPiu})™. It always holds,
for nonzero vectors u;, that a(i) > B(3).

Proof: Introduce the notation a(ili —1) £ (uiPi—iul)™.
Then we can write

1
B() + A@®)atli— 1)

In other words, (i) = 8(i) + A(3) (3]s — 1), where the term
A(§)a(i]i — 1) is strictly positive since P;—; > 0.
|

We now show that the bounds in Lemma 1 can be de-
scribed via an alternative form that leads to an interesting
feedback structure. To clarify this, we rewrite (6) as

ﬂ_l(i) =w;Piu] =

es(i) = (1 - %%) )= 2o, (12)

and use it to re-express the update equation (2) in the fol-
lowing form:

Wi Wi-1 + y(i)P.'u:ea(i) + ;t(i)P.‘u,-‘v(i)
Wi—1 + B(5)Piufeq(s)
APaiu()o0) - (B(6) — w@ead). (19)

—B(i)ep (Y=B(5)0(5)

]

This shows that the weight-update equation (2) can be
rewritten in terms of a new step-size parameter f(i) and
a modified “noise” term #(1) = —ep(i). This should be

compared with (2), which corresponds to
wi = wi_1 + p(§)Piulea(t) + v(i)].

If we now apply arguments similar to those prior to (10) to
(13), we readily conclude that the following equality holds
for all p(i) and v(s),

w;p:rxwi —_kl(;‘:(i) — ﬂfi).) |ea(::)!’2 1. (19)
A@R)Wr_ P Wiy + A(3) lep(3)|

Recall that we have shown earlier that (i) > 8(i). Hence,
-1
the above relation establishes that the map from {1/A(3)P; 3
Y
Wi—1, v/ B(2)9(3)} to {P; * Wi, /B() — B(1)ea(s)}, denoted
by T, is always lossless, i.e., it preserves energy. The
overall mapping from the original disturbance \/(-)v(-) to

the resulting apriori estimation error /f(-) — 8(-)ea(-) can
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then be expressed in terms of a feedback structure as shown
ins Figure 1. The feedback loop consists of a gain factor that

is equal to (1 u(§)/A(5))//T— BG)/AG). Also,

s @a() = 2 o) ~ (1- O 23 (iyens
B2 (3)3(3) ’_‘%(i)() (1 p(:‘))"()“()' (18)

P

VB =BG ead)

Wi

AP

17l =1

Ole
=1
O] "3 i
-] -]
Figare 1: A time-variant lossless mapping with feedback.

Lemma 3 (Feedback Representation) Consider the
GN recursion (2) and (4). It always holds, for any p(3),

that : . ) _ a2
WiPT Wi + (A() — B()) lea () _
AW P2 Wit + (5) lep (1)
where g~ () = w;P;ul. That is, the map 7; is always loss-
less. Moreover, this map leads to the feedback structure with
a lossless forward path and a gain feedback loop as shown
in Figure 1.

1.

The feedback configuration of Figure 1 lends itself rather
immediately to stability analysis, as we now explain. It
follows from the equality in Lemma 3 that for every time
instant 4, and for any u(i), we have

(B() = B() lea(i) =

AW P Wiy —WiPT W + a() [9(6)? . (16)
This allows us to conclude that the system in Figure 1 is
l,—stable, i.e., it maps a bounded energy sequence
{v/a(-) v(-)} to a bounded energy sequence {/a(-) — A()
€a(-}} in a sense precised in (20) below. In fact, we shall
also conclude that the same result holds even if we replace
A(-) by u(-). Such a result is desirable because it allows us
to conclude the convergence of eq(-) to zero, provided the
noise sequence satisfies an additional condition.

For this purpose, assume we run the GN recursion (2)
from time 3 = 0 up to time N. If we compute the sum of
both sides of the equality (16) we obtain,

N
oA (GG) = B(6) fea (@) = NN, Py
=0 N
- WEPR'Wn + Y AN 562,
=0

which also implies that (by ignoring Wy Py W)

N
DA GG — B(5)) leai)?

i=0



N
< AN polw.g + Z,\l‘“r"lp(.') [5())? .

=0
Consequently,

N

37 NHLM(a() ~ B(6)) lea (i) (17)

=0
N

< AN PIIWo + | D ATHLNIEG) [e() .
t=0

But it follows from (15), and from the triangular inequality
for norms, that

N
3 AELNGG) [5() <

=0

s 20
Zojwmﬁ(,.)l(n

N .
+ EA[«‘H.NI Il _r@)

L] BOleail

=0

We thus conclude that

.
S NG ) leali)? < MM Py

=0

N
i+1, #2(3) o(§)]2
D AN )]

x>

N Y
+ \g,\l-‘nm 1-:_:(_3 A)lea(i)P . (18)
Define
A(N)=<>I5[li;’§\r 11" ﬁg% and v(N)= o'sn.‘?sv -:‘:‘-(—:% .
' (19)
It then follows that
N
3 NHLNM () - () leaDP < ACMw_ PThH
) N
+ A(N)y | Do ALHN () o)

N
+ A(N)\J 3 AHLM(E() — BGE)leaG)I? -

=0

If (1—A(N)) > 0 we conclude from the last inequality that

d 1

Do NHM(EG) ~ B e < TRy (20)

=0

which establishes the desired l;—stability of the system.

The condition (1 —A(N)) > 0 is equivalent to requiring
A(N) < 1. This can be viewed as a manifestation of the
so-called small gain theorem in system analysis [8, 9]. In
simple terms, the theorem states that the l>—stability of
a feedback configuration requires that the product of the
norms of the feedforward and the feedback operators be
strictly bounded by one. Here, the feedforward map has
(2~induced) norm equal to one while the 2—induced norm
of the feedback map is A(N). Note also that for A(N) < 1
we clearly need that, for all ¢,

N [10) )
w(i) < AG) ( & (21)
Theorem 1 (I,—Stability) Consider the GN recursion (2)
and define A(N) and v(N) as in (19) and also

(i) — BGi
<N ﬂgi; - 58
If (21) holds then the map from {\/AL+LNi(-) v(-), VALN]
P-3w 1} to {/XFENI(a() = B()) ea(")} is b~ stable in
the sense of (20). Moreover, if B(3) < (i) then it also holds
that the map from {\/AL+1.Npu(.) v(-),VAlN] P:?W__l}

to {/AL+L.NIu(.) = B(-) ea(-)} (i.e., with () replaced by

1(-)) is also l2—stable in the following sense:

3(N) 2

m
0<i

— 21/2
ZMHI.NI(,;(i) = B()) lea(i)* < l‘y_-‘—A%—le)

=0

N
AONIG Priv_y + 4 2(N) Z A+LN u(5) |0 (3) |2

i=0

Proof: (of second bound). Note that (18) implies

N
D L) — B(i)) lea ()P < ANOMW L PTIWL,
=0

N
D NN (i) o (i)

=0

+ W)

N
+ AW | T NHLNI(E() - BE)leal)? -

=0

Now (22) follows by noting that

3 AN (i) - B(E))leali)

=0

N
< AN YA (aG) - B(E))leali)].

i=0
|

In fact, a stronger upper bound than (22) can be given

N
AoNg_ PIiwoy 4+ y(N) Z:/\"-'“’N)ﬁ(")hl(i)l"z , when p(3) is further restricted to the interval 0 < f(i) <
p(%) < (). This follows from the arguments in Section III.

1=0
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Lemma 4 (A Tighter Bound) Consider the GN recur-
sion (2). If 0 < B(1) < p(i) < B(i) then a tighter bound is
the following:

N
Z AL+LN () = B(5)) ea(D)P <

=0

N
ALNIG S PTIW g+ | D ARG ()2

=0

V. ON CONVERGENCE AND
ENERGY PROPAGATION

We now exhibit a convergence result that follows as a con-
sequence of the l; —stability property. Assume that the nor-
malized noise sequence {1/[Al+1:¥1pu(.) v(-)} has finite en-
ergy, i.e, > oy /\[""'1"”’1u(i)|v(i)|2 < oo. It then follows
from (22) that Y200 AFFLN(4(3) — B(3))lea(d)® < oo (for
B(i) < p(3)). This is true since, for any N, we always have
0<y(N)<2, 0<#N)<2 and 0<1-AN)<1
We therefore conclude that {{/Al+LN1(u(-) = B(-)) ea()}
is a Cauchy sequence and, hence,

lim /XFNG) - B() eali) =0 (22)

A similar analysis can also be carried out for finite-power
noise but we shall omit the details here for brevity. Instead
we stress that more physical insights into the convergence
behaviour of the GN recursion (2) can be obtained by study-
ing the energy flow through the feedback configuration of
Figure 1.

For this purpose, assume we have noiseless measure-
ments d(i) = u;w. For u(i) = j(s), the feedback loop is
disconnected. This means that there is no energy flowing
back into the lower input of the lossless section from its
lower output ea(-). At time # = —1, the initial energy fed
into the system is due to the initial guess W_; and is equal
to W, PZl%_;. We shall denote this energy by Eu(—1).
Now, at any subsequent time instant i, the total energy
entering the lossless system should be equal to the total en-
ergy exiting the system, viz., A({)Ew(i—1) = Ey(i)+ E. (i),
or, equivalently,

E,() = A3)Euw(i—1) — E.(3), (23)
where we are denoting by
Ee(i) 2 (a() - BO)Iuwis ', Bui) & WP .

Expression (23) implies that, for A(t) < 1, the weight-error
energy is a non-increasing function of time, i.e., Fy(i) <
Ew(i—1) for all 1. Strict inequality is guaranteed if E.(i) #
0. Note also that the so-called forgetting factor A{(i) plays
an important role.

But what if p(¢) # B(3)? In this case, the feedback
path is active and the convergence speed is now affected
(in fact, it becomes slower) since the rate of decrease in the
energy of the weight-error vector is lowered. Indeed, for
#(3) # B(i), we always have part of the output energy at

ea(-) fed-back into the input of the lossless system. More
precisely, if we let E5(i) denote the energy term i(4)|3(i)|?,
then the following equality must hold:

A(D)Ew(i — 1) + Ev(3) = Eu(3) + Ec(3)
at any time instant i. Also, the feedback loop implies that

g2
1— &
Es(i) = ‘———%
3
V- %5
since we are assuming a contractive feedback connection.

Therefore,

Ee(i) < Ee(s),

. 2
]

1— Ol
=

)

Eu(i)) = A(3)Eu(i—1) — E.(3),

where we have defined the coefficient 7(i) (compare with
(23)). It is easy to verify that as long as u(3) # jA(s) we
always have 0 < 7(i) < 1. That is, 7(4) is strictly less than
one and the rate of decrease in the energy of w; is lowered.

VI. FILTERED-ERROR ALGORITHMS WITH
GAUSS-NEWTON UPDATES

The feedback loop concept of the former sections applies
equally well to Gauss-Newton algorithms that employ fil-
tered versions of the output estimation error, &,(1). Such al-
gorithms are useful when the error €,(4) can not be observed
directly, but rather a filtered version of it, say F[€.(3)]
with a finite-impulse response filter of order My and co-
efficients {f;}. A typical application arises in the active
control of noise. The filtered-error Gauss-Newton algo-
rithm (FEGN) uses an update equation of the form w; =
wi—1 + p(i)Piuf F[éa(4)]. In this case, it can be verified
that

SEPC o+ (B = B e |
MW P Wies + BE PGP
where we have introduced the modified noise sequence {(-)},
B6)6) = () FIo6)] = B(eali) + (i) Flea(i)]
This again establishes a feedback interconnection but with
a dynamic feedback loop that is given by

1 _ () FI 1
\/1 -y Vi) Va6) - BG)
It can be verified that the I; —stability of the feedback struc-
ture now requires the contractivity of the matrix

( 1208 ¢,

1 B©)
£(0)

_ e 1-5m e
NFONOREO]

_ 1(2) f2 _ u(2)f1 l‘ﬁéjgf“
;ﬁ@)éﬂ(o)—ﬂ(o) Qﬂ@)éﬂ(l)—ﬁ(l) /]__ 2
e

@)
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Figure 2:
0.085(a),0.15(3), 0.18(c).

An important special choice for the step-size parameter
corresponds to pu(i) = o i(s), a > 0. If we assume that the
(weighted) energy of the input sequence u; does not change
very rapidly over the filter length Mp, i.e., (i) = g(i—1) =
... & @(i — Mr), and that the (i) satisfy B(:) = Bj(s)
with § < 1, then the contractivity condition, and faster
convergence, can be satisfied by choosing « as

min max Il - aF(ejn)I . (25)

If the resulting minimum is less than 1 then the correspond-
ing optimum o will result in I —stability.

A demonstration to this effect is shown in the following
simulation for the filter F(g) =1 ~1.2¢7" +0.72 ¢~2 with
B() = 0.05a(3), X = 0.99, and u(i) = ap(i). The input
sequence u(i) (assuming a u; with shift structure) is chosen
as sinusoidal with frequency 2, so that the apriori error
signal can be assumed to be dominated by this frequency.
In this case, the optimum a can be found via the simpler
expression ming |1 —aF (e’n") I, which can be solved ex-

plicitly and we get aope = Real 'ﬁe_-lm?)' } Following the

same procedure, the step-size ayim for which the stability
limit is achieved can be calculated to be atim = 2a0pt. To
verify these statements, we created an input sequence of
the form u(s) = sin[1.2¢+ ¢], where 50 different values for ¢
were uniformly chosen from the interval [--x, x]. The opti-
mal step-size aop can thus be calculated to be aopr = 0.085
and the stability bound is obtained for aiim = 2aope = 0.17.
Figure 2 shows three runs of the FEGN for the choices
a = 0.085,a = 0.15 and a = 0.18. As expected, the first
value of o leads to the fastest convergence speed. In every
simulation we averaged over 50 trials. The additive noise
v(i) was assumed to be -40dB below the input power during
the experiments and the order of the adaptive filter was set
to M = 10. The algorithm was run for N = 5000 iterations.

3 N
1500 2000

4500 5000
Iterations 1

s N . "
2500 3000 3500 4000

Convergence behaviour for FEGN algorithm with sinusoidal input sequence and various step-sizes a =

Further connections of the methods of this paper to re-
sults in H*—filtering can be found in [13].
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