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Abstract

Using our recent observation that H filtering coincides
with Kalman filtering in Krein space we develop square-
root arrays and Chandraskhar recursions for H* filter-
ing problems. The H* square-root algorithms involve
propagating the indefinite square-root of the quantities
of interest and have the property that the appropriate
inertia of these quantities is preserved. For systems that
are constant, or whose time-variation is structured in a
certain way, the Chandraskhar recursions allow a reduc-
tion in the computational effort per iteration from O(n®)
to O(n?), where n is the number of states. The H>
square-root and Chandrasekhar recursions both have the
interesting feature that one does not need to explicitly
check for the positivity conditions required of the H*®
filters. These conditions are built into the algorithms
themselves so that an H* estimator of the desired level
exists if, and only if, the algorithms can be executed.

1 Introduction

Classical results in linear least-squares estimation and
Kalman filtering are based on an H? criterion and re-
quire apriori knowledge of the statistical properties of
the noise signals. In some applications, however, one
is faced with model uncertainties and lack of statistical
information on the exogenous signals, which has led to
an increasing interest in minimax estimation, with the
belief that the resulting so-called H* algorithms will be
more robust and less sensitive to parameter variations
(see e.g. [1,2,3,4]). Interestingly enough, the H* filters
obtained in this fashion involve propagating a Riccati
variable and bear a striking resemblance to the classical
Kalman filter. Nevertheless there are enough key dif-
ferences that ingenious new methods seem to have been
necessary to tackle H* problems.

In [5] we have shown that by introducing variables
in an indefinite metric (Krein) space, rather than in
the Hilbert spaces common in conventional stochastic
theory, the H* filters could be obtained from the the-
ory of Kalman filters in Krein space. The point is that
although Hilbert spaces and Krein spaces share many
characteristics, they differ in special ways that turn out
to mark the differences between the LQG or H? theories
and the more recent H*® theories.
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The main point of our approach is that, apart from
rather more transparent derivations of existing results,
it shows a way to apply to the H™ setting many of
the results developed for Kalman filtering over the last
three decades. In particular, for several reasons, certain
square-root arrays are now more often used to imple-
ment the conventional Kalman filter. Furthermore for
constant systems, or in fact for systems where the time-
variation is structured in a certain way, the Riccati re-
cursions and the square-root recursions, both of which
take O(n®) elementary computations (flops) per itera-
tion (where n is the dimension of the state-space), can
be replaced by the more efficient Chandrasekhar recur-
sions, which require only O(n?) flops per iteration [6,71.

One immediate fall-out of our appraoch is that it a
lows us to generalize these square-root arrays and Chan-
drasekhar recursions to the H* setting. Both these al-
gorithms involve propagating (indefinite) square-roots of
the quantities of interest and guarantee that the proper
inertia of these quantities is preserved. Furthermore the
condition required for the existence of the H filters is
built into the algorithms: if the algorithms can be car-
ried out, then an H filter of the desired level exists,
and if they cannot be executed then such H* filters do
not exist. This can be a significant simplification of the
existing algorithms.

A brief remark on the notation used in this paper. To
avoid confusion between the various gain vectors used
in this paper, we shall employ the following convention:
Kp,; will denote the gain vector in the usual Krein space
(or Hilbert space) Kalman filter, Ky, the gain vector in
the filtered form of the Krein space Kalman filter, and
K, and K, will denote the gain vectors in the H*
aposteriori and apriori filters, respectively.

2 Inertia Conditions for H®
Filtering

Consider a state-space model of the form

zip1 = Fzi+Giui, zo
{ yi = Hizi + v, 120 21

where zo, {u:}, and {v;} are unknown quantities and
yi is the measured output. Note that we shall make
no assumption on the nature of the disturbances (such
as uncorrelated, normally distributed, etc.) Let z; be
linearly related to the state z; via a given matrix L;,
viz.,
zi = Lx;.

We shall be interested in the following two cases. Let
% = Fy(yo,4,...,9:) denote the estimate of z; given
observations {y;} from time 0 up to and including time
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i, and %, = Fp(¥0,¥1,...,%i—-1) denote the estimate of
z; given observations {y;} from time 0 to time i — 1.
We then have the following two estimation errors: the
filtered ervor esi = % — Lizi, and the predicted error
eps = % — Liz:.

Let Ty ; denote the transfer operator phat maps the
unknown disturbances {zo, {t;j}j=0, {v;}}=0} to the fil-
tered errors {ef,j}§=o. Likewise, let T,,; denote the
transfer operator from {zo, {u;};25, {v5}5=0} to the pre-
dicted errors {ep,;};=0- The H™ estimation problem
can now be stated as follows.

Problem 2.1 (Sub-optimal H* Problem)

Given scalars v5 > 0 and vp > 0, find H*-suboptimal
estimation strategies %; = Fy(yo,91,...,%i) and % =
Folyo,v14...,4i—1) that respectively achieve || Ty |joo<
75 and || Tp [|oo< ¥p. In other words

Timolesal®
oo LS.
sou€na,vens || Zo llg=1 + 320, lusl? + 325 03l

(2.2)
E;:a 'e}’,jlz 2

sup — — < 7
souena,vens [ 7o llgor + Tj0g luiP + 50 loslP 7

and

(2.3)
where o is a positive definite weighting matriz that re-
flects apriori knowledge as to how close zo is to the ini-
tial guess %q.

We now state the solution to Problem 2.1 {3,5].
Theorem 2.1 (The H* Aposteriori Filter) For a

given v > 0, if the F; are nonsingular then an estimator
with | Ty |, < ¥ exists if, and only f,

PP HIH; —v7°L]L; >0,  j=0,...,, (2.4)

where Po = Il and P; satisfies the Riccati recursion

* » L d - - H *
i =FPF+GG-FP L H; L 1R [ [ BE,

(2.5)
with R, = [ o —ya1 ] +[ b ]p,-[ H L] I
this is the case, then one possible H* filter with level
v is given by %,; = L;i;;, where £;); is recursively
computed as

Z41541 = Fy350, + Ko (0541 — Hip1 Fiz5),), 5—1(|—1,)

2.6
and K, ; = Piy1 Hya(1 + Hipa P Hy o)™
Theorem 2.2 (The H* Apriori Filter)

For a given v > 0, if the F; are nonsingular then an
estimator with {|Tpill, < v ezists if, and only if,

Pr=pP - v LiL; >0, 7=0,...,3 (2.7)
where P; is the same as in Theorem 2.1. If this is the
case, then one possible H* filter with level % is given by
2; = L;z;, where

#3541 = FyZ; + Ka5(y5 — Hi25), o, (2.8)
and where Ka; = F; B H} (I + H; B H})™.

Remark: These look very much like a Kalman filter
solution, except that the Riccati recursion differs from
that of the Kalman filter, since

o we have indefinite covariance matrices, R.,;.

o the L; (of the quantity to be estimated) enters the
Riccati equation.

¢ we have an additional condition, (2.4), that must
be satisfied for the filter to exist; in the Kalman
filter problem the L; would not appear, and the
P; would be positive definite, so that (2.4) is im-
mediate.

Despite these differences, we have shown that the fil-
ters of Theorems 2.1 and 2.2 can i%l fact be obtained as
certain Kalman filters, not in an H* (Hilbert) space, but
in a certain indefinite vector space, called a Krein space
Ei] The indefinite covariances and the appearance of

i in the Riccati equation are easily explained in this
framework. The additional conditions (2.4) and (2.7)
arise from the fact that in Krein space, unlike as in the
usual Hilbert space context, quadratic forms need not al-
ways have minima or maxima, unless certain additional
conditions are met. Moreover, this approach provides
simpler and more general alternatives to the tests (2.4)
and (2.7).

Lemma 2.1 (New Existence Tests) The conditon
(2.4) can be replaced by the condition that all leading
submatrices of

and

oe(s ]

[ ——

Re,j=[g _221]+[€:]P1[H; L3 ]

have the same inertia. Likewise the condition (£.7) can
be replaced by the condition that all leading submatrices
0

. 2
Rj:[_zl ?] and

Ra=[ 73T V4[R2 ]BLL B

have the same inertia. The nonsingularity of the {F;}
is no longer required here and the size of the matrices
involved is generally smaller than in (2.4) and (2.7).

By the inertia of a Hermitian matrix, we mean the
number of its positive, negative and zero eigenvalues. A
simple way of calculating the inertia of a strongly regular
Hermitian matrix R (i.e. one whose leading minors are
all nonzero), is by computing its LDU decomposition

R=1LDL",

where L is_a lower triangular matrix with unit diago-
nal and D is a diagonal matrix: the number of positive
and neﬁative elements of D give the number of posi-
tive and negative eigenvalues of R and hence the iner-
tia. Therefore to check whether all leading submatrices
of two strongly regular Hermitian matrices Ry and R;
have the same inertia, we can compute the LZDU decom-
positions Ry = L1D1L} and Ry = L2 D;L} and check
whether the correspomiiug diagonal entries of Dy and
Dy have the same sign.

The condition of Lemma 2.1 is easier to check than
that of (2.4) since it involves R.; which is used to
propaﬁate the Riccati recursion, whereas we must in-
vert P; at each step to check (2.4). Moreover, in
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Lemma 2.1 we must check for the inertia properties of
a (p1 +p21) x (p1 + p2) matrix (where p1 and p; are the
number of outputs and the number of linear combina-
tions of the states given to estimate) whereas in (2.4) we
must check for the positivity of a n X n matrix where
n is the number of states. In most applications p; + p2
will be less than n.

In fact, the need for checking separate conditions asin
(2.4) or Lemma 2.1 can be completely avoided by going
to a new square-root form of the H® filtering algorithm
- these conditions are built into the the square-root re-
cursions. The H® square-root algorithms are very natu-
rally suggested by the close connection we make between
H? (Kalman) filtering and H* filtering.

Due to lack of space, we shall not go into the details
of the connection between Krein space Kalman filtering
and H® filtering here (the interested reader is referred
to [5,9]). We shall just mention that the H*® filters
of Theorems 2.1 and 2.2 can be derived from the Krein
space Kalman filter corresponding to the following state-
space model

Xip1 = Fix; + Gy
WD (e o
l £

where the {u;, vj,xg} are elements in a Krein space K,
such that

ui llj 16‘-7 I % 0
[EI[E]=] e

*o X0 0 0 Mo

(2.10)

and where < .,. > is the Krein space inner product.
Note that we need to consider a Krein space because

R; = [ é _32] ] is indefinite.

3 Square-Root Algorithms
3.1 H? Square-Root Arrays

In the conventional Kalman filter
$j41 = Fi2; + Kp i(y; — Hj#;), #0=0,

the gain vector K, ; is updated using a Riccati recursion
as follows

Kpj=F;PH;R.; , Rej=R;+H;PH; (3.11)
and

Py = FjPjF; — Kp iR i Ky i + GiQ;Gj, Po=1lo.

(3.12)
The matrix P; appearing in this Riccati recursion has
the physical meaning of being the variance of the state
prediction error, ; = z; — &;, and therefore has to
be positive (semi)definite. Round-off errors can cause a
loss of positive-definiteness, so that for this, and other
reasons (reduced dynamic range, better conditioning,
stabler algorithms, etc.) attention has moved in the
Kalman ﬁftering community to the so-called square-root
array algorithms that propagate square-root factors of

Pj, i.e. a matrix, P say, such that

P._P’}P%‘ %5’
5 =Py (P7)" = PP PP

Now the following algorithm can be introduced. Apply
any orthogonal transformation, say ©;, that triangular-
izes the pre-array shown below

1 1
R H;P? 0 X 0 0
) yle=[¥ Z o)
0 FJ'P]’ G;Q;
The resulting post-array entries can be identified as
3 3
zZ=pP, , X=KR
and
oy 1 1 -
Y= F_,P,H;Ref = K,,,,'R;‘iJ = Kpj, say.

This can be checked by taking squares of both sides (and
using the orthogonality of ©;) to get

XXt = Rj+HjP,H;=Rc,J'

YX* = F;P;H;

27 = F;PF} +G;Q;G; YY"
= F_,'PjF_,"%—G,‘Q,’G;-—-FJ‘PJ‘H;R;}HJ‘PJF;
= Pin

Note that the quantities necessary to update the square-
root array and to calculate the state estimates may all
be found from the triangularized array.

Theorem 3.1 (H? Square-Root Algorithm)
Quantities of interest in the conventional Kalman filter

£i41 = Fi&; + Ky i(y; — H;%;), 20=0,

can be updated as follows:

1 1 1
R? H,;P? 0 RZ. 0 0
[ £ JJ% %]@jz[ C»J% 3 :|,
0 F_,'Pj G,QJ- Kp,,'RQ'J- Pj+1 0

(3.13)
where ©; can be chosen to be any unitary matriz that
triangularizes the above pre-array. The algorithm is ini-
tialized with Po = Ilo.

In practice ©; is implemented via a sequence of el-
ementary unitary (Givens) rotations or (Householder)
reflections. We also quote the filtered form of the square-
root array algorithm which can be verified similarly.

Theorem 3.2 &Filtered Form) Quantities of inter-
est in the filtered form of the co tional Kal filter

#4141 = Fi&5)+Kp(Wiv1—Hin1 Fizj);), 211 =0,

can be updated as follows

1 1 1
R} HJ}:J" o) ~ RZ] X 01 ,
o P? ’ Ky1R2; P}

3 ali

(3.14)

1 1 (2) _ 1
[ mel ciaf |6 =[rL o] G
where @gl) and 952) can be chosen to be any unitary

malrices that triangularize the above pre-arrays. The
algorithm is initialized with Po = Ilo.
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3.2 H® Square-Root Arrays

In the H*® ?osteriori filtering problem with level ¥,
the R; and K. ; (of the Krein space model (2.9)) are
no longer positive-definite, but indefinite. Therefore we
must consider the indefinite square roots of these quan-
tities, namely,

R}=[{ ] me =

W3
where

R*JR*:[" 0 ] and  R}.JRI =R.,
3 1Y 0 —+2I e, tle,j .5

with J = (I ® —I). In the square-root form of the H®°
aposterion filtering problem with level v, it is therefore
plausible to begin with the pre-array

(183 (%) o)

0 F; P, G;

(3.16)

where as before P;} P;} = P; (since P; can be shown
to be positive). We then attempt to triangularize this
pre-array with a J-unitary matrix ©; (i.e. one for which
©;J6} = J), where now
J=Ip-I®lal (3.17)
However, triangularization via J-unitary matrices is

not always possible and requires certain inertia proper-
ties. The precise statement follows.

Lemma 3.1 (J-unitary Triangularization)

Let A and B be arbitrary n X » and n X m matrices,
respectively, and suppose J = S1 © Sa, where $1 and S;
are nxn and mxm signature matrices. Then [ ]
can be triangularized by a J-unitary transformation O as

[A Ble=[L 0]

with L lower triangular, if and only if, all leading sub-
matrices of

S1 and Of AS]A. + BSQB‘
have the same inertia.
Thus from Lemma 3.1, triangularization of (3.16) via

a J-unitary transformation is possible if, and only, if all
leading submatrices of

[ 808 510 81+ 8 ]mm

=R.; and 0o —1I|»

have the same inertia. But this is precisely the iner-
tia condition given for the existence of H* aposteriori
filters in Lemma 2.1.

We are thus led to the following square-root array
algorithm for the H°° aposteriori ﬁlterini problem. The
proof essentially follows from squaring both sides and
comparing terms. For more details see [9].

Theorem 3.3 (H*” Square-Root Algorithm
The H™ aposteriori filtering problem with level v has
a solution if, and only if, for all j = 0,...,1 there exist

J-unitary (with J = I ®—I1®1) matrices 95-1) such that

I 0 H; | p}
[[0 71] [L;A]Pj eg_:):[ Rﬁ,é 0
0 P; Ky i-1RS; P
(3.18)

[mrY ca} |oP=[rh o] G

with Ré'j and Pﬁn lower block triangular, and with 6?)
unitary. The gain vector K, ; needed to update the esti-

mates in
Ejp1l541 = Fidji+ Ko (i1~ Hjp1 Fj ),

is equal to K, ; = Koj(I+ His1Pjp1H}y1)™4, where
K., is given by the first block column of K;; =
Kf,,'RﬁjH, and (I + H,'“PH;H;“)% iz given by the

(1,1) block entry of R} . The algorithm is initialized
with Py = .

Note, as before, that the quantities necessary to up-
date the square-root array and to calculate the state
estimates may all be found from the triangularized post-
array. The reason for choosing sub-blocks of X ; and

Rjj 41 follows from the fact that we can only use y;,

whereas the output equation for the Krein state-space
model (2.9) has goth a yi and a z; component.

In conventional Kalman filtering, square-root arrays
are preferred since the positive-definiteness of the ma-
trices is guaranteed, and since the ©; are unitary, which
improves the numerical stability of the algorithm. In
the H* setting the square-root arrays guarantee that
the various matrices have their appropriate inertia (see
Lemma 2.1); however, the ©; are no longer unitary but
J-unitary. Therefore the numerical aspects need further
investigation.

An interesting aspect of Theorem 3.3 is that there is
no need to explicitly check for the positivity condition
(2.4). This condition is built into the algorithm itself: if
the algorithm can be performed an H™ estimator of the
desire%l level exists, and if it cannot be performed such
an estimator does not exist.

Comparing Theorem 3.2 with Theorem 3.3 reveals
the formal similarities between the H? and H* square-
root array algorithms. The H® algorithms are essen-
tially the Krein space generalization of the H? algo-
rithms (which for example explains why unitary matri-
ces are replaced by J-unitary matrices), and it is this
approach that is used to derive Theorem 3.3 and similar
results.

We close this section by giving the square-root ver-
sion of the H* apriori filtering algorithm, which can
be derived in a similar fashion. Note that the major
difference with the aposteriori square-root algorithm of
Theorem 3.3 is the change in the order of {H;, L;} and
{I,41} in the various arrays. The reader at this point
maﬁ( want to note this order reversal in Lemma 2.1 as
well.

Theorem 3.4 (Apriori Case) The H™ apriori filter-
ing problem with level 4 has a solution if, and only if,

2240
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for all j = 0,...,1 there exist J-unitary matrices (with
J given by (3.17)) such that

(v 2] [#]# "]@j=['f’,,- 0 o

= 1
Kp,; P2

0 F; P; G; i+

2

.1 2
with R2 and P2, lower block triangular. The gain
vector K, ; needed to update the estimates in

Zj41 = Fjzj + Ko j(y; — Fj&;), #0=0,

is equal to Ka; = Kaj;(I + H;P;H})™%, where K, ;
is given by the second block column of Ky ;, and (I +
1

ij)jH;)% is given by the (2, 2) block entry of RZJ The
algorithm is initialized with Po = Ilo.

4 Chandrasekhar Recursions
4.1 H? Chandrasekhar Recursions

In what follows we shall assume a constant state-space
model of the form

z;41 = Fz;+ Guy, To
(o = fmien i

In the H? case, we shall also assume that the covari-
ances of the {u;,v;} are constant, i.e. @Q; = Q and
R; = R, for all j. As before, we are interested in ob-
taining estimates of the states, denoted by £;, using the
observations {yx};2%.

Under the aforementioned assumptions, it is possible
to choose the matrix IIp such that

Piy1 — P = M;SMj, vj, (4.22)

where M; is a n x d matrix (often d € n) and S is
a d x d signature matrix (i.e. a diagonal matrix with
+1 and —1 on the diagonal). Thus for time-invariant
state-space models, Pj;1 — P; has rank d for all j and
in addition has constant inertia. If this is true, note
that propagating the (smaller) matrices M; is equiva-
lent to propagating the P;. This what is done by the
Chandrasekhar recursions (see [8,6], App. II).

In the conventional Chandrasekhar recursions, one
triangularizes the following pre-array with a J-unitary

matrix ©;
1
RI. HM; ®‘=[X 0]
[1‘{" FM,-] =LY z

1 . —
where 1Rf,jRZj = R.j = R+ HP;H* and K,; =
Ky ;R2;, and where J is given by [ 1 g |- Saquar-
ing both sides of the above equality and using §4.22)
and the J-orthogonality of ©; allows us to identify the
elements in the post array as follows.

Therefore we can identify

1
— R2
X=RI,,

YZKP,,'+1 and Z =M;41.
We have thus verified the following result.

Theorem 4.1 (H? Chandrasekhar Recursions
Quantities of interest in the conventional Kalman filter

Zi41 = Fiij + Kp,;(y; — H;25), 20 =0,
can be updated using
3 3
[ RZ, HM, ]@, =[ Ry O ] (4.23)
Kp; FM; rit1 Mjn
where ©; is any J-unitary matriz (with J = 1@ S)

that triangularizes the above pre-array. The algorithm
is initialized with R.o = R + HIlH", Kpo =

FIloH*RY,), and

Pi—Tlo = FlloF*+GQG" ~KpoRe o K o—Tlo = MoSM;.

Thus, once more, the quantities necessary to update the
arrays and to calculate the state estimates are all found
from the triangularized post array.

In the filtered case, one noramally computes the gain
vector using the equation Ky; = F~' K, 41. We shall
see this in the H*° algorithms of the next section.

4.2 H* Chandrasekhar Recursions

Our earlier results suggest that in the H* aposteriori
filtering problem with level v, we need to start with the

pre-array

3 H 1\

I_ze-i [L] ], (4.24)
Ky, FM;

where

3 I 0 3 H . .
B[ 6 O )R =rs=ra[ ] |BLE 17,
(4.25)
1
Kp,; = Kp;R2; and Pjy1 — P; = M;SM;. The next

step is to triangularize the pre-array (4.24) using a J-
unitary matrix, where

J=(Ia-IaS5). (4.26)

The condition for the existence of such a triangulariza-
tion (as given by Lemma 3.1) is precisely the condi-
tion for the existence of the H aposteriori filters. We
may thus prove the following result using the method
mentioned for deriving the conventional recursions. For
more details see [9].

XX = Ri J-Ri s HM;SMJH® = R j31 Theorem 4.2 (H* Chandrasekhar Recursions)
. _ . The H* aposteriori filtering problem with level v has
YX* = Kp iR} +FM;SM;H" = FP;.H" a solution if, and only if, all leading submatrices of
Z8Z* = KPJ'K;J'-FFMJ'SM;—YY‘ I 0
gl 1. H * -
= Pjy2—- P R=[0 —‘121} and R°'°=R+[L]H°[H ]
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have the same inertia, and i {or all § =0,...,1 there
exist J-unitary matrices ©; (where J 1 given by (4.26))
such that
3 H
RZ; [L]Mi 6,-=[R?,j+1 0 ]
Ky, FM; Kpjit1 Mjp
(4.27)

with RY, and R}, lower block triangular. The gain
vector K, ; needa{ to update the estimates in

#i41)i+1 = Fi&1i+ Ko j(Yi41—Hij1 Figj)), 8311 =0,

is equal to K, ; = Kuj(I + Hjy1Pip1 H}yy) ™4, where

K. ; is given by the first block column of F~'K, j41,

and (I + Hj+1Pj+]H;+1)* is given by the (1,1) block
1

entry of R7 ;.

Note that compared to the square-root formulas, the
size of the lf;re—au'y:a.y in the Chandrasekhar recursions
has been reduced from (p1 +p2 +n) x (p1 +p2+n+m)
to (p1 + p2 + ) % (p1 + p2 + d) where m, py and p; are
the dimensions of the driving disturbance, output and
states to be estimated, respectively, and where n is the
number of the states. Thus the number of operations for
each iteration has been reduced from O(n®) to O(n?d)
with d typically much less than n.

As in the square-root case, the Chandrasekhar re-
cursions do not require explicitly checking the positivity
condition (2.4). We can also obtain H* apriori Chan-
drasekhar recursions in a similar fashion. The result is
given below. Note, once more, the change in the order
of {H,L} and {I,vI} in the arrays, and the absence of

F~1! to compute the gain.

Theorem 4.3 (Apriori Case) The H™ apriors filter-
ing problem with level v has a solution if, and only if,
all leading submatrices of

E:[—‘le ?] and Re,o=1’2+[iy]ﬂo[lf " ]

have the same inertia, and if for all j = 0,...,1 there
exist J-unitary matrices ©; (where J is given by (77))
such that

[ é;}.j [ ILi ]M,
K,.j FM;

~ 1
9, = [ Rl 0 }
pit1  Mi
(4.28)
~ 1 -l
with RZ, and R].., lower block triangular. The gain
vector Ka; needed to update the estimates in

£j41 = Fj&; + Ka,;(y; — Fi£j), 20 =0,

is equal to Koy = Ka (I +Hj15,H;)'%, where Ka,;
is given by the second block column of K, ;j, and
I+ H,-}",-H;)* is given by the (2,2) block entry of
R} The dlgorithm is initialized with Reg, Kpo =

Flio[ L* H* )ond
Pi—Tig = FIl F* +GQG" — Ky o SK}s—Tlo = MoSM;.

5 Conclusion

We have obtained square-root array algorithms and
Chandrasekhar recursions for the H°° aposteriori and
apriori filtering problems. These have the important
rperty that the conditions for the existence of the H™
ters are built into the algorithms, so that filter so-
lutions will exist if,and only if, the algorithms can be
executed.

The conventional square-root arrays and Chan-
drasekhar recursions are preferred because of their nu-
merical stability (in the case of square-root arrays) and
their reduced computational complexity (in the case of
the Chandrasekhar recursions). Since the H* square-
root arrays and Chandrasekhar recursions are the direct
analogs of their conventional counterparts, they may be
more attractive for numerical implementation of H* fil-
ters. However, since J-unitary rather than unitary op-
erations are involved, further anestigution is needed.

Our derivation of the H* square-root arrays and
Chandrasekhar recursions demonstrates a virtue of our
Krein space approach to H* estimation; the results ap-
pear to be more difficult to conceive and prove in the tra-
ditional H* approaches. There are many variations of
the conventionnr square-root array and Chandrasekhar
recursions, ¢.g. for control problems, and the meth-
ods given here are directly applicable to extending these
variations to the H™ setting as well.
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