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ABSTRACT

We show that the celebrated LMS (Least-Mean
Squares) adaptive algorithm is an H* optimal fil-
ter. In other words, the LMS algorithm, which has
long been regarded as an approximate least-mean
squares solution, is in fact a minimizer of the H®
error norm and not the H? norm. In particular,
the LMS minimizes the energy gain from the dis-
turbances to the predicted errors, while the normal-
ized LMS minimizes the energy gain from the distur-
bances to the fillered errors. Moreover, since these
algorithms are central H* filters, they are also risk-
sensitive optimal and minimize a certain exponen-
tial cost function. We discuss various implications
of these results, and show how they provide theo-
retical justification for the widely observed excellent
robustness properties of the LMS filter.

L. INTRODUCTION

The LMS algorithm was originally conceived as
an approximate recursive procedure that solves the
following adaptive problem [1]: given a sequence of
1 x M input row vectors {h;}, and a corresponding
sequence of desired responses {d;}, find an estimate
of an M x 1 column vector of weights w such that
the squared error sum Eﬁ_—oldﬁ — h;w)? is minimized.
The LMS solution recursively updates estimates of
the weight vector along the direction of the instanta-
neous gradient of the squared error. Exact recursive
least-squares (RLS) algorithms have also been devel-
oped (see, e.g., [2]). Although these have better con-
vergence properties, they are computationally more
complex, and exhibit poorer robust behaviour than
the simple LMS.
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More recently, and motivated by applications in
control theory, there has been an increasing interest
in H*-filtering (see, e.g., [3]-[7] and the references
therein) with the belief that the resulting minimax
algorithms will be more robust and less sensitive to
parameter variations, to model uncertainties, and to
the lack of statistical information on the exogenous
signals. In this paper we show that the LMS filter is
a minimax algorithm, which provides a theoretical
Justification for its superior robust properties. More
specifically, we shall use some of the results devel-
oped in the companion papers [8, 9] in order to show
that the LMS algorithm is the central apriori H>-
optimal filter, while the so-called normalized LMS
algorithm is the central aposteriori H*°-optimal fil-
ter. This provides a minimization criterion that has
long been missing for the LMS algorithm. Moreover,
since LMS and normalized LMS are shown here to
be central filters they are also risk-sensitive opti-
mal and minimize a certain exponential cost func-
tion [11].

II. THE H* PROBLEM

We first give a brief review of some of the re-
sults described in the companion papers (8, 9] on
H* —filtering. The reader is also referred to [3]-[7],
and the references therein, for earlier results and
alternative approaches. We begin with the defini-
tion of the H® norm of a transfer operator. As
will presently become apparent, the motivation for
introducing the H*® norm is to capture the worst
case behaviour of a system.

Let h; denote the vector space of square
summable causal sequences {fi, 0 < k < oo}, with
inner product < {fi},{gx} > = S0 f1ox
where * denotes complex conjugation. Let T be a
transfer operator that maps a causal input sequence
{ux} to a causal output sequence {y;}. The H>®
norm of T is equal to

ol
ITlleo = sup ;
P O 1

where the notation ||ul|, denotes the hy—norm of
the causal sequence {uy}, viz., ||ull} = 352 ulus.



The H® norm can thus be regarded as the maxi-
mum energy gain from the input u to the output y.

I1.1 Problem Statement
We consider a state-space model of the form

Figi + Givi  , %o
Hizi + v, (1)

Ti+1 =
¥ =

where z¢, {u;}, and {v;} are unknown quantities and
v; is the measured output. Let z; be linearly related
to the state x; via a given matrix L;, viz., zi = L;z;.

We shall be interested in the following two prob-
lems. Let %) = F¢(Yo, 1, .-, %) denote the es-
timate of z; given observations {y;} from time 0
up to and including time i, according to a cer-
tain error criterion to be made precise ahead, and
let 3 = Fp(yo,¥1,.--,¥i-1) denote the estimate
of z given observations {y;} from time 0 to time
i — 1. This defines two estimation errors: the fil-
tered error €5 ; = %) — Lix;, and the predicted error
€pi = 2,‘ - L,':L‘i.

Let Ty (7,) denote the transfer operator that
maps the unknown disturbances {Hallz(zo -
&0), Ui, vi} to the filtered (predicted) error ey, (ep,i),
where & denotes an initial guess of g and Il de-
notes a positive definite matrix that reflects apri-
ori knowledge as to how close zg is to the initial
guess Z9. The H™ estimation problem(s) can now
be stated as follows.

Optimal H>® Problem. Find H® optimal es-
timation strategies Z); = fj(yo,yl,.--,yi) and

% = Fplyo, v1, - - -, Yi-1) that respectively minimize
| T5 lloo and || Tp lloo, and oblain the resulting
7;,0 = inf]:! If Ty “gos and 7;,0 = infF, I} Tp “go:
where 7%0 =

2
o s ey 11

75 o (w0 — #0)*Tlo " (z0 — &)+ [ w 1§ + [ v I}
u € hy

v € hy

and 72, =
2
nf  sup llep II3

Fp zo (w0 — &0)*Tlo ~*(wo — &o)+ [l w |1 + Il v |13

u € hg
v € hy

The distinction between the strictly causal F

and the causal F; is significant since the solution
to the H™ problem, as we shall see, depends on the
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structure of the information available to the estima-
tor. We can also infer from the above problem that
the robust behaviour of H® optimal estimators is
because they guarantee the smallest estimation er-
ror energy over all possible disturbances of fixed en-
ergy.

A closed form solution of the optimal H* prob-
lem is available only for some special cases (one of
which is the adaptive filtering problem to be studied
here), and a simpler problem results if one relaxes
the minimization condition and settles for a subop-
timal solution.

Sub-optimal H*® Problem. Given scalars v5 >
0 and 7, > 0, find estimation strategies Zj; =
Tf(yolylx .. 'ayl') and 21’ = f?(yﬂayla ey i—l) that
respectively achieve || T} |loo< 77 and || Tp |0 < Yp-
This clearly requires checking whether y; > vy, and
717 Z 7p,o~

To guarantee || Ty [|c< 77 We shall proceed as
follows: let Ty ; be the transfer operator that maps
{11;1/2(x0 ~ &), {uj};:o,{vj}}=o} to the filtered
errors {eg; }j=0. We shall find a v; that ensures

|| Ty,i lo< 7y for all i. Likewise we shall find a 7,
that ensures || Tp,i ||oo< 7p for all <.

III. THE H* -FILTERS

We now briefly review some of the results on H*
filters using the notation of [8, 9].

Theorem 1 (Aposteriori Filter) For a given
4 > 0, if the F; are nonsingular (for j < i), then an
estimator with || Ty ||, <7 ezists iff

j=0,...,i (2)

where Po = Mo and P; satisfies the Riccali recur-
sion

P7'+ H;Hj =y *LjL; >0,

Py = Fy(P; 4 H3H, =4 LiL,) 7 F} + G,6; (3)

If this is the case, then one possible H* filter with
level v is given by %;); = L;j&;);, where £;); is recur-
sively computed as follows: £_1j—1 = &o,

&jp1j41 = Fidj) + Kp i (i1 — Hiw1 Fidj)5),
where Kf,j = Pj+1H;+1(I + H]'+1Pj+1H;+1)_1.

Theorem 2 (Apriori Filter) For a given v > 0,
if the F; are nonsingular (for j < i), an estimator
with | Ty ill,, < v exists iff

Prt= Pt —y7PLL >0,

; i=0,...,i (4)



where P; is the same as in Theorem 1. If this is
the case, then one possible H>® filter with level y is
given by 2; = L;#;, where

Zj1 = F3; + Kp j(y; — Hjg), &0
and K, ; = PH}(I + H; P H})="

Note that the above two estimators bear a strik-
ing resemblance to the celebrated Kalman filter, and
that the major difference is that the P; and P; sat-
isfy Riccati recursions that differ from that associ-
ated with the Kalman filter. Also, as v — oo the
Riccati recursion (3) collapses to the Kalman filter
Riccati recursion, suggesting that the H*° norm of
the Kalman filter may be quite large. It is also in-
teresting to note that, contrary to the Kalman filter,
the structure of the H> estimators depends, via the
Riccati recursion (3), on the linear combination of
the states that we intend to estimate (i.c. the L;).
Intuitively, this means that the H filters are specif-
ically tuned towards the linear combination L;z;.

The filters of Theorems 1 and 2 are among many
possible filters with level 4. Their full parametriza-
tion is given as follows (see also [9]).

All Aposteriori Filters. All H® aposteriori esti-
mators that achieve a level v (assuming they exist)
are given by

Z = Liggi+[I - L(P7Y + HYH)' L3
i ({0 + BP DA Gy — Hy))in0)

where &;); is given by Theorem 1, and S(ai, ..., a0)

is any (possibly nonlinear) contractive causal map-
ping of the form

So(ao)
S1(a1,a0)
S= .
Si(ai,...,a0)
and satisfies Z;.=0 ISi(aj,--.,a0)2 < Z:.:o aj|2.

All Apriori Filters. All H® apriori estimators
zhat achieve a level v (assuming they exist) are given
Y
% = L& +[I-LPLY3

S ({(1 + H;PH})~ 3 (y; - H;z;), }}:3)

where #; and P; are given by Theorem 2, and S is
any (possibly nonlinear) contractive causal mapping
as above.

The filters of Theorems 1 and 2 are known as the
central filters and correspond to & = 0.
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IV. THE H*-ADAPTIVE PROBLEM

Suppose we observe an output sequence {d;} that
obeys the following model:

d; = hyw+ v; (5)

where h; = [ hi(i) ha(d) hu(@i) ] is a
known 1 x M input vector, w is an unknown M x 1
weight vector, and v; is an unknown disturbance,
which may also include modelling errors. We shall
not make any assumptions on the noise sequence
{vi}, such as stationarity, whiteness, normal dis-
tributed, etc. Equation (5) can be reformulated into
a state-space model as follows:

iy, = I; , To=w
d; hiz; +v;. (6)

This is a relevant step since it reduces the adap-
tive filtering problem to an equivalent state-space
estimation problem. This point of view has been re-
cently used in [10] where a unified square-root-based
derivation of exponentially-weighted RLS adaptive
algorithms is obtained by reformulating the origi-
nal adaptive problem as a state-space linear least-
squares estimation problem and then applying var-
ious algorithms from Kalman filter theory. Here we
shall instead apply the H* filters to the state-space
model (6) and show that they collapse to the LMS
and normalized LMS algorithms.

Consider the uncorrupted output z; = h;z; of
(6). As before, define the estimates #; and %;, the
estimation errors e;; and e, ;, and the transfer op-
erators Ty and Tj.

H> Adaptive Problem. Find H®-optimal es-
timation strategies z; = Fy(do,dy,...,d;) and
% = Fp(do, di, ..., di~1) that respectively minimize
| T |loo and || Tp ||co, and obtain the resulting

2
2 . 2 _ . Hes i3
V%o =inf || Ty ||5=inf sup —
o = s e o T i PH T TR

()

and

2
2 . 2 _ . Il ep |13
Yp,0 = inf || T =inf sup ~
pe Fp I p“w Fp w,u€hy l‘—llw_w|—1|2+”'"”g ’

where p1 is a constant that reflects apriori knowledge
as to how close w is to the initial guess Wy_1.
V. MAIN RESULT
We now show that if we specialize the recursions

of the apriori and aposteriori H® filters to the state-
space model (6), then the LMS and the normalized



LMS algorithms readily follow. We first add the
assumption that the input vectors h; are exciting,

that is My Yoreg hih] = 0.

Theorem 3 (Normalized LMS)

Consider the state-space model (6), and suppose we
wani to minimize the H® norm of the transfer op-
erator Ty ; from the unknowns w and {v; Y=o to the
filtered error {es; = 2j); — hjwYi—o. If the input
data {h;} is ezciting, then the minimum H™ norm
is Yopt = 1. In this case, the central optimal H®
aposteriori filter is 5;); = hjw);, where Wy; is given
by the normalized LMS algorithm with parameter pu:

Bhiy

1+uhj+1h;+1( j+1 i+l |.7)

Wj41 = Wi +

Intuitively it is not hard to convince oneself that
Yopt cannot be less than one. To this end, sup-
pose that the estimator has chosen some initial guess
j_1. Then one may conceive of a disturbance that
yields an observation that coincides with the output
expected from )y, i.e., hit-1 = hiw+ v; = d;.
In this case one expects that the estimator will not
change its estimate of w, so that w;; = w)_ for all
i. Thus, the filtered error is e;; = hyl); — hiw =
hiy -1 — hiw = v;, and the ratio in (7) can be made
arbitrarily close to one.

Theorem 4 (LMS) If we instead want to mini-
mize the H® norm of the transfer operator Tp,i from
the unknowns w and {v;};_o to the predicted error
{ep,j = 2 — hjw}§=0, and assuming the input data
{h;} is exciting and

0 < p < inf(1/hih) ,
L3

then the minimum H™® norm is Yopt = 1. More-
over, the central optimal apriori H filter is 2; =
hityj_1, where W);_, is given by the LMS algorithm
with learning rate p, viz.,

W) = W1+ phj(dj — hjdyj—y).

The above result gives a bound on the learning
rate p in order to guarantee the H* optimality of
LMS, which is in agreement with the well known
fact that LMS behaves poorly if the learning rate is
chosen too large.

We remark that if the input data is not exciting,
then the LMS and normalized LMS algorithms will
still correspond to ¥ = 1, but will now be subopti-
mal.
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Figure {: Maximum singular value of the transfer operators
Tims, N (1) and Ty n(u) as a function of N, for u = .9 and
u=1.5.

V.3 A Simulation

We have thus seen that LMS and normalized
LMS ensure that the energy of the estimation er-
rors never exceeds that of the disturbances. This is
not true for other estimators, such as the recursive
least-squares (RLS) algorithm [2], as we illustrate
by an example.

For this purpose, we consider a special case of
model (6) where h; is taken as a scalar that ran-
domly takes on the values +1 and —1. In this spe-
cial problem, p must be less than one to guarantee
the H® optimality of LMS. We thus choose the two
values 1 = .9 and g = 1.5 (one greater and one less
than g = 1). The results are illustrated in Figure
1 where the maximum singular values of Tims,~ ()
and Ty, v(p) (the transfer operators from the dis-
turbances to prediction errors for LMS and RLS,
respectively) are plotted against the number of ob-
servations N. As expected, for 4 = .9 the maximum
singular value of Tims,n () remains constant at one,
whereas the maximum singular value of Tris v (1) is
greater than one and increases with N. For p = 1.5
both RLS and LMS display maximum singular val-
ues greater than one.

The worst case RLS and LMS disturbance sig-
nals are found by computing the maximum singular
vectors of Tris,50(.9) and Tims 50(.9), and are shown
in Figure 2. As can be seen from Figures 2b and 2d
the LMS predicted error goes to zero while the RLS
predicted error does not (in Figure 2b it is actually
biased). The worst case disturbances (especially for
RLS) are interesting; they compete with the true



-

Figure 2: Worst case disturbances, and the corresponding
predicted errors, for RLS and LMS in the u = .9 case. (a)
Solid line represents the uncorrupted output h;z; and the
dashed line represents the worst case RLS disturbance. (b)
The dashed line and the dotted line represent the RLS and
LMS predicted errors, respectively, for the worst case RLS
disturbance. (c) Solid line represents the uncorrupted out-
put h;z; and the dashed line represents the worst case LMS
disturbance. (d) The dashed line and the dotted line repre-
sent the RLS and LMS predicted errors, respectively, for the
worst case LMS disturbance.

output early on, and then go to zero.
V.4 Discussion

In the beginning of this section we motivated the
Yopt = 1 result for normalized LMS by considering a
disturbance strategy that made the observed output
d; coincide with the expected output hiwj_y. Tt is
now illuminating to consider the dual strategy for
the estimator. Such a strategy would be to construct
an estimate that coincides with the observed output,
viz.,

2,",' = d,' (8)

The corresponding filtered error is e fi = Epi —
hizi = d; — h;z; = v; so that the ratio in (7) can be
made arbitrarily close to one, and the estimator (8)
will achieve the same Yopt = 1 that the normalized
LMS algorithm does. The fact that the simplistic es-
timator (8) (which is obviously of no practical use)
is an optimal H® aposteriori filter seems to ques-
tion the very merit of being H* optimal. The point
is that H* estimators that achieve a certain level v
are nonunique, and while the property of being H*
optimal may be desirable in several instances, differ-
ent estimators in the set of all H* optimal estima-
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tors may have drastically different behaviour with
respect to other desirable performance measures.

The LMS and the normalized LMS algorithms
correspond to the so-called central filters. These
are also risk-sensitive optimal filters, i.e., they meet
a certain exponential cost criterion, and can also be
shown to be maximum entropy.

VL. ALL H*-ADAPTIVE FILTERS

Using the parametrization theorems of Section
III, we can parametrize all optimal H* apriori and
aposteriori adaptive filters. All H* optimal aposte-
riori adaptive filters that achieve Yopt = 1 are given
by

. . _1
i o= R+ I+ ulhif?)"3

S ({4 P& - bz

where £;); is the estimated state of the normalized
LMS algorithm with parameter , and S(a;, . .., ag)
is any (possibly nonlinear) contractive causal map-
ping as described before.

The choice § = 0 yields the normalized LMS,
whereas § = I (the identity map) yields 2 = d;,
the estimator in (8).

If the input data {h;} is exciting, and the bound
on u is satisfied, then all H* optimal apriori adap-
tive filters are given by

G o= kit (I-plhi?)s
s ({0 = umsPy3 s - b33

where Z; is the state estimate of the LMS algorithm
with learning rate y, and § is any (possibly nonlin-
ear) contractive causal mapping.

As before, S = 0 yields LMS. However, the choice
8 = I yields the highly nontrivial estimator 3; =
higi + (I = plhil?)3 (I = plhi_y|?) ¥ (dioy — hi_18;).

VII. RISK SENSITIVE OPTIMALITY

We now focus on a certain property of the cen-
tral H® filters, namely the fact that they are risk-
sensitive optimal filters (see, e.g., [11]). This will
give a stochastic interpretation for the LMS algo-
rithm in the special case of disturbances that are
independent Gaussian random variables.

Theorem 5 (Normalized LMS)

Constider the state-space model (6) where the w and
{vj} are now assumed independent Gaussian ran-
dom variables with means W)-1 and 0, and variances



ul and I, respectively. The solution to the following
minimization problem

1
{rpin pyi(0) = {rpin} (2109 [Eexp(ﬁCf,;)]>

;153 [

where Cpi = Yi_g€pqesi, and the expectation
is taken over w and {v;} subject to observing
{do,d1,...,d;}, is given by the normalized LMS al-
gorithm with parameter y.

Theorem 6 (LMS) Consider the same model (6)
where the w and {v;} are assumed independent
Gaussian random variables with means w_; and
0, and variances ul and I, respectively. Suppose,
moreover, that the {h;} are exciting and that the
bound on p is satisfied. Then the solution to the
following minimization problem

. . 1
min pp,i(0) = min (2109 [Eexp(gcp,z)])

where Cpi = Y i_o€p€pi, and the ezpectation
is taken over w and {v;} subject to observing
{do,dy,...,di~1}, is given by the LMS algorithm
with learning rate p.

Some intuition regarding this result can be gained
by elaborating on the above cost functions. These
are convex and increasing functions in Cy; and
Cp,i- Such a criterion is termed risk-averse (or pes-
simistic) since large weights are on large values of
C},i (or Cp,;), and hence we are more concerned with
the occasional occurrence of large values than with
the frequent occurrence of moderate ones. Thus
LMS and normalized LMS are risk-averse filters that
avoid the occasional occurrence of large estimation
error energies, at the expense of admitting the fre-
quent occurrence of moderate values of estimation
error energy.

VIII. CONCLUDING REMARKS

We have demonstrated that the LMS algorithm is
H™ optimal. This result solves a long standing issue
of finding a rigorous basis for the LMS algorithm,
and also confirms its robustness.
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