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ABSTRACT

We show that several applications recently con-
sidered in the context of H® —filtering and game
theory, risk sensitive control and estimation, follow
as special cases of the Krein space Kalman filter de-
veloped in the companion paper [1]. We show that
these problems can be cast into the problem of cal-
culating the stationary points of certain second or-
der forms, and that by considering appropriate state
space models and error Gramians, we can use the
Krein space Kalman filter to recursively compute
these stationary points and to study their proper-
ties.

I. INTRODUCTION

Classical results in linear least-squares estimation
and Kalman filtering are based on an L2-criterion
and require apriori knowledge of the statistical prop-
erties of the noise signals. In some applications how-
ever, one is often faced with model uncertainties and
lack of statistical information on the exogenous sig-
nals, which has led to an increasing interest in min-
imax estimation (see, e.g., [2]-{8] and the references
therein), with the belief that the resulting so-called
H* algorithms will be more robust and less sensi-
tive to parameter variations.

Although the general consensus is that the fil-
ters obtained for H estimation are totally differ-
ent from the conventional Kalman filter, we shall
presently show that they are nothing more than cer-
tain Krein space Kalman filters. In other words, the
H® filters can be viewed as recursively perform-
ing a (Gram-Schmidt) orthogonalization (or projec-
tion) procedure on a convenient set of observation
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data that obey a state-space model with entries in
an indefinite metric space. This is of significance
since it yields a derivation of the H* filters that
is, in several respects, simpler than those given in
the literature, and because it unifies H, and H™
estimation in a simple framework. Moreover, once
this connection has been made explicit, many known
alternative and more efficient algorithms, such as
square-root arrays and Chandrasekhar equations,
can be used in the H®—setting as well. Finally,
we should note that our results deal directly with
the time-variant scenario, and that we restrict our-
selves here, for brevity, to the discrete-time case.
However, one should be able to reproduce the con-
tinuous time analogs following the same principles.
Many of the results discussed here were obtained
earlier by several other authors, and using different
methods and arguments. Our approach, we believe,
provides a powerful unification, with immediate in-
sights to various extensions.

As was done in the companion paper [1}, we shall
use bold letters to denote elements in a Krein space.
We shall also use Z to denote the estimate of z based
on some observations (according to a certain error
criterion), and 7 to denote the estimate of 2 provided
by the Krein space Kalman filter (¢f. Theorem 2
in [1]), thereby stressing the fact that they need not
coincide. This distinction will become clear later.

II. H,, ESTIMATION

We begin with the definition of the H°—norm
of a transfer operator. Let hy denote the vector
space of square summable causal sequences {fe, 0<
k < oo}, with inner product < {fi},{gx} > =
S o frgr , where x denotes complex conjugation.
Let T be a transfer operator that maps a causal in-
put sequence {u;} to a causal output sequence {yi }.
The H™ norm of T is equal to

sup Hyll2

Tl = ,
*© ueha,u¢0||“\|2

where the notation ||u||, denotes the ha—norm of



. 2 o0 *
the causal sequence {uy}, viz., ||ull; = > peo®iur.
The H*™ norm can thus be regarded as the maxi-
mum energy gain from the input u to the output y.

I1.1 Formulation of the H® Problem

We consider a state-space model of the form

ziqn = Firi+Giwi , 2o
v = Hizi+v, 1)

where 2o, {u;}, and {v;} are unknown quantities and
i is the measured output. Let 2; be linearly related
to the state z; via a given matrix L, viz., z; = L;z;.

We shall be interested in the following two prob-
lems. Let Zj;; = Fy(yo,,...,%) denote the es-
timate of z; given observations {y;} from time 0
up to and including time i, according to a cer-
tain error. criterion to be made precise ahead, and
let % = Fp(yo,¥1,.-.,¥i-1) denote the estimate
of z; given observations {y;} from time 0 to time
i — 1. This defines two estimation errors: the fi-
tered error e;; = Z); — Liz;, and the predicted error
€pi =% — Lix;.

Let Ty (Tp) denote the transfer operator that

structure of the information available to the estima-
tor. We can also infer from the above problem that
the robust behaviour of H* optimal estimators is
because they guarantee the smallest estimation er-
ror energy over all possible disturbances of fixed en-
ergy.

A closed form solution of the optimal H* prob-
lem is available only for some special cases (one of
which is the adaptive filtering problem studied in
[9]), and a simpler problem results if one relaxes the
minimization condition and settles for a suboptimal
solution.

Sub-optimal H* Problem. Given scalars v; >
0 and v, > 0, find estimation strategies Z); =
‘Ff(y())yly . 'ryl') and Z = }-P(yO) Yi,.-. 'vyi—l) that
respectively achieve || Ty |loo< 77 and || Tp ||co < 7.
This clearly requires checking whether vy > v;,, and
T 2 Ypo-

We shall replace the condition || T} ||eo<
y7 by the following procedure: let 7j; be
the transfer operator that maps the disturbances

{HEI/Z(:L'O - &), {uj}:;:m {vj}}:d} to the filtered

maps the unknown disturbances {II; Y Z(ro - errors“{ef,j }}:Q' We shall find a v, that ensures
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A similar argument applies to ||Tpill,, < 7p. In
satisfies Jy; > 0. this case we consider the quadratic form: Jp; =

-1 . i *
. zoll "2k + _aurug+
Now observe that we can rewrite J; as follows: 958+ Lmo 4k

Jgi :zsﬂglxo-{-z;ﬂou;uk-}— i
Z(yk — Hyzp)* (yx — Hyog) —

(-] (][]

—yp~2 E(fk — Lgxy)* (3 — Lixy)

where R; = (I & —v7I). This is a special case of k=0
the quadratic expression of Lemma 2 in the com- and construct the auxiliary Krein state-space model
panion paper [1], and it suggests that we introduce
the following auziliary state-space model: Xit1 = FEixi+Giu
‘ Z; L;
Xi41 = Fixi+Giwg [ :1 ] [ H:- ]xi + w; (3)

[ 2]

where the disturbances {xo,u;, w;} are assumed to
be elements in a Krein space K with < u;,u; >x=
15,‘]’, < Xp,%Xq >x= I, and < Wi, W; >K= Rj&,’j.

[ ]waw. @ . |
i with R; = (—731 @ I), @i, and Io. Following the
same reasoning as before, an H* apriori estimator
of level v, will exist iff Zx can be chosen so as to
guarantee J, ; > 0 for all possible disturbances.

Observe that we have to consider elements in a IV. THE H® —_FILTERS
Krein space since the Gramian matrix R; is indef-
inite. It is thus clear that the corresponding re- We are now in a position to write down the fil-
cursive estimation algorithm of Theorem 2 in the tered (aposteriori) and predicted (apriori) H* — fil-
companion paper [1] computes a stationary point of ters.
the above J;;. Comparing the above state-space
model with that in Theorem 1 in [1] we see that Aposteriori Filter. For a given v; > 0, o
we can identify the quantities (y;,vi, Hi, Qi, R;) in the {F;};—o are nonsingular, then the second-order
Theorem 1 with the quantities form satisfies Jp; > 0 iff for all j = 0,...,1, we
have P71+ HYHj — 4y~ 2L5L; > 0, where Py = Ilp
Yi H; I 0 7 atish oot Tecursion:
K Wi, 1, 2 , and P; satisfies the Riccali recursion: Pij1 =
(EARA AR EIT)
respectively. The following result is then expected, ' . H » . . -1
and shows why finding a stationary (in fact, a EE [ H L ]{RJ+[ L, ]P’[ o ]}
minimum) point for J;; is necessary to guarantee .
Jsi > 0. ' “ yes }IL:] ]PfFJ‘ s By= U@y
Lemma 2 The scalar second-order form Jf),‘ satis- If this is the case, then one possible ﬁ]tergd Hee ﬁ]-
fies Jpi > 0 iff J;; has a minimum with respect ter with level v; is given by Zj); = L;&;);, where
to {xp, uq, ..., u;}, and the value at the minimum is &_1)-1=0,

positive, viz.,
Tip1)j+1 = Fi5 + Kij (Y541 — Hi1F325), (4)

. * * -1 Ey»k -
kz [ €yt €k ] R [ €k ] >0, and Ky j =Py H (I + Hj 1 P HY )7L
=0
eu Ve etk We should remark that the above filter is one
where [ ey’k ] = [ s ] - [ ik'k_l ] s the in- among many possible filters with level ;. All fil-
LEas ] kle J =11 ters that guarantee J;; > 0 can be parametrized as
novations oblained by writing down the Krein space follow '
Kalman filter of Theorem 2 in [1] that corresponds Oliows.
- ‘ L e .
to the state-space model (2), and Yelk=1 | 4o the Theorem 1 All aposteriori H™ estimators that
Zrk—1 achieve a level v; (assuming they exist) are given

, : ) ‘ ) . by 5y = Lid; + I — Li(P~! + H*H)-1L*) 3.
estimate of [ gy}; ] that is obtained via the Krein yo= @i+ [ (P74 HEHO) L
k|k

space Kalman filter. Si ((1+ H:P,H})E (v - Hi&ii),. -0y

3497



L+ HoPoHE) (1o — Hotap) )

where S is any (possibly nonlinear} contractive
causal mapping of the form

50((10)
S1(a1,a0)

S(aiy...,a0) =

Sd(“-n“-yao)

and satisfies E;=0 |Sj(aj,--.,a0)|? < Z;:O laj|?.

Note that although the aposteriori filter given
in the beginning of this Section is linear, the full
parametrization of all H® aposteriori filters with
level 4; is given by a nonlinear causal contractive
mapping S. The filter (4) is known as the central
filter, and corresponds to S = 0. It has a number of
other interesting properties: it corresponds to the
risk-sensitive optimal filter (see, e.g., [10]), and can
be also shown to be the mazimum entropy filter [11].
Moreover, in the game theoretic formulation of the
H® problem, the central filter corresponds to the
solution of the game.

Apriori Filter. For a given 7, > 0, if the {F;}
are nonsingular, then the second-order form sa}is es
Jp, >0 iffforallj=0,1,...i+ 1, we have P‘

=1 2LjLj > 0, where P; is the same as in
t}fe aposterzorz filter. If this is the case, then one
possible H™ apriori filter with level v, is given by
#0=0, % = L;#,

Tiy1 = Fj&; + Ko j(y; — Hjzj) (5)

where IX’QJ = F}PJH;(I + HijH;)_l.
We again have a full parametrization of all H*®
apriori estimators.

Theorem 2 All H® apriori estimators that
achieve a level v, (assuming they exist) are given

by = Lisi+[I- L:PLN3.
Si ((1+ Hia By HY ) Y (yior - Hisagia),..,
T+ Ho Py HY) ™% (yo — HowO))
where S is as before.
IV.1 The H*®—Smoother
If instead of J;; and Jp;, which correspond

to the aposteriori and apriori filters, respectively,
we consider the quadratic form J,; = zolly 'zl +

: *
2o ViUt

i
Ek_o(yk ~ Hyzy)* (yx — Hezp)—
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;
—vs 72 Z(Z'kh‘ = Lyxg)* (ki — Lrz),

k=0

then we are led to H* smoothers. The main dif-
ference between J, ; and the previous second-order
forms is that Zy; and Z;_; have been replaced
by Zji, i.e., filtered and predicted estimates have
been replaced by smoothed estimates. Once more,
an H® smoother of level 7, is said to exist iff there
exists some Z); such that J,; > 0. The rather
interesting result stated below, and which has al-
ready been pointed out in the literature (see e.g.,
[4, 7, 12]), is that the H™ smoother is identical to
the conventional H? smoother.

Theorem 3 For a given vy, > 0, if the {F; }J_0
are nonsingular, then the second-order form sat-
zsﬁes Jsi > 0 4ff for all j = 0,1,...4, we have
Py '+ H; Hf - ‘ZL*L, > 0, where F‘J is the same
as n the aposterzorz case. If this is the case, then
one possible H,, smoother is the H? smoother.

V. RISK SENSITIVE FILTERS

The classical Kalman filtering algorithm can be
viewed as a recursive procedure that minimizes a
convenient quadratic form. There has also been in-
creasing interest in an alternative so-called ezponen-
tial cost function [10, 13, 14], which is risk sensitive,
in the sense that it depends on a real parameter that
determines whether more or less weight should be
given to higher or smaller errors. The correspond-
ing filters have been termed risk-sensitive and in-
clude the Kalman filter as a special case. In what
follows, we shall show that the risk-sensitive filters
are also special cases of the Krein space Kalman fil-
ter derived in [1].

V.1 The Exponential Cost Function

We start with a state-space model of the form

Fizi + Giu;
Hizi+v;,

Tigl =
Yi

where zo, {v;}, and {v;} are now zero mean in-
dependent Gaussian random variables with covari-
ances Ilp, @;, and R;, respectively. We further as-
sume that the {u;} and {v;} are white-noise pro-
cesses. The conventional Kalman filter that esti-
mates the quantity z; = L;z; from {yo,91,..., 4} is
a linear estimator that performs the following min-
imization

mmE' 2:(zJ — Ljxz;)* (% - Ljz;)|

j=0



where 7; denotes the estimate of z; given the obser-
vations up to and including time j — 1. Moreover,
the expectation is taken over the Gaussian random
variables 2o and {u;} whose joint conditional distri-
bution is given by p(xo, U;|Y;) x e:cp(—%]z-), where
the symbol o stands for proportional to’ and J; is
equal to (using the fact that zg, {u;}, and {v;} are
independent, and that v; = y; — Hjz;):

i
JENNC o b *)TLl,,.
Ji = xolly " xo + E j:OuJ-Qj uj+

> o — Hiwy) Ry (9 = Hyzj).

The conventional Kalman filter computes the (one
step-ahead estimates), 2;1+1, as well as the innova-
tions signals e; = y; — Hi#;, and the minimizing
solution is given by # = L;z;. In the terminology of
[10], this filter is known as a risk-neutral filter.

An alternative criterion that is risk-sensitive has
been extensively studied in [10]-[14] and corresponds
to the following minimization problem

2 g
min g;(8) = min | ——log | Eexp(—5Ci)| | ,
iF] 4j [ 2

where Ci = Z;‘:O(éj - Ljd,‘j)*(éj - Lj.l:j). ThlS
criterion is known as an exponentiel cost function,
and any filter that minimizes p;(8) is referred to
as a risk-sensitive filter. The scalar parameter 8§ is
correspondingly called the risk-sensitivity parame-
ter. Some intuition concerning the nature of this
modified criterion is obtained by expanding p;(f) in
terms of # and writing,

ui(0) = E(C) - gvar(ci) +0(6%).

The above equation shows that for § = 0, we
have the risk-neutral case (i.e., the conventional
Kalman filter). When 8 > 0, we seek to max-
imize Eea:p(~%C,~), which is convex and decreas-
ing in C;. Such a criterion is termed risk-seeking
(or optimistic). When ¢ < 0, we seek to mini-
mize Eexp(—%C}), which is convex and increasing
in C;. Such a criterion is termed risk-averse (or pes-
simistic). In what follows, we shall see that in the
risk-averse case @ < 0, the limit at which the mini-
mization makes sense is the H® criterion.

V.2 Minimizing the Risk-Sensitive Criterion

Using the conditional distribution density func-
tion we can easily verify that

8 6 J
E(cxp(~§C.)) o~ v/ezp(—i(?,)ezp(-——;) dzo dU; ,
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which shows that the risk-sensitive criterion can be
alternatively written as follows: if 8 > 0 then it is
equivalent to

6 1
m_ax/ exp(—=C; — = J;) dxo dU;.
ER 2 2
If # < 0 then it is equivalent to

min]ea:p(—gc,- - %J,‘) dzq dU;.

25

This suggests that we define the second-order scalar
form J; = J; + 0C;=

-1 : -1
=G e+ ) wQ e+
i
Z O(UJ - HJ”J)‘Rj_l(yJ - Hjzj) +

i
¥
0D ol = L) (5~ Lyz)

If we now introduce the auziliary state-space model

X1 = Fixi +Giug
5l - | b |x+ws
[Yi] = [H‘]xz-%wz (6)

with < u;,u; >c= Qidij, < Xo,X0 >k= I, and
< wi,wj >x= (0711 & R;)6;j, Then the recursive
estimation algorithm of Theorem 2 in (1] that cor-
responds to (6) will compute a stationary point of
J;. We are thus led to the following result.

Theorem 4 For a given 8 > 0, the risk-sensitive
aposteriori estimation problem always has a solu-
tion. For a given 8 < 0, a solution ezxists iff
P,-"1 + HyH; + 6LfL; > 0, where Py = My and
Piy1= FPF} -

|+

ref oo {70 R

[ ]nte w0} G

In both cases the optimal risk-sensitive filler with
parameter 0 is given by Z); = Liy), 211 =0,

Eiprfisr = Fizip + Ky — HigiFiyg)
and Ky ; = Py H (1 + Higy Py HE )™

We can also construct an apriori filter similar to
what was done in the H® case.



Theorem 5 For a given 8 > 0, the apriori risk-
sensilive estimation problem always has a solution.
For a given 6 < 0, a solution ezists iff P~ = P71+
OLYL; > 0, where P; is the same as in the aeposte-
riort case. In both cases the apriori risk-sensitive
filter with parameter 0 is given by %; = L;&;,

Eip1 = Fidy + Ko i(yi — Hi&i) , &0 =0,
where K5 ; = F,-IS.'H,'*(I + Hz‘PiH.‘*)_l'

We can now state the striking resemblances be-
tween the H* and the risk-sensitive filters. The H°
filters obtained earlier are essentially risk-sensitive
filters with parameter 6=' = —7y;% (—7?). Note,
however, that at each level v¢(v,), the H® filters
are not unique, whereas for each 6, the risk-sensitive
filters are unique. Also, the risk-sensitive filters gen-
eralize to the # > 0 case. It is also noteworthy
that the optimal H™ filter corresponds to the risk-
sensitive filter with 6! = —y} (=42 ,), and that
@ is that value for which the minimizing property
of J; breaks down and g;(8) becomes infinite. This
relationship between the optimal H filter and the
corresponding risk-sensitive filter was first noted in
[15].

VI. CONCLUDING REMARKS

We have discussed problems in H*®— and risk-
sensitive estimation within the framework of the
Krein space Kalman filter theory developed in the
companion paper [1]. Several other applications
fit into the same framework such as finite mem-
ory adaptive filtering, H° —control, and will be dis-
cussed elsewhere.
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