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ABSTRACT

We develop a self-contained theory for linear esti-
mation in Krein spaces. The theory is based on sim-
ple concepts such as projections and matrix factor-
izations, and leads to an interesting connection be-
tween Krein space projection and the computation
of the stationary points of certain second order {or
quadratic) forms. We use the innovations process to
obtain a rather general recursive linear estimation
algorithm, which when specialized to a state space
model yields a Krein space generalization of the cel-
ebrated Kalman filter with applications in several
areas such as H®-filtering and control, game prob-
lems, risk sensitive control, and adaptive filtering.

I. INTRODUCTION

We have recently shown that H° —estimation
and control, and several related problems such as
risk-sensitive estimation and control, finite mem-
ory adaptive filtering, and others, can be studied
in a simple and unified way by relating them to
Kalman filtering problems not in the usual (stochas-
tic) Hilbert space but in a special kind of indefinite
metric space known as a Krein space. Though the
two types of spaces share many characteristics, they
differ in special ways that turn out to mark the dif-
ference between the LQG or H? theories and the
more recent H® theories. In this paper we develop
a self-contained theory for linear estimation in Krein
spaces. The ensuing theory is much more rich than
the conventional Hilbert space case, which is why
it yields a unified approach to the above mentioned
problems. We shall, for brevity, omit several details
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and most of the proofs, which will be published else-
where. For alternative points of view and for results
on H®—filtering and related questions, the reader
may consult [1]-[6], and the references therein.

The remainder of the paper is organized as fol-
lows. We introduce Krein spaces and define the
corresponding notion of projection in Section I.1.
Contrary to the Hilbert space case where projec-
tions are always unique, the Krein space projection
is unique (unambiguous) iff a certain Gramian ma-
trix is nonsingular. In Section II, we first remark
that while quadratic forms in Hilbert space always
have minima (or maxima), in Krein spaces one can
only assert that they will always have stationary
points. Further conditions will have to be met for
these to be minima or maxima. We explore this by
first considering the problem of finding a vector k to
stationarize a quadratic form < z—k*Y,z2—£k"Y >k
where < .,. >x is an indefinite inner product and
+ denotes conjugate transpose. Y is a collection of
vectors in the Krein space and z is a vector outside
the linear space spanned by the Y. If the Gramian
matrix Ry =< Y,Y >g is nonsingular, then there
is a unique stationary k*Y, which is given by the
projection of z onto the linear space spanned by the
Y; the stationary point will be a minimum iff Ry is
strictly positive definite as well. In a Hilbert space
of course, the nonsingularity of Ry and its strict
positive definiteness are equivalent properties, but
this is not true with Y in a Krein space.

Now in the Hilbert space theory it is well known
that a certain deterministic quadratic form (aris-
ing from a Bayesian approach to the problem)
is also minimized by the same element £*Y. In
the Krein space case, k*Y also yields a stationary
point of the corresponding deterministic quadratic
form, but now this point will be a minimum iff
Ry — RzyRy“lRYz is positive definite, where
the Rz, R,y, and Ry, are the usual Gramians
and cross Gramians of z and Y. In Krein space,
unlike Hilbert space, the conditions Ry > 0 and

Rz - RzYRY_lRYz > 0 need not hold simulta-



neously.

This simple distinction turns out to be crucial
in understanding the difference between H? and
H® estimation as we show in the companion pa-
pers (7, 8]. In the present paper, we continue with
the general theory, by exploring the consequences of
assuming that {z, Y} are based on some underlying
state-space model. This will then lead us to recur-
sions of the same form as those of the celebrated
Kalman filter, except that in Krein space the Ric-
cati variable P; and the innovations Gramian R, ;
are not necessarily positive (semi)definite. More-
over, the distinctions between the results for the
stochastic and deterministic quadratic forms stand
out quite clearly. These results are developed in Sec-
tions II and III.

I.1 Krein Spaces and Projections

A Krein space {K,< .,. >k} is a vector space
that satisfies the following: (i) K is linear over C,
the complex numbers, (ii) K possesses a bilinear
form < .,. >k such that for any x,y,z € K, and
for any a,b € C, we have < y,x >x = < x,y >k
and < ax+ by, z >x=a<x,2>x +b<y,z >,
and (iii) K admits a direct orthogonal sum decom-
position K = K4 @ K_ such that {Ky,< .,. >k}
and {K_,— < .,. >x} are Hilbert spaces, and
<x,y > = 0foranyx € K; andy € K_.
The symbol * denotes complex conjugation. Also,
elements in a Krein space will be denoted by bold
face letters.

Given z € K and the elements {yg,¥71,...,¥yN}
also in K, we define z to be the projection of z onto
the linear space spanned by {yg,y1,...,yN} iff
z = 2 + Z where z € span{yo,...,yn} and Z sat-
isfies the orthogonality condition < Z,y; >x= 0 for
i=0,1,...,N. It is straightforward to verify that
in a Hilbert space setting, projections always exist
and are unique, whereas in the general Krein space
setting, Z will exist and be unique iff the Gramian
matrix, Ry =< Y,Y >, is nonsingular. In this
case, Zisgiven by z =<2, Y >x <Y,Y >E1 Y=
R,yRJY.

II. QUADRATIC FORMS

It turns out that projections determine the sta-
tionary point of certain second-order forms. To
clarify this point, consider an arbitrary linear com-
bination ze(k) = k*Y of the observation vec-
tors {y;}. A natural object to study is the er-
ror Gramian E(k) =< z — ze(k),z — ze(k) >k
=Rz ~ R,yk -k Ry, + k*Ryk. In a Hilbert
space, where the inner product is positive definite,
E(k) is a norm and is a measure of the closeness
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of z and ze(k). That interpretation does not ex-
tend to Krein spaces, where a minimum of E(k)
does not necessarily exist. However, a stationary
point is always guaranteed to exist. The matrix
k, is said to be the stationary point of E(k) iff
koa is a stationary point of the scalar second-order
form a* E(k)a for all complex column vectors a, viz.,
d(a*E(k)a)/0(ka) = 0 at k = k,. Moreover, the
stationary point of E(k) is a minimum iff for all k
we have 82(a* E(k)a)/8(ka)® > 0.

Calculating the stationary point of E(k), and
the corresponding condition for a minimum, is now
straightforward and leads to our first result on the
significance of the Krein space projection of z on
the span of Y. If Ry is nonsingular, then the pro-
jection Z defined in the previous section is equal to

kY, where k, = R”Y1 Ry, is the stationary point

of E(k). Moreover, E(k,) = Rg — RzYRiflRYz
is a minimum iff Ry > 0.

We refer to this as a vector, or stochastic,
interpretation of the notion of projection since
{¥0:---,¥N} and z can be viewed as random quan-
tities in the special case of a Hilbert space of stochas-
tic variables. We can however consider a second in-
terpretation for the projection, which we shall refer
to as deterministic, because it involves computing
the stationary point of a certain scalar second or-
der form. To this end, consider the following scalar
second order form

J(z,Y) = [ z* Y*][Rli{zz [lt?.zg]—l[;]’

where z and Y are no longer bold face, mean-
ing that they are to be regarded as (ordinary)
vectors of complex numbers, and the quantities
Rz, R,y,Rvy,, Ry are as before. We can also ver-
ify that if Ry is nonsingular, then the stationary
point z, of J(z,Y) is given by 2z, = RzyRi(lY,
with J(2,,Y) = Y*R_YIY, and this point is a mini-
mum iff Rg — RzyRQI'RYz > 0.

This last result implies that the stationary point
2, is given by the exact same expression as the pro-
jection z defined above. It is important to clearly
understand what is shown here. The stationary
point 2o of the scalar quadratic form J(z,Y) is given
by a formula similar to that for the projection of a
Krein space vector z on the linear span of Krein
space vectors Y. However, z and Y are just vectors
in Euclidean space, with no Krein space involved,
and zg is not the “projection” of z on the vector
Y. What the above result shows is that by properly
defining the scalar quadratic form J(z,Y) using co-
efficient matrices Rz, Ry, R, vy, Ry, that are ar-



bitrary, but that can be regarded as being obtained
from Gramians and cross-Gramians of some vectors
z,Y in Krein space, we can get a result similar to
that of minimizing a matrix quadratic forms via pro-
jections in Krein spaces. This distinction does not
happen in the Hilbert space setting since the condi-

tions Rz — R,y R§'1RYz > 0 and Ry > 0 occur
simultaneously.

I1I. STATE-SPACE STRUCTURE

We now assume that the components {y;} of Y
arise from an underlying state-space model: x;j41 =
Fjxj + Gjuj, y; = Hjx; +v;j, where xo, {u;}, and
{v;} are assumed to be uncorrelated elements in a
Krein space K and such that < u;, 5 >x= Qibij,
< Vi,Vj >K= Rié,‘j. < X0,XQ >Kk= I, where 5,']'
denotes the Kronecker delta function. Let hjp =
H;Fj_1...Fy41Gy be the response at time j to an
impulse at time k < j (assuming xo = Dand vi =0
for all k), and define

Yo up | vo

y=| ¢ [\u=| i |.V=] ¢

YN un | VN
Then Y = Oxg + TU 4V, where
Hy .

H Fy hio 0
o= B » B= L hpo hor O
HyFy_1...Fo

In state-space estimation problems, one may re-
gard as fundamental quantities the projections of
xg and U onto the space spanned by Y, which we
shall denote by i0|N and ﬁ]N’ respectively. Note
that the span of {xq, U, V}is equivalent to the span
of {xg,U, Y} and hence, due to linearity, the pro-
jection of any other quantity of interest on Y can
be obtained as a linear combination of the i0|N’

leN and Y. Also, the Gramian of Y has the form
Ry = Ol,O" + rQr* + R, where we have defined
Q=Que@1®.. ®Qnand R = Ro®R1®.. . BRN.
We are then led to the following stochastic interpre-
tation.

Lemma 1 Suppose xg, U, and Y are related
through a state space model as above, and that Ry
is nonsingular. Then the stationary point of the er-

ror Gramian
|-[@][v]-[& ]

X0
<[%
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e
over all [ [xj% ] in the span of Y is given by

XN | _ [ I, 0 ] [
UIN 0 Q
which is the projection of[ x0

U ] on the span of Y.

Moreover, this stationary point is a minimum if,
and only if, Ry > 0.

0*

r* ]RY_IY 3

Now let us consider the (deterministic) scalar form
analog of Lemma 1. We shall first identify the corre-
sEon Ing scalar quadratic form. For this, we recall
that the projection of xg and U onto Y also yields
the stationary point (over zo and U) of the following
second order form,

-1
Rxo R'xoU B'xoY zo
[z v- v*]| Rux, Ru Ruy U
Ryx, Byu Ry

where we assume that the (ordinary) vectors 2o, U,
and Y obey the (state-space) constraints: ;11 =
Fjz; + Gju; and y; = Hjz; + vj, and where U and
Y are defined accordingly. To compute the actual
coefficient matrix in the above expression, it will be
convenient to make a change of variables through
the following easily verifiable relation:

X0 I 0 0 X0
Ul=10120 U ,
Y O T I \%

which implies that the above quadratic form is equal

to
0 -1 xo
0 U .
R \%
Lemma 2 The element

We are then led to the following deterministic inter-
[3\"‘0|N]=[Ho 0
Un

pretation.
* -1
¢ a[F e

is the stationary point of the following second order
form:

Iy 0
ve v ]l o Q
0o o

[ =

N
— a1, »n—-1,
IJn = zpll; Lo+zj=0uij uj
N
+Zj=0(yj — Hjz;)" Ry 'y — Hjs).

The value of Jy al the stationary point is Y*Ri,lY.

—



II1.1 Conditions for a Minimum

It remains to further explore the effect of the
state-space assumption on the condition that the
above stationary point is actually a minimum. We
recall that the condition is that the Gramian matrix

M=Rz - RzyRy“lRYz be positive,

T T T i
where z = [ x( U } . The assumption of
state-space structure gives

M, — HOO*R‘Q"OHD -IO*"Ry ~'TQ
-QI"Ry 0l Q-QI"Ry~'T

One characterization of the fact that M > 0 is
that the (1, 1) block entry and its Schur complement
must be positive definite. The (1, 1) is by definition
the norm of the error xg — i0|N’ e,

|

o - O* Ry~ OTlp =< x9—%oN X0 —%o|N >« = FPov

So one conclusion is Pyny > 0. As for the Schur
complement of the (1, 1) block entry of M, say A,
it can be shown that A-1 = Q-! + T*R"!T, so
that we have the following result.

Lemma 3 A necessary and sufficient condition for
the stationary point of Lemma 2 to be a minimum

is that Pyy > 0 and Q'+ T*"R-1r > 0.

Now Lemma 3 gives just one set of conditions for
testing the positivity of M. Many others can be
obtained by various congruence transformations on
M. We see that Lemma 3 involves the smoothing
error Poy. In ordinary least-squares theory, more
often computed is the one-step prediction error (the
innovations variance),

Pyy1 =< XN41 — XN41, XN41 — XN41 DK

where Xy 41 denotes the estimate of x4 based on
{¥0,...,¥~n}. Exploration of such facts leads us to
the result of Lemma 4, which will turn out to be
more useful than Lemma 3, for reasons that will
appear later. This does not mean, however, that
other sets of conditions may not be as or even more
useful in certain circumstances.

Lemma 4 Assuming that the {F;} are invertible,
then a necessary and sufficient condition for the sta-
tionary point of Lemma 2 to be a mintmum is that
Pyyi > 0 and Q7'+ T*R-ID — " Pyl C > 0,

where

C=|[ FxFnoy...FiGo FyFy_y...F2G Gy |-
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IV. RECURSIVE FORMULAS

The key consequence of state-space structure
in Hilbert space is that the computational bur-
den of finding the estimates and the error vari-
ances can be significantly reduced by using the cel-
ebrated Kalman filter recursions for the quantities
{Xi+1, P;}. We shall see that similar recursions hold
in Krein space as well, provided we have the addi-
tional assumption that Ry, is strongly nonsingu-
lar (or strongly regular), in the sense that all its
leading minors are nonzero. From the properties of
the Krein space projection described earlier, recur-
sive projection onto the {y;} is possible only if all
leading submatrices of Ry are nonsingular. The
condition of strong regularity is well known to im-
ply that Ry has a unique triangular decomposition
Ry = LDL", where D is diagonal and L is lower
triangular with unit diagonal. A very useful geo-
metric insight into this factorization is that it is an
easy consequence of a Gram-Schmidt orthogonaliza-
tion on the vectors {y;}. Namely, if we define the
innovations e; = y; — ¥;, where ¥; = ¥;);-1 = the
projection of y; onto the linear space spanned by
{¥o0,-..,¥j~1}, then the uniqueness of the triangu-
lar decomposition implies that

g
YN eN
so that D =< E,E >x= Re.

We should also point out that the value at the
stationary point of Jy in terms of the innovations
is given by Y*Ry "'V = E;vzo e; ;Jl-ej. Now the
state-space structure allows us to compute the inno-

vations recursively and efficiently. Moreover, once
the innovations have been found, many other esti-
mates such as iO]N and O N can also be readily
computed, as described at the end of this section.
The derivation leads to an extension of the Kalman
filter algorithm to Krein spaces.

Theorem 1 Consider the Krein-space state equa-
tions

0<i<N

xi+1 = Fixi + Gy,
Yi = Hixi+v;
with
u; g Q;bix 0 0
< | wvi|.,| vk >K= 0 Rjéjk 0
Xo Xo 0 0 Ho

Assume that Ry = [<.yi,y; >x] is strongly regu-
lar. Then the innovations can be computed via the



formulas

e = yi—-H,')A(,:, OSlSN
Xip1 = Fiki + Kpu(y: — Hix), %0 =0
K,i = FPH!R];

where R.; =< e;,e; >x= R; + H;P;H?, and the
{P;} can be recursively computed via the (Riccati)
recursions: Py = I,

Pi+1 = FiPiFi* - [\'p,iRe,iI(;,i + GIQ,G:

We note that x;41 is the projection of x;41 on
the linear span of {yo,...,yi}, and that P, =<
X; — Xi,X; —X; >x . The derivation of the above al-
gorithm follows the usual pattern as in the Kalman
filter theory (see, e.g., [9]) and is therefore not
repeated here. The only remark to be made is
that unlike the usual theory, none of the matrices
{Qi, Ri, R. i, P;} need be positive, and that the in-
vertibility of R, ; follows form the assumption that
Ry is strongly regular. Moreover, in Kalman fil-
ter theory there are many variations of the above
formulas such as the measurement update formu-
las, the time update formulas, the information fil-
ter form, and the square-root forms. These will be
discussed elsewhere. Furthermore, for constant sys-
tems, or in fact for systems where the time-variation
is structured in a certain way, the Riccati recursions
and the square-root recursions, both of which take
0O(n®) elementary computations (flops) per iteration
(where n is the dimension of the state-space), can
be replaced by the more efficient Chandrasekhar re-
cursions, which require only O(n?) flops per itera-
tion [10, 11]. We shall not present these square-root
and Chandrasekhar equations here, because, despite
their formal similarity with the Hilbert space case,
these recursions will only exist if the projection per-
forms a certain minimization. In this case even
though the R.; are not necessarily non-negative
definite, it turns out that their inertia has a cer-
tain property that allows generalized square-roots to
be defined, and appropriate square-root and Chan-
drasekhar recursions to be devised. This will be
done elsewhere.

Before closing this section we note that it is not
difficult to verify that the innovations can also be
used to recursively compute the projections iOIN

and leN as follows:

Z < X0, Xk >k H;R;}v.ek

k=0
i
“~ ~ * -1
4y = Z <uj, Xk >k Hi R, ek
k=0
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where the inner products satisfy the recursive for-
mulas

< xQ,Xj,] K= (Fi — KpiH;) < x9,%; >k,
< uj'ii+1 >c=(F; — pr,'Hi) < ll',ii >K,
with < Xo,).((] >c= Iy, < u;, x: 1 >k= QJ’G;,

J' )+
Kpi = FiPyH;R]', and P} = 7' + Hi Ry ' Hi.

IV.1 Recursive Estimation and Second-Order
Forms

The scalar quadratic form associated with pro-
Jecting xg and U onto Y has already been identified
in Lemma 2. We shall presently study the condition
for the existence of a minimum in more detail, and
present a recursive procedure for testing this condi-
tion.

Recall from Lemma 4 that if the {F;} are non-
singular then the condition for a minimum for the
scalar quadratic form can be expressed as Py > 0
and

Q'+I*R7!T - C Pgl,C>0. (1)

In order to identify the above condition, the follow-
ing result will be useful.

Lemma 5 (Complementary Model) Consider
the backwards state-space model

¢ = Frxt *uf ;

Xy = ijJ+1+HJuJ, N>j>0

c _ *C c

yj = ijj+1 + v; (2)
with < w§,uf >x= Rj'6, < vi,vi >x=
Q;léjk, and < va+1?va+1 >SK= _P1;41-1’ and
define the corresponding column veclor Y° =

y5T ijT Then Rye = Q7' +

*R™T - C* Py, C.

There are a variety of ways to motivate this state-
space model (for example via duality), however, we
shall pursue this line of thought elsewhere. Now that
we have identified the matrix in (1) as the Gramian
of a state-space model, we can recursively test con-
dition (1) by checking the positivity of the innova-
tions of this model. This is obtained by developing
the corresponding Krein Kalman filter for the back-
wards model.

Lemma 6 If the {F;} are nonsingular, then the
Gramian of the innovations of the complementary
state-space model is given by:

Qi'-G;P\G;, N2>2j>0,



where P; satisfies the usual Riccati recursion:

Pjy1 = FiPiF} — Ky jRe Ky ; + GiQ;G;

with K,; = FjP;R;}
Py=T, .

R.; = Rj + H;P;H} and

CRE

The condition for a minimum can now be writ-
ten as Py4y1 > 0 and n G* 1G, > 0

for j = 0,...,N. But it can be venf{ed that the
matrices (P,.H ® Q' — GIP3iG:) and (P! +
H}R;7YH;)"' @ Q;!) are congruent. Hence, we ob-

tain the following result, which is one of the most
important in this presentation, and will be of use in
a variety of applications.

Theorem 2 If Ry is strongly regular, then the
Krein space Kalman filter

Ziy1 = Fid; + K, ;¢4 20 =0,

with Ky, = F;PH!R;}, R.; = Ri + H;P,H}, ¢; =

vi — % = v — H;#;, and P; satisfying the Riccati
recursion
Pipy = P F}+GiQiGi —Kp iR i Ky , Po=1lo,

recursively computes the stationary point of the fol-
lowing second-order form

— -1 i -1, .
Ji = xolly zo+ E j:Ouij u;

+Z;=0(yj

over {z;} and {u;}, subject to the state-space con-
straint zj 41 = Fja; + Gjuj. The value of J; at the

stationary point is equal to Z;-oe*R— e;. If the

{F} ._o are nonsingular, then the stationary point
will correspond to a minimum iff, Q; > 0 and

- Hjz;) Ry H(y; — Hjzj)

p-1

= PN HIRVH > 0 forj=0,1, .

It also follows in the minimum case that Pj41 > 0
forj=0,1,..,¢

IV. CONCLUDING REMARKS

Briefly, the major conclusion is that given a de-
terministic quadratic form in Krein space, (to which
H*® problems lead almost by inspection), one can
relate them to a corresponding stochastic problem
for which the Kalman filter solution can be writ-
ten down immediately; moreover, the condition for
a minimum can also be expressed in terms of quan-
tities easily related to the basic Riccati equations
of the Kalman filter. Several applications are de-
scribed in the companion papers [7, §].

3494

REFERENCES

[1] G. Tadmor, “H* in the time domain: The
standard problem,” In American Control Con-
ference, pp. T72-773, 1989.

[2] P.P. Khargonekar and K. M. Nagpal, “Filter-
ing and smoothing in an H*>— setting,” IEEE
Trans. on Automatic Control, vol. AC-36, pp.
151-166, 1991

[3] T. Basar and P. Bernhard, H>-Optimal Con-
trol and Related Minimaz Design Problems - A
Dynamic Game Approach, Birkhauser, Boston,
Berlin, Basel, 1991.

[4) D. Limebeer, B.D.O. Anderson, P.P. Khar-
gonekar, and M. Green, “A game theoretic
approach to H control for time varying sys-
tems,” SIAM Journal on Control and Opti-
mization, vol. 30, pp. 262-283, 1992.

[5] U. Shaked and Y. Theodor, “H> —optimal es-
timation: A tutorial,” In Proc. IEEE Confer-
ence on Decision and Control, pp. 2278-2286,
Tucson, AZ, Dec. 1992.

[6] M. J. Grimble, “Polynomial matrix solution of
the H filtering problem and the relationship
to Riccati equation state-space results,” IEEE
Trans. on Stgnal Processing, vol. SP-41, no. 1,
pp. 67-81, January 1993.

[7] B. Hassibi, A. H. Sayed, and T. Kailath, “Re-
cursive linear estimation in Krein spaces - Part
IT: Applications,” in Proc. of this Conference.

[8] B. Hassibi, A. H. Sayed, and T. Kailath, “LMS
is H® —optimal,” in Proc. of this Conference.

[9] T. Kailath, Lecture Notes in Wiener and
Kalman Filtering.  Springer-Verlag, Berlin,
1980.

[10] M. Morf, G. S. Sidhu, and T. Kailath, “Some
new algorithms for recursive estimation in con-
stant, linear, discrete-time systems,” I[EEE
Transactions on Automatic Conirol, vol. AC-
19, pp. 315-323, 1974.

[11] A. H. Sayed and T. Kailath, “Extended Chan-
drasekhar recursions,” To appear in IEEE
Transactions on Automatic Control, 1994.



