LATTICE STRUCTURES FOR TIME-VARIANT INTERPOLATION PROBLEMS *

Ali H. Sayed, Tiberiu Constantinescu and Thomas Kailath
Information Systems Laboratory, Stanford University, Stanford, CA 94305, USA.

Abstract

We derive a recursive solution for a general timevariant interpolation problem of the Hermite-Fejér type, based on a fast algorithm for the recursive triangular factorization of time-variant structured matrices. The solution follows from studying the properties of an associated transmission-line. The line can be drawn as a cascade of first-order lattice sections, where each section is composed of a rotation matrix followed by a storage element and a tapped-delay filter. An application is made to a problem that arises in model validation.

I. INTRODUCTION

The successful application of interpolation problems in control and circuit theory has inspired the study of generalizations to the time-variant setting $[1,2,3,4,5]$. We describe here a computationally oriented solution for a general time-variant interpolation problem of the Hermite-Fejér type, based on a fast algorithm for the recursive triangular factorization of time-variant structured matrices $[5,6,7]$. We use the interpolation data to construct a convenient so-called generator for the factorization algorithm. The recursive algorithm then leads to a transmission-line cascade of first-order sections that makes evident the interpolation property. This is due to the fact that transmission lines have "transmission zeros": certain inputs at certain frequencies yield zero outputs. In the time-invariant case for example $[6,8,9]$, each section of the cascade can be characterized by a $p \times q$ rational transfer matrix $\Theta_{i}(z)$ say, that has a left zero-direction vector g_{i} at a frequency f_{i}, viz.,

$$
g_{i} \Theta_{i}\left(f_{i}\right) \equiv\left[\begin{array}{ll}
a_{i} & b_{i}
\end{array}\right]\left[\begin{array}{cc}
\Theta_{i, 11} & \Theta_{i, 12} \\
\Theta_{i, 21} & \Theta_{i, 22}
\end{array}\right]\left(f_{i}\right)=\mathbf{0}
$$

[^0] Politécnica da Universidade de São Paulo, Brazil.
which makes evident (with the proper partitioning of the row vector g_{i} and the matrix function $\Theta_{i}(z)$) the following interpolation property: $a_{i} \Theta_{i, 12} \Theta_{i, 22}^{-1}\left(f_{i}\right)=-b_{i}$. We shall extend this picture to the time-variant setting and describe the associated recursive solution.

II. TIME-VARIANT HERMITE-FEJÉR

We first introduce some notation and extend the notion of "derivatives" to the time-variant setting. We consider a finite-dimensional time-variant statespace model with a bounded upper triangular operator \mathcal{T}. The matrix entries of \mathcal{T} are denoted by $T_{i j}$ (of dimensions $r(i) \times r(j)$), and constitute the time-variant Markov parameters of the underlying state-space model: $\mathcal{T}=$

$$
\left[\begin{array}{ccccccc}
\ddots & \ddots & & & & & \\
& T_{-1,-1} & T_{-1,0} & T_{-1,1} & \ldots & & \\
& & T_{00} & T_{01} & T_{02} & \ldots & \\
& & & T_{11} & T_{12} & T_{13} & \ldots \\
& & & & \ddots & \ddots &
\end{array}\right]
$$

where T_{00} denotes the $(0,0)$ entry of T. We also introduce the symmetric functions $s_{k}^{(n)}$ of n variables (taken k at a time). That is, $s_{0}^{(n)}=1$, and

$$
s_{k}^{(n)}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{1 \leq i_{1}<\ldots<i_{k} \leq n} x_{i_{1}} x_{i_{2}} \ldots x_{i_{k}}
$$

Let $\{f(t)\}_{t \in \mathbf{Z}}$ (\mathbf{Z} is the set of integers) be a uniformly bounded sequence (over t) of scalar points inside the open unit disc. We then write $\mathcal{T}(f(t))$ to refer to the following expression:

$$
\begin{aligned}
\mathcal{T}(f(t)) & \equiv T_{t t}+f(t) T_{t-1, t}+f(t) f(t-1) T_{t-2, t}+ \\
& +f(t) f(t-1) f(t-2) T_{t-3, t}+\ldots
\end{aligned}
$$

In general, we define the $p^{\text {th }}$ order time-variant derivative at $f(t)$ by $\frac{1}{p!} \mathcal{T}^{(p)}(f(t)) \equiv$

$$
\sum_{m=0}^{\infty} s_{m}^{(m+p)}[f(t), f(t-1), \ldots, f(t-m-p+1)] T_{t-m-p, t}
$$

For a uniformly bounded sequence (over t) of row vectors $\{u(t)\}_{t \in \mathbf{Z}}$, we define the time-variant tangential evaluation: $u(t) \frac{1}{p!} \mathcal{T}^{(p)}(f(t)) \equiv$
$\sum_{m=0}^{\infty} s_{m}^{(m+n)}[f(t), \ldots, f(t-m-p+1)] u(t-m-p) T_{t-m-p, t}$
We shall also use the notation $\mathcal{H}_{\mathcal{T}}^{x}(f(t))$ to refer to the following block-Toeplitz upper-triangular matrix (where $r \geq 1$ is a positive integer)

$$
\left[\begin{array}{cccc}
\mathcal{T}(f(t)) & \frac{1}{1!} \mathcal{T}^{(1)}(f(t)) & \cdots & \frac{1}{(r-1)!} T^{(r-1)}(f(t)) \\
& T(f(t)) & \cdots & \frac{1}{(r-2)!} T^{(r-2)}(f(t)) \\
& & \ddots & \vdots \\
& & & \frac{1}{1!} T^{(1)}(f(t))
\end{array}\right]
$$

We also denote by $\epsilon_{i} \equiv\left[\begin{array}{lll}\mathbf{0}_{1 \times i} & 1 & \mathbf{0}\end{array}\right]$ the $i^{\text {th }}$ basis vector of the n-dimensional space of complex numbers $\mathrm{C}^{1 \times n}$.

We now introduce and state a general timevariant Hermite-Fejér problem, which includes as special cases the time-variant versions of the Carathéodory-Fejér and Nevanlinma-Pick problems studied in [3, 4]. We consider m uniformly bounded (over t) time-variant points $\left\{\alpha_{i}(t)\right\}_{i=0}^{m-1}$ (not necessarily distinct) inside the open unit disc, and we associate with each point $\alpha_{i}(t)$ a positive integer $r_{i} \geq 1$ and uniformly bounded row vectors $\mathbf{a}_{i}(t)$ and $\mathbf{b}_{i}(t)$ partitioned as follows

$$
\begin{aligned}
& \mathbf{a}_{i}(t)=\left[\begin{array}{llll}
u_{1}^{(i)}(t) & u_{2}^{(i)}(t) & \ldots & u_{r}^{(i)}(t)
\end{array}\right] \\
& \mathbf{b}_{i}(t)=\left[\begin{array}{llll}
v_{1}^{(i)}(t) & v_{2}^{(i)}(t) & \ldots & u_{r}^{(i)}(t)
\end{array}\right]
\end{aligned}
$$

where $u_{j}^{(i)}(t)$ and $v_{j}^{(i)}(t)\left(j=1, \ldots, r_{i}\right)$ are $1 \times p(t)$ and $1 \times q(t)$ row vectors respectively.

Tangential Hermite-Fejér Problem: Given m uniformly bounded points $\left\{\alpha_{i}(t)\right\}$ with the associated data $r_{i}, \mathbf{a}_{i}(t)$, and $\mathbf{b}_{i}(t)$, describe all upper triangalar strictly contractive transfer operators \mathcal{S} $\left.\bigcap \mid \mathcal{S} \|_{\infty}<1\right)$ that satisfy $\mathrm{b}_{i}(t)=\mathbf{a}_{i}(t) \mathcal{H}_{\mathcal{S}}^{r_{i}}\left(\alpha_{i}(t)\right)$.

The first step in the solution consists in constructing three matrices $F(t), G(t)$, and $J(t)$ directly from the interpolation data: we define $J(t) \equiv$ $\left(I_{p(t) \mp} \mp-I_{q(t)}\right)$, and associate with each $\alpha_{i}(t)$ a Jor-
dan block $F_{i}(t)$ of size $r_{i} \times r_{i}$,

$$
\bar{F}_{1}(t)=\left[\begin{array}{cccc}
\alpha_{2}(t) & & & \\
1 & \alpha_{1}(t) & & \\
& \ddots & \ddots & \\
& & 1 & \alpha_{z}(t)
\end{array}\right]
$$

and two $r_{i} \times p(t)$ and $r_{i} \times q(t)$ matrices $U_{i}(t)$ and $V_{i}(t)$ respectively, which are composed of the row vectors associated with $\alpha_{i}(t)$,

$$
U_{2}(t)=\left[\begin{array}{c}
u_{1}^{(i)}(t) \\
\vdots \\
u_{r_{2}}^{(2)}(t)
\end{array}\right] \quad \text { and } \quad V_{i}(t)=\left[\begin{array}{c}
v_{1}^{(i)}(t) \\
\vdots \\
v_{r}^{(r)}(t)
\end{array}\right]
$$

Then $F(t) \equiv$ diagonal $\left\{\bar{F}_{0}(t), \ldots, \bar{F}_{m-1}(t)\right\}$ and

$$
G(t)=\left[\begin{array}{cc}
U_{0}(t) & V_{0}(t) \\
\vdots & \vdots \\
U_{m-1}(t) & V_{m-1}^{\prime}(t)
\end{array}\right] \equiv\left[\begin{array}{cc}
\mathbf{U}(t) & \mathbf{V}(t)
\end{array}\right]
$$

Let $n=\sum_{i=0}^{m-1} r_{i}$ and $r(t)=p(t)+q(t)$, then $F(t)$ and $G(t)$ are $n \times n$ and $n \times r(t)$ matrices respectively. We shall denote the diagonal entries of $F(t)$ by $\left\{f_{i}(t)\right\}_{i=0}^{n-1}$ (for example, $f_{0}(t)=\ldots=f_{r_{0}-1}(t)=$ $\left.\alpha_{0}(t)\right)$. We also associate with the interpolation problem the time-variant displacement equation

$$
\begin{equation*}
R(t)-F^{\prime}(t) R(t-1) F^{*}(t)=G(t) J(t) G^{*}(t) \tag{1}
\end{equation*}
$$

and we shall further assume that the interpolation data satisfy the following nondegeneracy condition, which is automatically satisfied in many special cases $[5,6,10]$.

$$
\begin{equation*}
\mathcal{U}(t) \mathcal{U}^{*}(t)>\mu>0 \quad \text { for all } t \tag{2}
\end{equation*}
$$

where μ is a fixed constant and $\ell(t) \equiv$

$$
\left[\begin{array}{llll}
\ldots & F(t) F(t-1) \mathbf{U}(t-2) & F(t) \mathbf{U}(t-1) & \mathbf{U}(t)
\end{array}\right]
$$

The above construction allows us to prove the following result $[6,10]$.

Theorem 1: The tangential Hermite-Fejér problem is solvable if, and only if, there exists a fixed constant $\epsilon>0$ such that $R(t)>\epsilon I$ for all t.

We shall say that $R(t)$ has a time-variant Toeplitz-like structure $[5,6,7]$ with respect to ($F(t), G(t), J(t))$ and $G(t)$ is called its generator matrix. We should stress at this point that we only know $F(t), G(t)$, and $J(t)$, whereas the matrix $R(t) \equiv\left[r_{i j}(t)\right]_{i, j=0}^{n-1}$ is not known a priori. In fact, the recursive solution described in the next section does not need $R(t)$ explicitly. It only uses $F(t), G(t)$, and $J(t)$.

III. RECURSIVE ALGORITHM

Let $l_{0}(t)$ and $d_{0}(t)$ denote the first column and the $(0,0)$ entry of $R(t)$ respectively. If we subtract from $R(t)$ the outer product $l_{0}(t) d_{0}^{-1}(t) l_{0}^{*}(t)$, then we clearly obtain a new matrix whose first column and row are zero,

$$
R(t)-l_{0}(t) d_{0}^{-1}(t) l_{0}^{*}(t)=\left[\begin{array}{cc}
0 & \mathbf{0} \tag{3}\\
\mathbf{0} & R_{1}(t)
\end{array}\right]
$$

The matrix $R_{1}(t)$ is called the Schur complement of $r_{00}(t)$ in $R(t)$. We now verify that $R_{1}(t)$ is also a time-variant Toeplitz-like matrix, i.e., it satisfies a displacement equation similar to (1). To check this, we let $g_{0}(t)$ denote the first row of $G(t)$. It then follows from (1) that

$$
\begin{aligned}
& l_{0}(t)=F(t) l_{0}(t-1) f_{0}^{*}(t)+G(t) J(t) g_{0}^{*}(t) \\
& d_{0}(t)=\left|f_{0}(t)\right|^{2} d_{0}(t-1)+g_{0}(t) J(t) g_{0}^{*}(t)
\end{aligned}
$$

Let $F_{1}(t)$ be the submatrix obtained after deleting the first row and column of $F(t)$. Using (3) we can readily check that $[5,6,7]$

$$
R_{1}(t)-F_{1}(t) R_{1}(t-1) F_{1}^{*}(t)=G_{1}(t) J(t)\left(r_{1}^{*}(t)\right.
$$

where $G_{1}(t)$ is related to $G(t)$ as follows

$$
\left[\begin{array}{c}
0_{1 \times r}(t) \\
G_{1}(t)
\end{array}\right]=F(t) l_{0}(t-1) h_{0}^{*}(t) J(t)+G(t) J(t) k_{0}^{*}(t) J(t)
$$

and $h_{0}(t)$ and $k_{0}(t)$ are arbitrary $r(t) \times 1$ and $r(t) \times$ $r(t)$ matrices respectively chosen so as to satisfy the embedding relation

$$
\left.\begin{array}{c}
{\left[\begin{array}{ll}
f_{0}(t) & g_{0}(t) \\
h_{0}(t) & k_{0}(t)
\end{array}\right]}
\end{array}\right]\left[\begin{array}{cc}
d_{0}(t-1) & 0 \\
0 & J(t)
\end{array}\right]\left[\begin{array}{ll}
f_{0}(t) & g_{0}(t) \tag{4}\\
h_{0}(t) & k_{0}(t)
\end{array}\right]^{*}=
$$

This shows that $R_{1}(t) \equiv\left[r_{i j}^{(1)}(t)\right]_{i, j=0}^{n-2}$ is indeed a time-variant Toeplitz-like matrix with respect to $\left(F_{1}(t), G_{1}(t), J(t)\right)$. This process can now be repeated by defining the Schur complement $R_{2}(t)$ of $r_{00}^{(1)}(t)$ in $R_{1}(t)$ and so on. In summary, if we let $l_{i}(t)$ and $G_{i}(t)$ denote the first columu and the generator of the $i^{\text {th }}$ Schur complement $R_{i}(t)$ respectively, then we can compactly write

$$
\begin{gather*}
{\left[\begin{array}{cc}
l_{i}(t) & \left.\begin{array}{c}
0 \\
G_{i+1}(t)
\end{array}\right]= \\
{\left[\begin{array}{ll}
F_{i}(t) l_{i}(t-1) & G_{i}(t)
\end{array}\right]\left[\begin{array}{cc}
f^{*}(t) \\
J(t) g_{i}^{*}(t) & h^{*}(t) k_{i}^{*}(t) J(t)
\end{array}\right]}
\end{array} .\right.} \tag{5}
\end{gather*}
$$

where $g_{i}(t)$ is the first row of $G_{i}(t)$, and $h_{i}(t)$ and $k_{i}(t)$ are arbitrary $r(t) \times 1$ and $r(t) \times r(t)$ matrices respectively such that $\left\{f_{i}(t), g_{i}(t), h_{i}(t), k_{i}(t), d_{i}(t)\right\}$

Figure 1: Time-variant transmission-line structure of the recursive algorithm.
satisfy an embedding relation similar to (4), with $d_{i}(t)=\left|f_{i}(t)\right|^{2} d_{i}(t-1)+g_{i}(t) J(t) g_{i}^{*}(t)$, and $F_{i}(t)$ is the $(n-i) \times(n-i)$ submatrix obtained after deleting the first row and column of $F_{i-1}(t)$.

The generator recursion (5) has a transmissionline picture in terms of a cascade of clementary (first-order) sections as shown in figure 1 , where each section depends on the parameters $\left\{f_{i}(t), y_{i}(t), h_{i}(t), k_{i}(t)\right\}$ and appears in state-spact form on the right-hand side of (5), viz..

$$
\begin{gathered}
{\left[\begin{array}{ll}
\mathbf{x}_{i}(t+1) & \mathbf{y}_{i}(t)
\end{array}\right]=} \\
{\left[\begin{array}{ll}
\mathbf{x}_{i}(t) & \mathbf{w}_{i}(t)
\end{array}\right]\left[\begin{array}{cc}
f_{i}^{*}(t) & h_{i}^{*}(t) \cdot J(t) \\
J(t) g_{i}^{*}(t) & J(t) k_{i}^{*}(t) J(t)
\end{array}\right]}
\end{gathered}
$$

where $\mathbf{x}_{i}(t)$ is the state, $\mathbf{y}_{i}(t)$ is the output, and $\mathbf{w}_{i}(t)$ is a $1 \times r(t)$ row input vector at time t (the Δ block represents a storage element where the present value of $l_{i}(t)$ is stored for the next time instant).

Let $\mathcal{T}_{i} \equiv\left[T_{l j}^{(i)}\right]$ denote the corresponding upper triangular transfer matrix, where $T_{l j}^{(i)}$ are the $r(l) \times r(j)$ time-variant Markov parameters defined by $T_{l l}^{(i)}=J(l) k_{i}^{*}(l) J(l), T_{l, l+1}^{(i)}=J(l) g_{i}^{*}(l) h_{i}^{*}(l+1) J(l+1)$, and

$$
T_{i j}^{(i)}=\begin{aligned}
& J(l) g_{i}^{*}(l) f_{i}^{*}(l+1) \ldots f_{i}^{*}(j-1) h_{i}^{*}(j) J(j) \\
& \text { for } j>l+1
\end{aligned}
$$

After n recursive steps (recall that $G(t)$ has n rows) we obtain a cascade of sections $\mathcal{T}=\mathcal{T}_{0} T_{1} \ldots \mathcal{T}_{n-1}$.

IV. BLOCKING PROPERTIES

Our purpose is to prove that all solutions S to the Hermite-Fejér interpolation problem can be parametrized in terms of a linear fractional transformation based on \mathcal{T}. Before proceeding further, we first state $[6,10]$ the implications of the uniform boundedness of the interpolation data $\left\{f_{i}(t), \mathbf{a}_{i}(t), \mathbf{b}_{i}(t)\right\}$ on the boundedness of the
quantities $d_{i}(t)$ and $g_{i}(t)$ that are needed in the recursive procedare.

Lemma 1: There erist positive comstants $b_{d}, c_{i d}$, and c_{g} such that $0<b_{d}<d_{i}(t)<c_{d}$ and $\left\|q_{i}(t)\right\|<c_{g}$ for all t.

Moreover, it is always possible (see [6, 10] and the next section) to choose uniformly bounded sequences $\left\{h_{i}(t), k_{i}(t)\right\}_{t \in \mathbf{Z}}$ so as to satisfy the embedding relation (4). It is then a standard result that the boundedness of $\left\{f_{i}(t), g_{i}(t), h_{i}(t), k_{i}(t)\right\}$ assures the boundedness of the corresponding operator \mathcal{T}_{i} (see, $\epsilon . g .,[11]$).

If we define the direct $\operatorname{sum} \mathcal{J}=\underset{t \in \mathbf{Z}}{\in} J(t)$, then it readily follows from the embed ling relation (4) that each T_{i} also satisfies the \mathcal{J}-losslessmess proporty $T_{i} \mathcal{J} T_{i}^{*}=\mathcal{T}_{i}{ }^{*} \mathcal{J} T_{i}=\mathcal{J}$. Furthermore, it is easy to check that each section \mathcal{T}_{i} satisfies an important time-variant blocking property (which can be thought of as an extension of the notion of transmission zeros to the time-variant setting).

Theorem 2: Each first-order scction \mathcal{T}_{i} satisfies

$$
\begin{gathered}
{\left[\begin{array}{llll}
\cdots & f_{2}(t) f_{1}(t-1) g_{2}(t-2) & f_{2}(t) y_{2}(t-1) & g_{2}(t) \\
?
\end{array}\right] \mathcal{T}_{i}} \\
=\left[\begin{array}{ll}
0 & ?
\end{array}\right]
\end{gathered}
$$

and hence. $g_{i}(t) T_{i}\left(f_{i}(t)\right)=0$ (the? symbol de notes irvelenant futries)

The 7 -losslessness and blocking properties of each section T, reflect into the cutire cascade \mathcal{T}, and it readily follows that T is a bounded upper triangular linear operator that satisfies $\mathcal{T} \mathcal{J}^{*}=\mathcal{T}^{*} \mathcal{J} \mathcal{T}=$ \mathcal{J}. It also follows from the last theorem that T itself possesses a (global) blocking property.

Theorem 3: The entire cascade T satisfies the global blocking property

$$
\begin{gather*}
{\left[\begin{array}{llll}
\cdots & F(t) F(t-1) G(t-2) & F(t) C(t-1) & G(t) \\
0
\end{array}\right] T} \\
=\left[\begin{array}{ll}
0 & ?
\end{array}\right] \tag{6}
\end{gather*}
$$

That is, if we apply to T the block input

$$
\left[\begin{array}{lllll}
\ldots & F(t) F(t-1) G(t-2) & F(t) G(t-1) & G(t) & 0
\end{array}\right]
$$

then the output is zero up to and including time t.

The global blocking property is closely related to the Hermite-Fejér interpolation conditions. To motivate this, we denote by $s_{i}=\sum_{p=0}^{i-1} r_{p}, s_{0}=0$, the total size of the Jordan blocks prior to $\bar{F}_{i}(t)$. By comparing terms on both sides of (6) (and by using
the Jordan structure of $F(t)$) we can verify that (6) can be rewritten in the following form

$$
\left[\begin{array}{lll}
\epsilon_{s_{1}} C_{i}(t) & \ldots & e_{s_{1}+r_{1}-1} G(t) \tag{7}
\end{array}\right] \mathcal{H}_{T}^{r_{1}}\left(\alpha_{2}(t)\right)=0
$$

where the row vector on the left hand-side of (7) is composed of the r_{i} row vectors in $\left[\begin{array}{ll}U_{i}(t) & V_{i}(t)\end{array}\right]$ associated with $\alpha_{i}(t)$,

$$
\left[\begin{array}{lllll}
u_{1}^{(i)}(t) & v_{1}^{(i)}(t) & \ldots & u_{r_{t}}^{(i)}(t) & v_{r_{2}}^{(i)}(t)
\end{array}\right]
$$

If we partition the matrix entries $T_{l j}$ of the cascade \mathcal{T} accordingly with $J(l)$ and $J(j)$,

$$
T_{l \jmath}=\left[\begin{array}{cc}
T_{11}^{l j} & T_{12}^{l j} \\
T_{21}^{l j} & T_{22}^{l j}
\end{array}\right]
$$

and consider the triangular operators

$$
T_{12}=\left[T_{12}^{l j}\right]_{l, j=-\infty}^{\infty} \quad \text { and } \quad \mathcal{T}_{22}^{(i)}=\left[T_{22}^{l j}\right]_{l, j=-\infty}^{\infty}
$$

Then it can be shown $[6,10]$ that $\mathcal{S} \equiv-\mathcal{T}_{12} \mathcal{T}_{22}^{-1}$ is an upper triangular strictly contractive operator. It also follows from Theorem 3 that \mathcal{S} satisfies the required interpolation conditions. Moreover, we can describe all solutions.

Theorem 4: All solutions \mathcal{S} of the tangential Hermite-Fejér problem are given through a linear fractional transformation of a strictly contractioe upper triangular operator κ,

$$
\mathcal{S}=-\left[T_{11} \boldsymbol{\Lambda}+\mathcal{T}_{12}\right]\left[\mathcal{T}_{21} \mathcal{\lambda}+T_{22}\right]^{-1}
$$

V. LATTICE STRUCTURES

We now show how to further simplify the generator recursion (5) and derive a cascade of lattice sections. To begin with, recall that the generator recursion (5) requires knowledge of the quantities $h_{i}(t)$ and $k_{i}(t)$. Using the embedding relation (4) we can verify the following result.

Lemma 2: All choicts of $h_{i}(t)$ and $k_{i}(t)$ art

$$
h_{i}(t)=\Theta_{i}^{-1}(t)\left\{\frac{\left[1-\tau_{i}^{*}(t) f_{i}(t)\right] J(t) g_{i}^{*}(t)}{\tau_{i}^{*}(t) d_{i}(t)-d_{i}(t-1) f_{i}^{*}(t)}\right\}
$$

$k_{i}(t)=\Theta_{i}^{-1}(t)\left\{I_{r^{\prime}(t)}-\frac{\tau_{i}^{*}(t) J(t) g_{i}^{*}(t) g_{i}(t)}{\tau_{i}^{*}(t) d_{i}(t)-d_{i}(t-1) f_{i}^{*}(t)}\right\}$ where $\Theta_{i}(t)$ is an arbitrary $J(t)$-unitary matria $\left(\Theta_{i}(t) J(t) \Theta_{i}^{*}(t)=J(t)\right)$, and $\tau_{i}(t)$ is an arbitrary complex number chosen on the circle of radius $\sqrt{\frac{d_{2}(t-1)}{d_{1}(t)}}$.

We claimed earlier that it is always possible to choose uniformly bounded sequences (over t) $\left\{h_{i}(t), h_{i}(t)\right\}_{t \in \mathbf{Z}}$. One possibility is to choose $\Theta_{i}(t)=I_{r(t)}$ and $\tau_{i}(t)$ on the circle of radius $\sqrt{\frac{d_{i}(t-1)}{d_{i}(t)}}$ but in the opposite direction of $f_{i}(t)$ [10]. We shall discuss here an alternative choice for $\Theta_{i}(t)$ that leads to a substantial simplification of the generator recursion (5), and provides a cascade structure of lattice sections: we choose $\Theta_{i}(t)$ (using elementary rotations, Householder transformations, or other possible implementations) such that the first row of $G_{i}(t)$ is reduced to either form:

$$
\begin{aligned}
& g_{i}(t) \Theta_{i}(t)=\left[\begin{array}{llll}
\delta_{i}(t) & 0 & \ldots & 0
\end{array}\right] \text { if } g_{i}(t) J(t) g_{i}^{*}(t)>0 \\
& g_{i}(t) \Theta_{i}(t)=\left[\begin{array}{llll}
0 & \ldots & 0 & \delta_{i}(t)
\end{array}\right] \text { if } g_{i}(t) J(t) g_{i}^{*}(t)<0
\end{aligned}
$$

In order to guarantee the uniform boundedness of the choices $\left\{\Theta_{i}(t)\right\}_{t \in \mathbf{Z}}$, we add the additional assumption that the sequence $\left\{g_{i}(t) J(t) g_{i}^{*}(t)\right\}_{t \in \mathbf{Z}}$ be uniformly bounded from below (it is clearly uniformly bounded from above because of Lemma 1). In the case $g_{i}(t) \cdot J(t) g_{i}^{*}(t)>0$, expression (5) reduces to

$$
\begin{gather*}
l_{i}(t)=F_{i}(t) l_{i}(t-1) f_{i}^{*}(t)+G_{i}(t) \Theta_{i}(t)\left[\begin{array}{cc}
\delta_{i}(t) & 0
\end{array}\right]^{T}(8) \tag{8}\\
{\left[\begin{array}{c}
0 \\
G_{i+1}(t)
\end{array}\right]=\begin{array}{l}
G_{i}(t) \Theta_{i}(t)\left[\begin{array}{cc}
-\phi_{i}(t) f_{i}(t) & 0 \\
0 & I_{r(t)-1}
\end{array}\right]+ \\
\frac{\phi_{i}(t) \delta_{i}(t)}{d_{i}(t-1)} F_{i}(t) l_{i}(t-1)\left[\begin{array}{cc}
1 & 0
\end{array}\right]
\end{array}}
\end{gather*}
$$

where

$$
\phi_{i}(t)=\frac{1-r_{i}(t) f_{i}^{*}(t)}{1-r_{i}^{*}(t) f_{i}(t)} r_{i}^{*}(t)
$$

The last expression has a simple array interpretation. It shows that $G_{i+1}(t)$ can be obtained as follows: multiply $G_{i}(t)$ by $\Theta_{i}(t)$ and keep the last $(r(t)-1)$ columns; the first column of the next generator is obtained as a linear combination of $F_{i}(t) l_{i}(t-1)$ and the first column of $C_{i}(t) \Theta_{i}(t)$. In fact, this linear combination is obtained through an elementary unitary transformation. If we let $\bar{x}_{i}(t)$ and $x_{i+1}(t)$ denote the first columns of $G_{i}(t) \Theta_{i}(t)$ and $G_{i+1}^{\prime}(t)$ respectively, and define $\bar{l}_{i}(t) \equiv l_{i}(t) d_{i}^{-1 / 2}(t)$, then using (8) and (9) we write

$$
\left[\begin{array}{cc}
\bar{l}_{i}(t) & 0 \\
x_{i+1}(t)
\end{array}\right]=\left[\begin{array}{cc}
F_{i}(t) \bar{l}_{2}(t-1) & \bar{x}_{i}(t)
\end{array}\right] U_{i}(t)
$$

where $U_{i}(t)$ is a 2×2 unitary matrix $\left(U_{i}(t) U_{i}^{*}(t)=\right.$ I) given by

$$
U_{i}(t)=\left[\begin{array}{cc}
f_{i}^{*}(t) & \rho_{i}(t) \\
\rho_{i}^{*}(t) & -f_{i}(t)
\end{array}\right]\left[\begin{array}{cc}
\left|\tau_{i}(t)\right| & 0 \\
0 & \phi_{i}(t)
\end{array}\right]
$$

Figure 2: Time-variant step of the generator recursion: $g_{i}(t) J(t) g_{i}^{*}(t)>0$.
and

$$
\rho_{i}(t)=\frac{\delta_{i}(t)}{\sqrt{d_{i}(t-1)}}
$$

This is depicted in figure 2: the first column of $G_{i}(t)$ goes through the top line and the last $(r(t)-$ 1) columns propagate through the bottom line. The output $\bar{x}_{i}(t)$ of the top line (which is the first column of $\left.G_{i}(t) \Theta_{i}(t)\right)$ goes through an elementary anitary rotation $U_{i}(t)$, along with $F_{i}(t) \vec{l}_{i}(t-1)$, and generates the first input of the next section $\left(x_{i+1}(t)\right)$, as well as $\bar{l}_{i}(t)$.

The feedback line with $F_{i}(t)$ and Δ blocks is equivalent to a time-variant tapped-delay filter. To clarify this, observe that the columns of $\boldsymbol{G}_{i}(t)$ are fed one row at a time through $\Theta_{i}(t)$, and that $F_{i}^{\prime}(t)$ has a bidiagonal structure of the form

$$
F_{i}(t)=\left[\begin{array}{cccc}
f_{i}(t) & & & \\
\xi_{i+1}(t) & f_{i+1}(t) & & \\
& \xi_{i+2}(t) & f_{i+2}(t) & \\
& & \ddots & \ddots
\end{array}\right], \xi_{3}(t)=1,0
$$

If we denote the entries of $\bar{l}_{i}(t-1)$ by $\left[\begin{array}{l}\bar{l}_{i, 0}(t-1) \\ \bar{l}_{i, 1}(t-1)\end{array} \ldots\right]^{T}$, then the computation of $F_{i}(t) \bar{l}_{i}(t-1)$ involves operations of the form

$$
f_{i+j}(t) \bar{l}_{i, j}(t-1)+\xi_{i+j}(t) \tilde{l}_{i, j-1}(t-1), \quad j \geq 0
$$

which can be implemented using a first-order timevariant tapped-delay (or FIR) structure $[6,10]$.

A similar argument holds when $g_{i}(t) J(t) g_{i}^{*}(t)<0$ and leads to figure 3 . In this case however, the elementary unitary transformation $U_{i}(t)$ is replaced by an elementary hyperbolic ($(1 \oplus-1)$-unitary) transformation $V_{i}(t)$. Let $\bar{y}_{i}(t)$ and $y_{i+1}(t)$ denote the last columns of $G_{i}(t) \Theta_{i}(t)$ and $G_{i+1}(t)$ respectively. The generator recursion (5) then reduces to the following array picture: multiply $G_{i}(t)$ by $\Theta_{i}(t)$ and keep the first ($r(t)-1$) columns; the last column of the next generator $G_{i+1}(t)$ is obtained through the elementary transformation

$$
\left[\begin{array}{cc}
\bar{l}_{i}(t) & 0 \\
y_{i+1}(t)
\end{array}\right]=\left[\begin{array}{cc}
F_{i}(t) \bar{l}_{i}(t-1) & \bar{y}_{i}(t)
\end{array}\right] V_{i}(t)
$$

Figure 3: Tine-variant step of the generator recursion: $g_{i}(t) J(t) g_{i}^{*}(t)<0$.
where

$$
V_{i}^{r}(t)=\left[\begin{array}{cc}
f_{i}^{*}(t) & p_{1}(t) \\
-\rho_{1}^{*}(t) & -f_{1}(t)
\end{array}\right]\left[\begin{array}{cc}
\left|\tau_{i}(t)\right| & 0 \\
0 & \phi_{i}(t)
\end{array}\right]
$$

VI. MODEL VALIDATION

To conclude this paper we briefly discuss an application of the recursive algorithm to a so-called model validation (or Carathéodory-Fejér) problem [12, 13] (see [5] for more details).

Carathéodory-Fejér Problem: Given data points $\left\{u_{i}(t), v_{i}(t)\right\}_{t \in \mathbf{Z}}, i=0.1, \ldots, n-1$. it is $r \in-$ quired to find conditions for the existence of an upper triangular contraction $S=\left[S_{i j}\right]$ such that

$$
\begin{gathered}
{\left[\begin{array}{ccc}
u_{0}(t-n+1) & \ldots & u_{n-1}(t)
\end{array}\right]\left[\begin{array}{ccc}
\ddots & & \vdots \\
& s_{t-1, t-1} & s_{t-1, t} \\
& \mathcal{S}_{t t}
\end{array}\right]} \\
=\left[\begin{array}{llll}
v_{0}(t-n+1) & \ldots & u_{n-1}(t)
\end{array}\right]
\end{gathered}
$$

This problem can be stated as imposing linear constraints on the "time-variant derivatives" of \mathcal{S}. We construct a displacement equation as in (1) with

$$
\begin{gathered}
\mathbf{U}(t)=\left[\begin{array}{c}
u_{0}(t) \\
\vdots \\
u_{n-1}(t)
\end{array}\right], \quad \mathbf{V}(t)=\left[\begin{array}{c}
u_{0}(t) \\
\vdots \\
u_{n-1}(t)
\end{array}\right] \\
F(t)=\left[\begin{array}{cccc}
0 & 0 & & \\
1 & 0 & & \\
& \ddots & \ddots & \\
& & 1 & 0
\end{array}\right], G(t)=\left[\begin{array}{ll}
\mathbf{U}(t) & \mathbf{V}(t)
\end{array}\right]
\end{gathered}
$$

Theorem 5: The tangential Carathéodory-Fejér problem has solutions if, and only if, $R(t) \geq 0$ for all t. This is equivalent to $\mathcal{U}(t) \mathcal{U}^{*}(t) \geq \mathcal{V}(t) \mathcal{V}^{*}(t)$ with

$$
u(t) \equiv\left[\begin{array}{cccc}
& & u_{0}(t-1) & \begin{array}{c}
u_{0}(t) \\
u_{1}(t) \\
\\
\\
\\
u_{0}(t-n+1)
\end{array} \ldots \\
u_{n-2}(t-1) & \vdots \\
u_{n-1}(t)
\end{array}\right]
$$

and a similar expression for $\mathcal{V}(t)$ with $v_{i}(t)$ instead of $u_{i}(t)$.

We finally remark that the framework described in this paper can be extended to the operator setting, and can also be used to solve several matrix completion problems [5, 14]

References

[1] J. A. Ball and I. Gohberg, "A commutant lifting theorem for triangular matrices with diverse applications," Integral Equations and Operator Theory, vol. 8, pp. 205267, 1985.
[2] T. Constantinescu, "Schur analysis of positive blockmatrices," Operator Theory: Advances and Applications, vol. 18, pp. 191-206, 1986.
[3] J. A. Ball, I. Gohberg. and M. A. Kaashoek, "Nevanlinna-Pick interpolation for time-varying inputoutput maps: The discrete case," Operator Theory: Adwances and Applications, vol. 56, pp. 1-51, 1992.
[4] P. Dewilde and H. Dym, "Interpolation for upper triangular operators," Operator Throry: Adwonces and Applications, vol. 56, pp. 153-260, 1992.
[5] A. H. Sayed, T. Constantinescu, and T. Kailath, "Square-root algorithns for structured matrices, interpolation, and completion problems," to appear in $I M A$ volumes in Mathematics and Its Applications, SpringerVerlag.
[6] A. H. Sayed, Displacement Structurt in Signal Processing and Mathomaties, PhD thesis, Stanford University, Stanford, CA, August 1992.
[7] A. H. Sayed. H. Lev-Ari, and T. Kailath, "Time-variant. displacement structure and triangular arrays," to be submitted.
[8] A. H. Sayed and T. Kailath, "Recursive solutions to rational interpolation problems," In Proc. IEEE ISCAS, pp. 2376-2379, 1992.
[9] A. H. Sayed, T. Kailath, H. Lev-Ari, and T. Constantinescu, "Efficient recursive solutions of rational interpolation problems," submitted for publication.
[10] A. H. Sayed, T. Constantinescu, and T. Kailath, "Timevariant displacement structure and interpolation problems," subinitted for publication.
[11] I. Gohberg and M. A. Kaashoek, "Tine-varying linear systems with boundary conditions and integral operators, I. The transfer operator and its applications," Integral Equations and Operator Theory, vol. 7, pp. 325391, 1984.
[12] K. Poolla, P. Khargonekar, A. Tikkı, J. Krause, and K. Nagpal, "A time-domain approach to model validation," In Proc. ACC, pp. 313-317, 1992.
[13] R. S. Smith and J. C. Doyle, "Model validation: A connection between robust control and identification," IEEE Transactions on Automatic Control, vol. 37, no. 7, pp. 942-952, July 1992.
[14] T. Constantinescu, A. H. Sayed, and T. Kailath, "Displacement structure and some general interpolation problems," submitted for publication.

[^0]: * This work was supported in part by the Air Force Office of Scientific Research, Air Force Systems Command under Contract AFOSR91-0060 and by the Army Research Office under contract DAAL03-89-K-0109. The work of the first author was also supported by a fellowship from Fundação de Amparo à Pesquisa do Estado de São Paulo and by Escola

