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ABSTRACT

We derive a recursive solution for a general time-
variant interpolation problem of the Hermite-Fejér
type, based on a fast algorithm for the recursive
triangular factorization of time-variant structured
matrices. The solution follows from studying the
properties of an associated transmission-line. The
line can be drawn as a cascade of first-order lat-
tice sections, where each section is composed of a
rotation matrix followed by a storage element and
a tapped-delay filter. An application is made to a
problem that arises in model validation.

I. INTRODUCTION

The successful application of interpolation prob-
lems in control and circuit theory has inspired the
study of generalizations to the time-variant setting
[1, 2, 3, 4, 5]. We describe here a computationally
oriented solution for a general time-variant interpo-
lation problem of the Hermite-Fejér type, based on
a fast algorithin for the recursive triangular factor-
ization of time-variant structured matrices [5, 6, 7].
We use the interpolation data to construct a con-
venient so-called generator for the factorization al-
gorithm. The recursive algorithm then leads to a
transmission-line cascade of first-order sections that
makes evident the interpolation property. This is
due to the fact that transmission lines have “trans-
mission zeros”: certain inputs at. certain frequencies
yield zero outputs. In the time-invariant case for
example (6, 8, 9], each section of the cascade can
be characterized by a p x ¢ rational transfer matrix
©;(z) say, that has a left zero-direction vector g; at
a frequency f;, viz.,

©;11 Oi12

9:0i(f;) = [ a b | [ Oi91 O ](fz’) =0,
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which makes evident {with the proper partition-
ing of the row vector g; and the matrix func-
tion ©;(z)) the following interpolation property:
a.ie,»,l;,e;zlz(f,-) = —b;. We shall extend this picture
to the time-variant setting and describe the associ-
ated recursive solution. :

II. TIME-VARIANT HERMITE-FEJER

We first introduce some notation and extend the
notion of “derivatives” to the time-variant setting.
We consider a finite-dimensional time-variant state-
space model with a bounded u}gper triangular op-
erator 7. The matrix entries of 7 are denoted by
T;; (of dimensions »(i) x r(j)), and constitute the
time-variant Markov parameters of the underlying
state-space model: T =

- -

Toy,—1 Toap Toy .
m To1  To2

O T T2 T

where denotes the (0,0) entry of 7. We also
introduce the symmetric functions sﬁc") of n variables
(taken k at a time). That is, s{)") =1, and

(nye . .y —
s, (x1,22,...,20) = iy Liy - Ty,
1< L...<tp <n

Let {f(t)}iez (Z is the set of integers) be a uni-
formly bounded sequence (over t) of scalar points
inside the open unit disc. We then write 7(£(¢)) to
refer to the following expression:

T(f(1) Tee + fU) e + f(2)f(E — 1)Th0s +
f)fE - ft = 2Tz + ...

In general, we define the p** order time-variant
derivative at f(t) by 5;T(®)(f(t)) =

+

s

DS @) f (e~ 1), = m = p+ )] Temmep

m=0



For a uniformmly bounded sequence (over t) of row
vectors {u(t)}iez. we define the time-variant tan-
gential evaluation: u(l];l!’f('”(f(t)) =

o
.s(,;,)'+")[f(t),...,f(l —m=p+D]u(t=m-—p)Ti—m-p

m=0

We shall also use the notation H%(f(t)) to refer
to the following block-Toeplitz upper-triangular ma-
trix (where r > | is a positive integer)

[ T(/(1)

L7(f)) e TN U) W

T e mE TR
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L CT(S(1) .

We also denote by ¢; = [ 0;x; 1 O ] the it" ba-
sis vector of the n—dimensional space of complex
numbers C1*".

We now introduce and state a general time-
variant Hermite-Fejér problem, which includes as
special cases the time-variant versions of the
Carathéodory-Fejér and Nevanlinna-Pick problems
studied in [3, 4]. We consider m uniformly bounded
(over t) time-variant points {a;(}}"25" (not neces-
sarily distinct) inside the open unit disc, and we
associate with each point a;(f) a positive integer
r; > | and uniformly bounded row vectors a;({) and
b;(¢) partitioned as follows

a:(t) = [ Gy W uE.",’(t)]

iy |

where u;“(t) and v;»“(f) (j=1,...,r) are L x p(¢)
and 1 x ¢(t) row vectors respectively.

Tangential Hermite-Fejér Problem: Given m
uniformly bounded points {a;(t)} with the associ-
ated data r;, a;(t), and b;(t), describe all upper
triangular strictly coniractive transfer operators 8

AIS|l~ < 1) that satisfy b;(t) = a;(t)YH (@i(1)).

The first step in the solution consists in con-
structing three matrices F(¢),G(¢), and J(t) di-
rectly from the interpolation data: we define J(¢) =
(Lpee) b —1gy), and associate with each a;() a Jor-
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dan block Fi(l) of size r; X r;,

o, (t)
- 1 @, (t)
F(t) =

1. g (t)

and two r; x p(t) and r; x ¢(t) matrices U;(t) and
Vi(t) respectively, which are composed of the row
vectors associated with a;(t),
4 (1)
Uft) = : and

ul?) (1)

Then F(t) = diagonal { Fy(t), ..
o(t) Vo(t)

(1)
Vi(t) = :
()

S Fpoi(1)} and

G(t) =

1

1 | = v
I—"m—l(t) Vm—l(t}

Let n = Z:":l_]l r; and r(t) = p(t) + ¢(t), then F(t)
and G(t) are n X n and n X r{t) matrices respec-
tively. We shall denote the diagonal entries of F(t)
by {fi(1)}iy (for example, fo(t) = ... = fro-1(t) =
ap(t)). We also associate with the interpolation
problem the time-variant displacement equation

R(t) — F(OR(t — HF*(t) = GO (O)G(t) (1)

and we shall further assume that the interpola-
tion data satisfy the following nondegeneracy condi-
tion, which is automatically satisfied in many special
cases [5, 6, 10].

UHU™ () > p >0  forall ¢ (2)

where p is a fixed constant and #(t) =

[ ... FFe-nut-2) FOUE-1) u(t) |

The above construction allows us to prove the fol-
lowing result [6, 10].

Theorem 1: The tangential Hermite-Fejér prob-
lem is solvable if, and only if, there exists a fized
constant € > 0 such that R(t) > €l for all t. B

We shall say that R(t) has a time-variant
Toeplitz-like structure [5, 6, 7] with respect to
(F(t),G(t), J(1)) and G(t) is called its generator
matrix. We should stress at this point that we
only know FI'(¢t),G(t), and J(t), whereas the matrix
R(t) = [ri)»(t)]?j_:lu is not known a priori. In fact,
the recursive solution described in the next section
does not need R(t) explicitly. It only uses F(t), G(t),
and J(t).



III. RECURSIVE ALGORITHM

Let lo(t) and do(t) denote the first column and the
(0,0) entry of R(t) respectively. If we subtract
from R(t) the outer product lg(t)dal(t)la(t), then
we clearly obtain a new matrix whose first column
and row are zero,

w0 -~ wis s = o gy | ©

The matrix R;(?) is called the Schur complement of
roo{t) in R(t). We now verify that R;(t) is also a
time-variant Toeplitz-like matrix, i.e., it satisfies a
displacement equation similar to (1). To check this,
we let gp(t) denote the first row of G(t). It then
follows from (1) that

lo(t) = F(Ololt = 1) f5(t) + G(t)J(2)g(t)
do(t) = | fo(®)|Pdo(t — 1) + go(t).J ()gg(t)

Let Fi(t) be the submatrix obtained after deleting
the first row and column of F(t). Using (3) we can
readily check that [5, 6, 7]

Ry(t) = Fy(®)Ri(1 = DF7(8) = Gi ()T ()G ()
where G1(t) is related to (/(¢) as follows

Orsrtty | — proucr 1ane , .
[ e | = Feote = DR300+ GO0k (1)I0)

and ho(t) and ko(t) are arbitrary r(¢) x 1 and r(t) x
r(¢) matrices respectively chosen so as to satisfy the
embedding relation

fo(t)  golt) ] [ do(t—-1) O ] fo(t)  go(t) ]’ -
holt) kolt) 0 J0 || hott) Kol(0)
do(t 0
[ oé ) 70 } (1)

n-2
This shows that R;i(t) = [r'f-;)(t)]” . is indeed
ij=

a time-variant Toeplitz-like matrix with respect to
(F1(8), G1(2), J(t)). This process can now be re-
peated by defining the Schur complement Ro(t) of
r[()}))(t) in R, (t) and so on. In summary, if we let [;(¢)
and G;(t) denote the first columu and the generator

of the i** Schur complement R;(t) respectively, then
we can compactly write

0
[ Li(t) Gigr(t) ]: (5)
. . fr 2 (2)J(t
[ Fe—1) Gi(y ] [ J(t')y(;)(t) J(t)lg,-*)(t)(.l)(t)

where g¢;(t) is the first row of G;(¢), and h;(t) and
k;(t) are arbitrary »(¢) x 1 and »(¢) x »(t) matrices
respectively such that {fi(¢), gi(t), hi(¢), ki(8), di(1)}
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Fi(t)li(t - 1) Li(t)

[ 1o

ol

Gi(t) —m —

[ G¢+01.(t) ]

Figure 1: Time-variant transmission-line structure of the re-
cursive algorithm.

satisfy an embedding relation similar to (4), with
di(t) = | (O di(t = 1)+ g: () (8)g} (1), and Fi(t) is
the (n—i)x(n—1i) submatrix obtained after deleting
the first row and column of F;_;(t).

The generator recursion (5) has a transmission-
line picture in terms of a cascade of clemen-
tary (first-order) sections as shown in figure 1,
where each section depends on the parameters
{£i(8), gi(t), hi(2), ki(t)} and appears in state-space
form on the right-hand side of (5), viz.,

[ =+ wi(o) | =

£t

h*(t)S
[ x(0) wi(t) ] [ risen $(0)J(1) ]

J()kE(E)J (1)

where x;(t) is the state, y;(¢) is the output, and
w;(t) is a L x r(t) row input vector at time ¢ (the A
block represents a storage element where the present
value of [;(¢) 1s stored for the next time instant).

Let 7; = [ Tl(j“ ] denote the corresponding up-
per triangular transfer matrix, where '1}‘;1 are the
r(f) x 7(j) time-variant Markov parameters defined
by T = Ik DI, T, = JWDat DR (14 1) (14 1),
and

T = TS+ 1) G = DR G)IG)
for j>1+1

After n recursive steps (recall that G{(t) has n rows)
we obtain a cascade of sections 7 = 7y7,...7,_,.

IV. BLOCKING PROPERTIES

Our purpose is to prove that all solutions § to
the Hermite-Fejér interpolation problem can be
parametrized in terins of a linear fractional trans-
formation based on 7. Before proceeding fur-
ther, we first state [6, 10] the implications of
the uniform boundedness of the interpolation data
{fi(t), ai(t), bi(t)} on the boundedness of the



quantities d;(¢) and g;(t) that are needed in the re-
cursive procedure.

Lemma 1: There exist positive constants by, cy, and
ey such that 0 < by < di(t) < cq and ||gs(t)]] < ¢4
for all t.

Moreover, it is always possible (see [6, 10] and
the next section) to choose uniformly bounded se-
quences {h;(t),k;(£)}iez s0 as to satisfly the embed-
ding relation (4). It is then a standard result that
the boundedness of {f;(¢), g:(t), 2;(¢), ki(t)} assures
the boundedness of the corresponding operator 7;
(see, e.g., [11]).

If we define the direct sum J = ri;z.](t), then

te

it readily follows from the embedding relation (4)
that each 7; also satisfies the J-losslessness prop-
erty TJT, = TJ7T; = J. Furthermore, it is
easy to check that each section 7; satisfies an im-
portant time-variant blocking property (which can
be thought of as an extension of the notion of trans-
mission zeros to the time-variant setting).

Theorem 2: Fach first-order scction T; satisfies

[ fA@fU-Ds=2) L0s0-1) g T
=[o 7]

and hence. q;(OT(fi(8)) = 0 (the 7 symbol denotes
irrelevant eniries) [ ]

The J-losslessness and blocking properties of
each section 7; reflect into the entire cascade 7, and
it readily follows that 7 is a bounded upper triangu-
lar linear operator that satisfies TJ7* =7T"J7T =
J. It also follows from the last theorem that 7 it-
self possesses a (global) blocking property.

Theorem 3: The entire cascade T salisfies the

global blocking property

[ ... FOF(t-1GE-2) FOGE-1) Ge) 0T
=[0 7] (6)

That is, if we apply to T the block input

[ .. F@OF(-1GE-2) F)G(-1) G(t) 0]

then the oulpul is zero up to and including time t.

The %‘lohal blocking property is closely related
to the Hermite-Fejér mterpolation conditions. To

motivate this, we denote by s; = z;;_::) py 80 = 0,
the total size of the Jordan blocks prior to F;(¢t). By
comparing terms on both sides of (6) (and by using
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the Jordan structure of F(t)) we can verify that (6)
can be rewritten in the following form

[ ecGitr) Fotn—1GE) | HY (au() =0, ()
where the row vector on the left hand-side of (7) is
composed of the r; row vectors in [ Uity Vi(d) ]
assoclated with «;(t),

[ W) o700 d0) () |
If we partition the matrix entries Tj; of the cascade
T accordingly with J({) and J(j),

I -
, Ty Ty

b= TR '
YR

and consider the triangular operators

41> () i1
Tio = [113] and Ty = |13
“lj=—m - llj=—co
Then it can be shown [6, 10] that § = —Tlnggl
is an upper triangular strictly contractive operator.
It also follows from Theorem 3 that & satisfies the
required interpolation conditions. Moreover, we can
describe all solutions.

Theorem 4: All solutions S of the tangential
Hermiute-Fejér problem are given through a linear
fractional transformation of a striclly contractive
upper triangular operator K,

8= —[T\Kk + Tha] [Toih + Tos] ™!

V. LATTICE STRUCTURES

We now show how to further simplify the generator
recursion (H) and derive a cascade of lattice sections.
To begin with, recall that the generator recursion (5)
requires knowledge of the quantities 2;(t) and &;(¢).
Using the embedding relation (4) we can verify the
following result.

Lemma 2: All choices of hi(t) and k;(1) are

(L — () fi)] I (t)g; (1) }
() di(t) — di(t = 1) f7 (1)

() (g7 (Dgill)
P (Odi(t) — di(t = )7 (2)

where ©i(t) s an erbitrary J(t)—unitary matrir
©:()J()er(t) = J(t)), and 7(t) is an arbi-

trary complex number chosen on the circle of radius
d(1—1)

Voam [ |

/u(t):e:‘u){

ki(t) = (—);W){Lm -



We claimed earlier that it is always possible
to choose uniformly bounded sequences (over t)
{hi(t), ki(t)}rez-  One possibility is to choose
©:(t) = Iy and 7(t) on the circle of radius
\/—ﬁb%l but in the opposite direction of f;(t) [10].
We shall discuss here an alternative choice for ©;(t)
that leads to a substantial simplification of the gen-
erator recursion (5), and provides a cascade struc-
ture of lattice sections: we choose @;(t) (using ele-
mentary rotations, Householder transformations, or
other possible implementations) such that the first
row of G;(t) is reduced to either form:

at)ei) = &t o 0] if gi(t)J(t)g}(t)>0

giei(ty=[ 0 0 8l ] if g()I(Def(t) <O
In order to guarantee the uniform boundedness of
the choices %O,:(t)}tez, we add the additional as-
sumption that the sequence {g;(t)J(t)gr(t)}icz be
uniformly bounded from below (it is clearly uni-
formly bounded from above because of Lemma 1).
In the case g;(¢).J(t)g} (t) > 0, expression (5) reduces
to

() = Rt - 150 + Goe [ s o] ()

0 = amen| —HWEB 0

[ ] = cwen[ 7QF0 0 ]
Silt)oalt) g
o Poue-nl o]

where
L—ri(8)f7(t)

bi(t) = Py =YD T,

(1)

The last expression has a simple array interpre-
tation. It shows that (;4;(t) can be obtained
as follows: multiply G;(¢) by ©;(t) and keep the
last (r(t) — 1) columns; the first column of the
next generator is obtained as a linear combina-
tion of Fi(¢)i(t — 1) and the first column of
(;()0O;(1). In fact, this linear combination is ob-
tained through an elementary wnifary transforma-
tion. If we let Z;(¢) and x;4,(¢) denote the first
columns of (+;(t)©;(t) and G'i4+1(t) respectively, and
define §;(t) = l,-(t)di_llg(t), then using (8) and (9)
we write

[ L) -’l‘i+(i(l) ] = [ F®lt-1) () ]Ui(t)

where U;(¢) is a 2 x 2 unitary matrix (Ui (1)U (t) =
I) given by

b= 40

w2 1T ]

—fi(t) Y éi(2)
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Gi( (‘),’(tJ

—
t)
—

Figure 2: Time-variant step of the generator recursion:
g,(t)J(t)g"(t) > 0.

and
bi(t)

() = ——/——
pi(t) D)

This is depicted in figure 2: the first column of
Gi(t) goes through the top line and the last (r(¢)—
1) columns propagate through the bottom line. The
output Z;(t) of the top line {which is the first column
of G(t)©;:(t)) goes through an elementary unitary
rotation {/;(t), along with Fi(t)l;({— 1), and gen-
erates the first input of the next section (x;41(¢)),
as well as [;(¢).

The feedback line with F;(¢) and A blocks is
equivalent to a time-variant tapped-delay filter. To
clarify this, observe that the columns of (v;(t) are
fed one row at a time through ©;(t), and that F(t)
has a bidiagonal structure of the form

fi(4)
Eigr(t)  figa(t)

Eu)= {1+2(t) j1+2[“ R é](”: 1’0

If we denote the entries of [(t — 1) by

[ l_i,o(t 1) Lat-1 . ]T, then the computa-
tion of F(t),(t - 1) involves operations of the form

Firi @O j(t = 1) + &gy (Dt = 1), j>0,

which can be implemented using a first-order time-
variant tapped-delay (or FIR) structure [6, 10].

A similar argument holds when ¢;{(t)J (¢)g7(¢) < 0
and leads to figure 3. In this case however, the ele-
mentary unitary transformation U;(t) is replaced by
an elementary hyperbolic ((1 ¢ —1)-unitary) trans-
formation V;(t). Let §;(t) and y;+() denote the last
columns of G;(¢)0;(t) and Gy4.1(t) respectively. The
generator recursion (5) then reduces to the follow-
ing array picture: multiply G;(¢) by ©;(t) and keep
the first (r(t) — 1) columns; the last column of the
next generator (+;11(t) is obtained through the ele-
mentary transformation

Lo, 0 | = Ree-1 ww e



, 0
G;i(t) Gipa(t)

Zl(t)

Figure 3: Time-variant step of the generator recursion:
0 (0(05(8) < 0.

where

PO B A ) (O I B IR TGO
il ) —f.(t)H SR

VI. MODEL VALIDATION

To conclude this paper we briefly discuss an applica-
tion of the recursive algorithm to a so-called model
validation (or Carathéodory-Fejér) problem [12, 13]
(see [5] for more details).

Carathéodory-Fejér Problem:  Given data
points {ai(8), vi(@) ez, T =000 — 1, il 15 re-
quired to find conditions for the eristence of an up-
per triangular contraction 8 = [S;;] such thal

[ wolt—n+1) ... wuy—1() ] R ~5'r;1r

SH
:[mﬁfn+1).” mhdﬁ]
|

This problem can be stated as imposing linear con-
straints on the “timme-variant derivatives” of S. We
construct a displacement equation as in (1) with

uo () vo (t)
U(t) = : , V()= :
Up—1(t) Un—1(t)
0
1 o
F(t) = N LG =[ U v ]
1o

Theorem 5: The tangential Carathéodory-Fejér
problem has solutions if, and only if, R(t) > O for
all t. This is equivalent to UE)U*(t) > V()V* (L)
with

uo(t)

wo(t—1) uy ()
H(t) = .

wg(t—n+1) ... wp—2(t—1) un_;(t)

and a simiar expression for V() with vi(t) instead

of ui(t). [ ]

We finally remark that the framework described
in this paper can be extended to the operator set-
ting, and can also bhe used to solve several matrix
completion problems [5, 14].
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