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Abstract—Adaptive networks, consisting of a collection of
nodes with learning abilities, are well-suited to solve distributed
inference problems and to model various types of self-organized
behavior observed in nature. One important issue in designing
adaptive networks is how to fuse the information collected from
the neighbors, especially since the mean-square performance of
the network depends on the choice of combination weights. We
consider the problem of optimal selection of the combination
weights and motivate one combination rule, along with an
adaptive implementation. The rule is related to the inverse of
the noise variances and is shown to be effective in simulations.

Index Terms—Adaptive networks, diffusion adaptation,
relative-variance combination rule, self-organization, distributed
processing.

I. INTRODUCTION

Adaptive networks consist of a collection of spatially dis-
tributed nodes that are linked together through a connection
topology. The nodes cooperate with each other through local
interactions to solve distributed inference problems in real-
time. The diffusion of information across the network re-
sults in improved adaptation and learning relative to non-
cooperative networks. Adaptive networks are well-suited to
perform decentralized information processing [1], [2] and to
model self-organized behavior encountered in nature, such as
animal flocking behavior [3]–[5].

Each node in an adaptive network relies on the fusion of
information collected from its local neighbors. Several com-
bination rules have been proposed in the literature, especially
in the context of consensus-based iterations [6]–[9], such as
the maximum-degree rule and the Metropolis rule. However,
these schemes focus on convergence behavior and ignore the
variation in noise (and signal-to-noise ratio) profile across
the nodes, which can result in performance degradation [10].
Therefore, designing combination rules that take into account
the variation in noise profile over the network is an important
task.

In this paper, we incorporate the noise profile into the design
of the combination weights. Some earlier work in this regard
appeared in [2], which relied on the formulation and solu-
tion of an optimization problem. However, the optimization
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problem was nonlinear and non-convex, and its solution was
pursued numerically. In this paper, we introduce an approx-
imation and formulate a convex optimization problem that
can be solved in closed-form and lead to good performance.
The solution, nevertheless, requires knowledge of the second-
order statistics of the noise. We subsequently introduce an
adaptive implementation for adjusting the combination weights
by relying on instantaneous data approximations. In this way,
besides the standard adaptation layer to solve the desired
distributed estimation, each node also runs a second adaptation
layer to adjust its combination weights in real-time.

II. DIFFUSION ADAPTATION

A. Algorithm Description

Consider a collection of N nodes distributed over a spatial
domain. Two nodes are said to be neighbors if they can share
information. The set of neighbors of node k, including k itself,
is called the neighborhood of k and is denoted by Nk. At
every time instant i, every node k has access to a scalar
measurement dk(i) and a row regression vector uk,i of size M ,
both arising from realizations of zero-mean random processes,
{dk(i),uk,i}; note that we use boldface letters to refer to
random quantities and normal font to refer to their realizations.
The available measurements are assumed to be related to some
unknown column vector w◦ of size M as follows:

dk(i) = uk,iw
◦ + vk(i) (1)

where vk(i) denotes noise and is assumed to be a zero-mean
white random process with power σ2

v,k and is independent of
all other variables.

The nodes seek to estimate a parameter w◦ that minimizes
the following cost function:

Jglob(w) =
N∑

k=1

E|dk(i)− uk,iw|2 (2)

where E denotes the expectation operator. The objective of
the network is to estimate w◦ in a distributed manner and in
real-time. Several diffusion adaptation schemes for solving (2)
in this manner were developed in [1], [2]. One such scheme is
the so-called Adapt-then-Combine (ATC) diffusion algorithm
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[2]. It operates as follows. We select an N ×N matrix A with
nonnegative entries {al,k} satisfying:

1TA = 1T and al,k = 0 if l /∈ Nk (3)

where 1 is the vector with all its entries equal to one. The
entry al,k refers to weight used for the data exchanged over
the link connecting node l (source) to node k (destination).
The ATC algorithm consists of two steps. The first step (4)
involves local adaptation, where node k use its own data
{dk(i), uk,i} to update the weight estimate at node k from
wk,i−1 to an intermediate value ψk,i. The second step (5) is a
combination step where the intermediate estimates {ψl,i} from
the neighborhood are combined through the coefficients {ak,l}
to obtain the updated weight estimate wk,i. The algorithm is
described as follows:

ψk,i = wk,i−1 + µku
∗
k,i[dk(i)− uk,iwk,i−1] (4)

wk,i =
∑
l∈Nk

al,kψl,i (5)

where µk is the positive step-size used by node k. Naturally,
the choice of the weighting matrix A affects the performance
of the network. Before formulating an optimization problem
for designing A, we note that the matrix is not generally
required to be symmetric (i.e., the weight that node k assigns
to data arriving from node l does not need to be equal to the
weight that node l assigns to data arriving from node k). It
was noted earlier in [2] that non-symmetric choices for A lead
to better network mean-square performance in estimating w◦.

B. Mean-Square Performance

The mean-square performance of the ATC algorithm was
studied in detail in [2] by applying the energy conservation
approach of [11]. We summarize the results below in prepa-
ration for our proposal of a combination rule. Let the error
vector for node k be denoted by:

w̃k,i = w◦ −wk,i (6)

The network MSD is defined as the following average steady-
state measure:

MSD , lim
i→∞

1

N

N∑
k=1

E∥w̃k,i∥2 (7)

We collect all weight error vectors and step-sizes parameters
across the network into global vectors and matrices:

w̃i = col {w̃1,i, . . . , w̃N,i} (8)
M = diag{µ1IM , . . . , µNIM} (9)

where the notation col{·} denotes the vector that is obtained by
stacking its arguments on top of each other, and the notation
diag{·} denotes a diagonal matrix formed from its arguments.
We also define the extended weighting matrix:

A = A⊗ IM (10)

where the symbol ⊗ denotes the Kronecker product of two
matrices. Then, some algebra shows that the global error vector
(8) evolves according to the relation:

w̃i = AT (I −MRi)w̃i−1 −ATMgi (11)

where the identity matrix in (11) has dimensions NM ×NM
and

Ri = diag
{
u∗
1,iu1,i, . . . ,u

∗
N,iuN,i

}
(12)

gi = col{u∗
1,iv1(i), . . . ,u

∗
N,ivN (i)} (13)

Under the assumption that all regressors {uk,i} are spatially
and temporally independent and that the step-sizes are suffi-
ciently small, the MSD of the network can be shown to be
[2]

MSD ≈ 1

N
vec(Y T )T (I − F )−1vec(INM )

=
1

N

∞∑
j=0

Tr
[
XjY (X∗)j

] (14)

where

F ≈ XT ⊗X∗ (15)

X = AT (I −MR) (16)

Y = ATMGMA (17)
R = ERi = diag {Ru,1, . . . , Ru,N} (18)

G = Egig
∗
i = diag{σ2

v,1Ru,N , . . . , σ
2
v,NRu,N} (19)

with Ru,k = Eu∗
k,iuk,i. For the second equality in (14), we

used the following equalities for arbitrary matrices {U,W,Σ}:

vec(UΣW ) = (WT ⊗ U)vec(Σ) (20)

Tr(ΣW ) = vec(WT )T vec(Σ) (21)

Note from expression (14) that the noise level at any node in-
fluences the network performance via the combination matrix
A. In the next section, we optimize over A.

III. COMBINATION WEIGHTS

In [2], the selection of the optimal combination weights was
formulated as the following optimization problem:

min
A

MSD

subject to

1TA = 1T , al,k = 0 if l /∈ Nk

(22)

However, expression (14) is not convex in A, and the optimal
solution to (22) was sought numerically in [2]. We follow
a different approximate approach that leads to a closed-form
solution and performs equally well.

Although not necessary, in this article we illustrate the
procedure by considering the case when the regressors {uk,i}
have the same covariance matrix, say, Ru,k = Ru for all k.
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We also assume that all nodes use the same step-size (i.e.,
µk = µ for all k). Then, the MSD expression (14) reduces to:

MSD ≈ µ2

N

∞∑
j=0

Tr[Ru(I − µRu)
2j ]Tr[(AT )j+1V Aj+1]

(23)
where we introduce the matrix:

V = diag{σ2
v,1, . . . , σ

2
v,N} (24)

A. Approximate Optimal Solution

Even though the MSD is simplified to (23), the MSD is
still not convex in A. To proceed, we observe that the factor
Tr[Ru(I−µRu)

2j ] in (23) decays exponentially fast with j. We
therefore choose to focus on the first term of the summation
(corresponding to j = 0) and ignore the other terms. The
simulations further ahead indicate that this approximation
performs well. We therefore replace (22) with the simpler
optimization problem:

min
A

Tr(ATV A)

subject to

1TA = 1T , al,k = 0 if l /∈ Nk

(25)

Note that the kth diagonal entry of ATV A is given by

[ATV A]k,k =
N∑
l=1

σ2
v,la

2
l,k (26)

and the value of this diagonal entry is only affected by
the combination weights used by node k, i.e., the {al,k}.
Therefore, the optimization problem (25) can be decoupled
into N separate optimization problems of the form:

min
{al,k}N

l=1

N∑
l=1

σ2
v,la

2
l,k, k = 1, . . . , N

subject to
N∑
l=1

al,k = 1, al,k = 0 if l /∈ Nk

(27)

and the solution is given by:

al,k =


σ−2
v,l∑

j∈Nk
σ−2
v,j

, if l ∈ Nk

0, otherwise
(28)

We refer to this combination rule as the relative-variance com-
bination rule. In this way, node k combines the intermediate
estimates {ψl,i} from its neighbors in (5) in proportion to
the inverses of the noise variances. The result is physically
meaningful. Nodes with smaller noise variance will be given
larger weights. In comparison, the following relative-degree-
variance rule was used in [2]:

al,k =


nlσ

−2
v,l∑

j∈Nk
njσ

−2
v,j

, if l ∈ Nk

0, otherwise
(29)

where nl denotes the degree of node l, i.e., the number of its
neighbors including itself.1

We remark that had we allowed for different Ru,k across
the nodes, the earlier derivation would lead us instead to
an expression similar to (28) where the terms σ−2

v,m in the
numerator and denominator would appear replaced by the
terms [Tr(Ru,m)σ2

v,m]−1. We leave the details for future work.

B. Adaptive Implementation

To evaluate the combination weights (28), we still need to
have information about the noise variances across the network.
These quantities are usually not available beforehand, or they
may even vary with time. Therefore, an adaptive implemen-
tation is desirable, where the individual nodes learn their
combination weights (28) in real-time using instantaneous
data. One adaptive solution for selecting the combination
weights was proposed earlier in [10]; albeit using a different
design criterion. We compare the approach of [10] with our
proposed solution further ahead in the simulations.

Referring to the ATC recursions (4)-(5), as the algorithm
approaches steady-state, and for sufficiently small step-sizes,
the estimate wk,i−1 approaches w◦. Therefore, using model
(1), we can write:

ψk,i ≈ w◦ + µu∗
k,ivk(i) (30)

It follows that

E∥ψk,i − w◦∥2 ≈ µ2σ2
v,kTr(Ru) (31)

That is, the expression on the left is a scaled multiple of the
noise variance σ2

v,k. Using the instantaneous approximation

E∥ψk,i − w◦∥2 ≈ ∥ψk,i − wk,i−1∥2 (32)

we can motivate an algorithm for estimating noise variances
in real-time. Let σ2

l,k(i) denote a (scaled) estimate of the noise
variance σ2

v,l at node k at time i. Then we estimate it as
follows:

σ2
l,k(i) = (1− νk)σ

2
l,k(i− 1) + νk · ∥ψl,i − wk,i−1∥2 (33)

where νk is a positive step-size (smaller than one). We see
that under expectation, expression (33) becomes

Eσ2
l,k(i) = (1− νk)Eσ

2
l,k(i− 1) + νk · E∥ψl,i −wk,i−1∥2

≈ (1− νk)Eσ
2
l,k(i− 1) + νkµ

2σ2
v,lTr(Ru)

(34)
Hence, we obtain

lim
i→∞

Eσ2
l,k(i) ≈ µ2σ2

v,lTr(Ru) (35)

That is, the estimate σ2
l,k(i) converges on average to the scaled

multiple of σ2
v,l, so that (28) is replaced by:

al,k(i) =


σ−2
l,k (i)∑

j∈Nk
σ−2
j,k(i)

, if l ∈ Nk

0, otherwise
(36)

1We remark that a typo appears in the above expression in Table III in [2],
where the noise variances appear written in the table instead of their inverses.
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Fig. 1. Two network topologies (a) random topology and (b) star topology.

IV. SIMULATION RESULTS

In this section, we simulate the mean-square performance
under different combination rules. We compare the relative-
variance rule (28) with the relative-degree-variance rule (29)
and the uniform rule:

al,k =

{
1/nk, if l ∈ Nk

0, otherwise
(37)

where every node k simply averages the estimates from its
neighbors. We also compare with the alternative adaptive
implementation from [10]. In the simulations, the noise at
each node is uniformly generated between [−35,−5] (dB),
the regressors have the same covariance matrix, Ru,k = I ,
and the step-sizes are set to µk = 0.1 and νk = 0.2 for all k.

The network consists of 15 nodes and its topology is
randomly generated (see Fig. 1(a)). The simulation results
are depicted in Fig. 2. We observe that the relative-variance
combination rule and the relative-degree-variance combination
rule have similar performance in this case. We also observe
that the adaptive implementation (36) converges to the relative-
variance rule and outperforms the adaptive method of [10]; this
is because expression (16) in [10] relies on an approximation
for a certain covariance matrix Qk,l — this approximation is
not used in our construction (28).

To further compare the relative-variance and relative-degree
variance combination rules, we consider an extreme case of
degree distribution: the star topology, where one center node
connects to all the other nodes and the other nodes only
connect to the center node (see Fig. 1(b)). The MSD is shown
in Fig. 3, and in this case the proposed relative-variance
combination rule outperforms the others rules.
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