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Abstract—We develop an iterative diffusion mechanism to
optimize a global cost function in a distributed manner over
a network of nodes. The cost function is assumed to consist
of a collection of individual components, and diffusion strategy
allows the nodes to cooperate and diffuse information in real-
time. Compared to incremental methods, diffusion methods do
not require the use of a cyclic path over the nodes and are more
robust to node and link failure.

Index Terms—Distributed optimization, diffusion adaptation,
incremental strategy, learning, convex optimization.

I. INTRODUCTION

We consider the problem of optimizing a global cost func-
tion in a distributed manner. The cost function is assumed to
consist of the sum of individual components, and spatially
distributed nodes are used to seek the common minimizer
(or maximizer) through local interactions. There are already a
couple of useful techniques for the solution of such optimiza-
tion problems in a distributed manner [1]–[5]. Most notable
among these methods is the incremental approach [2]–[5]. In
this approach, a cyclic path is defined over the nodes and data
are processed in a cyclic manner through the network until
optimization is achieved. However, determining a cyclic path
that covers all nodes is an NP-hard problem and, in addition,
cyclic trajectories are prune to link and node failures. In earlier
works [6]–[15], we introduced the concept of diffusion adapta-
tion and showed how it can be used to solve global minimum
mean-square-error estimation problems in real-time and in a
distributed manner. In the diffusion approach, information is
processed locally at the nodes and then diffused through a
real-time sharing mechanism. This learning process can be
used even in the presence of instantaneous approximations for
the gradient vectors and helps reduce the effect of gradient
noise on convergence. Besides, diffusion techniques are robust
to node and link failure and do not require the use of a
cyclic trajectory. In this article, we explain how the diffusion
arguments of [13], [14] apply to the optimization of general
cost functions in a distributed manner.

II. PROBLEM FORMULATION

The objective is to determine an optimal M × 1 vector wo

that minimizes a global cost function of the form:

Jglob(w) =
N∑

l=1

Jl(w) (1)
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where Jl(w), l = 1, 2, . . . , N , are the individual real-valued
functions, assumed to be differentiable and convex. We assume
Jglob(w) in (1) is strictly convex so that the minimizer wo is
unique. In this article we consider the important case where
each component function, Jl(w), has a minimizer at the same
wo (see [16], [17] for examples in the context of biological
networks). Our strategy to optimize Jglob(w) in a distributed
manner is based on three steps. First, using a second-order
Taylor series expansion, we argue that the global cost function
can be approximated by an alternative cost that is amenable to
distributed optimization–see (9) further ahead. Second, each
node optimizes the alternative cost via a steepest-descent
procedure that relies on local data. Finally, the local estimates
for wo and gradient vectors are combined by each node and
the procedure repeats itself in real-time.

To motivate the diffusion approach, we start by introducing
a set of nonnegative coefficients {cl,k} that satisfy:

N∑
k=1

cl,k = 1, cl,k = 0 if l /∈ Nk, l = 1, 2, . . . , N (2)

where Nk denotes the neighborhood of node k. Using these
coefficients, we can express Jglob(w) from (1) as

Jglob(w) = J loc
k (w) +

N∑
l 6=k

J loc
l (w) (3)

where

J loc
k (w) =

∑
l∈Nk

cl,kJl(w) (4)

In other words, for each node k, a new local cost function is
introduced that corresponds to a weighted combination of the
costs of its neighbors (including itself). Since the {cl,k} are
all nonnegative and each Jl(w) is convex, then J loc

k (w) is also
a convex function.

Now assume there exists a wloc
l that minimizes J loc

l (w);
actually, the local cost function has a minimizer at the same
wo. Then, each J loc

l (w) can be approximated via a second-
order Taylor series expansion as:

J loc
l (w) ≈ J loc

l (wloc
l ) + ‖w − wloc

l ‖2Γl
(5)

where Γl = 1
2∇

2
wJ

loc
l (wloc

l ) is the (scaled) Hessian matrix
relative to w and evaluated at w=wloc

l . Moreover, the notation
‖a‖2Σ denotes aT Σa for any weighting matrix Σ. Substituting
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(5) into the second term on the right-hand side of (3) gives:

Jglob(w) ≈ J loc
k (w)+

∑
l 6=k

‖w−wloc
l ‖2Γl

+
∑
l 6=k

J loc
l (wloc

l )

The last term in the above expression does not depend on w.
Therefore, we can ignore this term so that optimizing Jglob(w)
is approximately equivalent to optimizing the following alter-
native general cost:

Jglob′
(w) = J loc

k (w) +
∑
l 6=k

‖w − wloc
l ‖2Γl

(6)

III. ITERATIVE DIFFUSION SOLUTION

Expression (6) relates the desired global optimization prob-
lem to the newly-defined local cost function J loc

k (w). The
relation is through the second term on the right-hand side of
(6), which corresponds to a sum of quadratic terms involving
the local estimates wloc

l . Obviously, not all the local estimates
wloc

l are available at node k; only those estimates that originate
from its neighbors can be assumed to be accessible by node
k in a distributed solution. Likewise, not all the Hessian
matrices Γl are available to node k. Nevertheless, expression
(6) suggests a useful approximation that enables a powerful
and elegant distributed solution.

Our first step is to replace the global cost Jglob′
(w) by

reasonable localized approximations for it at every node k.
Thus, initially we limit the summation on the right-hand side
of (6) to the neighbors of node k and introduce

Jglob′

k (w) = J loc
k (w) +

∑
l∈Nk\{k}

‖w − wloc
l ‖2Γl

(7)

The cost (7) includes the quantities {wloc
l ,Γl} that belong

to the neighbors of node k. If desired, we can proceed
with (7) and rely on the use of the Hessian matrices Γl

(or approximations thereof) in the subsequent development.
Nevertheless, in this paper, we simplify the argument in order
to highlight the main ideas, and approximate each Γl by
a multiple of the identity matrix, say, Γl ≈ bl,kIM , for
some nonnegative coefficients {bl,k}. Such approximations are
prevalent in stochastic approximation theory and they mark the
difference between using a Newton’s iterative method (which
relies on the use of Hessian matrices and their inverses) or
using a stochastic gradient method (where the Hessian matrix
is approximated by a multiple of the identity matrix) (see [18,
pp.142–147] and [19, pp.20–28]). Thus, we replace (7) by

Jglob′′

k (w) = J loc
k (w) +

∑
l∈Nk\{k}

bl,k‖w − wloc
l ‖2 (8)

As the derivation will show, we do not need to worry about
how the scalars {bl,k} are selected. The argument so far
suggests how to modify J loc

k (w) and replace it by the better
approximation (8) for the global cost function (6). If we
replace J loc

k (w) by its definition (5), we can rewrite (8) as

Jglob′′

k (w)=
∑
l∈Nk

cl,kJl(w) +
∑

l∈Nk\{k}

bl,k‖w−wloc
l ‖2 (9)

Now, node k can apply a steepest-descent iteration to minimize
Jglob′′

k (w) by using the (column) gradient vector:

wk,i = wk,i−1 − µk

∑
l∈Nk

cl,k∇wJl(wk,i−1)

− µk

∑
l∈Nk\{k}

2bl,k(wk,i−1 − wloc
l ) (10)

The positive scalars {µk} denote step-size parameters. Among
many other forms, we can implement (10) in two successive
steps as follows:

ψk,i = wk,i−1 − µk

∑
l∈Nk

cl,k∇wJl(wk,i−1) (11)

wk,i = ψk,i − µk

∑
l∈Nk\{k}

2bl,k(wk,i−1 − wloc
l ) (12)

Step (11) updates wk,i−1 to an intermediate value ψk,i by
using local gradient vectors. Step (12) further updates ψk,i to
wk,i. However, two issues arise while examining (12):

(a) First, iteration (12) requires knowledge of the local
minimizers {wloc

l }. The neighbors of node k do not
know their local minimizers; each of these neighbors
is actually performing steps similar to (11) and (12) to
estimate their minimizers. This suggests that the readily
available information about the {wloc

l } are the local
estimates {ψl,i}. Therefore, we replace wloc

l in (12) by
ψl,i. This step helps diffuse information throughout the
network.

(b) Second, the intermediate value ψk,i is generally a better
estimate for wo than wk,i−1 since it is obtained by incor-
porating information from the neighbors through (11).
Therefore, we further replace wk,i−1 in (12) by ψk,i.
This step is reminiscent of incremental-type approaches
to optimization, which have been widely studied in the
literature [2]–[5].

With the substitutions described in (a) and (b) above, we arrive
at the following Adapt-then-Combine (ATC) diffusion strategy
(whose structure is the same as the ATC algorithm originally
proposed in [8]–[14] for mean-square-error estimation):

(ATC)

ψk,i = wk,i−1 − µk

∑
l∈Nk

cl,k∇wJl(wk,i−1)

wk,i =
∑
l∈Nk

al,kψl,i

(13)

for some coefficients {al,k} that satisfy the conditions:
N∑

l=1

al,k = 1, al,k = 0 if l /∈ Nk (14)

To run algorithm (13), we only need to select the coefficients
{al,k, cl,k} satisfying (2) and (14); there is no need to worry
about the intermediate coefficients {bl,k}, which have been
blended into the {al,k}. Similarly, if we reverse the order of
steps (11) and (12), we can motivate the following alternative
Combine-then-Adapt (CTA) diffusion strategy (whose struc-
ture is similar to the CTA algorithm originally proposed in
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[6]–[14] for mean-square-error estimation; it was shown in
[14] that ATC generally outperforms CTA):

(CTA)

ψk,i−1 =
∑
l∈Nk

al,kwl,i−1

wk,i = ψk,i−1 − µk

∑
l∈Nk

cl,k∇wJl(ψk,i−1)
(15)

Adaptive diffusion strategies of the ATC and CTA types
were first proposed in [6]–[14] and used to solve distributed
minimum mean-square-error estimation problems over net-
works. A special case of the diffusion strategy (15) (corre-
sponding to choosing cl,k = 0 for l 6= k and ck,k = 1, i.e.,
without sharing gradient information) appeared later in the
works [20], [21] and was used to solve distributed optimization
problems that require all nodes to reach agreement. Diffusion
recursions of the form (13) and (15) are more general in
several respects. First, they do not only diffuse the local weight
estimates, but they also diffuse the local gradient vectors. In
other words, two complete sets of combination coefficients
{al,k, cl,k} are used. Second, the combination weights {al,k}
are not required to be doubly stochastic (which means that
the rows and columns of the corresponding weighting matrix
A = [al,k] should add up to one; as seen from (14), we only
require the columns of A to add up to one). This condition will
be shown further ahead to be sufficient to guarantee agreement
when there is no noise in the data but, more importantly,
the condition will not force nodes to seek agreement when
data noise and gradient noise are present. The nodes will have
the flexibility to tend to individual estimates that lie within a
reasonable mean-square-error (MSE) performance bound from
the optimal solution. Multi-agent systems in nature behave in
this manner; they do not require exact agreement among their
agents but allow for fluctuations due to individual levels of
assessment and individual noise levels (see [14]–[17]). Finally,
and importantly, the step-size parameters {µk} are not required
to depend on the time index i and are not required to vanish
as i→∞. Instead, they can assume constant values, which is
critical to endow the network with continuous adaptation and
learning abilities.

IV. CONVERGENCE ANALYSIS

The arguments that led to (13) and (15) relied on some
approximations that are typical of stochastic gradient and
incremental approaches. The natural question now is to in-
vestigate the performance of the algorithms and to evaluate
how well and how close they converge to wo. In this paper,
we study the convergence of (13) and (15) when noise is
not present. In a related work [22], we derive expressions
for the mean-square-deviation (MSD) of the algorithms in the
presence of noisy gradient vectors; the MSD measures the
mean of the squared error ‖wo−wk,i‖2 for every node k and
in steady-state as i→∞.

A. Block Maximum Norm

For convergence analysis, we extend the argument of [15].
Let x = col{x1, x2, . . . , xN} ∈ CMN denote a vector that is

obtained by stacking N vectors of size M × 1 each on top of
each other. The block maximum norm of x is defined as

‖x‖b,∞ , max
1≤k≤N

‖xk‖ (16)

where ‖·‖ denotes the Euclidean norm of its vector argument.
Furthermore, the induced block maximum norm of an MN ×
MN matrix B is defined as

‖B‖b,∞ , max
x∈CMN ,x 6=0

‖Bx‖b,∞

‖x‖b,∞
(17)

We call upon the following lemma from [15].
Lemma 1: Let Y = diag{Y1, . . . , YN} be an MN ×MN

block diagonal matrix with M×M unitary blocks {Yk}, along
its diagonal. Then, the following properties hold:

1) ‖Y x‖b,∞ = ‖x‖b,∞, for all x ∈ CMN ;
2) ‖Y BY ∗‖b,∞ = ‖B‖b,∞, for all B ∈ CMN×MN .

B. Convergence Analysis

We address the convergence behavior of both the ATC and
CTA versions by viewing them as special cases of a more
general diffusive algorithm of the following form:

φk,i−1 =
N∑

l=1

p1,l,kwl,i−1

ψk,i = φk,i−1 − µk

N∑
l=1

sl,k∇wJl(φk,i−1)

wk,i =
N∑

l=1

p2,l,kψl,i

(18)

where the coefficients {p1,l,k}, {sl,k}, and {p2,l,k} are non-
negative real coefficients corresponding to the {l, k}-th entries
of matrices P1, S, and P2, respectively, which satisfy:

1TP1 = 1T , S1 = 1, 1TP2 = 1T (19)

Different choices for {P1, P2, S} correspond to different co-
operation modes. For example, the choice P1 = I , P2 = A,
and S = C corresponds to ATC, while the choice P1 = A,
P2 = I , and S = C corresponds to CTA. Introduce the error
vectors:

φ̃k,i = wo − φk,i, ψ̃k,i = wo − ψk,i, w̃k,i = wo − wk,i

Then, from (18), we have

φ̃k,i−1 =
N∑

l=1

p1,l,kw̃l,i−1

ψ̃k,i = φ̃k,i−1 + µk

N∑
l=1

sl,k∇wJl(φk,i−1)

w̃k,i =
N∑

l=1

p2,l,kψ̃l,i

(20)

Using the fact that each component function Jl(w) has a
minimizer at the same wo, and a result from [19, p.24], we
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can relate the gradient vectors in (20) to φ̃k,i−1 as follows:

∇wJl(φk,i−1) =−
[∫ 1

0

∇2
wJl

(
wo−tφ̃k,i−1

)
dt

]
φ̃k,i−1

,−Hl,k,i−1φ̃k,i−1 (21)

The second equation in (20) can then be expressed as

ψ̃k,i =
[
IM − µk

N∑
l=1

sl,kHl,k,i−1

]
φ̃k,i−1 (22)

where Hl,k,i−1 depends on φ̃k,i−1. Introduce the global error
vectors and matrices:

φ̃i=[φ̃1,i · · · φ̃N,i]T, ψ̃i=[ψ̃1,i · · · ψ̃N,i]T, w̃i=[w̃1,i · · · w̃N,i]T

P1 = P1 ⊗ IM , P2 = P2 ⊗ IM , S = S ⊗ IM (23)
M = diag {µ1IM , . . . , µNIM} (24)

Di−1=
N∑

l=1

diag
{
sl,1Hl,1,i−1, · · · , sl,NHl,N,i−1

}
(25)

Then, recursions (20) and (22) lead to:

w̃i = PT
2 [IMN −MDi−1]PT

1 w̃i−1 (26)

It follows that

‖w̃i‖b,∞ ≤‖PT
2 ‖b,∞ · ‖IMN −MDi−1‖b,∞

· ‖PT
1 ‖b,∞ · ‖w̃i−1‖b,∞ (27)

It was proved in [15] that ‖PT
1 ‖b,∞ and ‖PT

2 ‖b,∞ are bounded
by one. Thus, it suffices to require

sup
i
‖IMN−MDi−1‖b,∞ < 1 (28)

in order to ensure that the error w̃i converges to zero. The
following theorem gives a condition for (28) to hold.

Theorem 1: Suppose the Hessian matrices satisfy

λl,minIM ≤ ∇2
wJl(w) ≤ λl,maxIM , l = 1, 2, . . . , N (29)

with
∑N

l=1 sl,kλl,min > 0. Then, condition (28) holds for step-
sizes that satisfy:

0 ≤ µk ≤ 2
( N∑

l=1

sl,kλl,max

)−1

, k = 1, . . . , N (30)

Proof: The idea is to diagonalize the block diagonal
matrix Di−1 by using a block unitary matrix transform. Then,
the result would follow from Lemma 1. Details are omitted.

To illustrate the performance of the algorithms through a
numerical example, Table I shows the values obtained for the
network mean-square-deviation (MSD) defined as

MSDnetwork =
1
N

N∑
k=1

‖wo − wk,∞‖2 (31)

TABLE I
MEAN-SQUARE-DEVIATION (MSD) OF THE DIFFUSION STRATEGIES

Algorithm ATC CTA

MSD 1.44× 10−31 2.63× 10−31

The MSD values were computed by applying 200 iterations of
the ATC and CTA algorithms to a 10-node random network
to minimize the following (localization) cost function over w:

Jglob(w) =
N∑

k=1

∣∣dk − ‖w − xk‖2
∣∣2 (32)

where each node was assumed to know its location xk and
its distance dk to the target at wo. The step-size was set to
µk = 0.02.
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