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Abstract—Flocks of birds self-organize into V-formations when they

need to travel long distances. It has been shown that this formation allows

the birds to save energy, by taking advantage of the upwash generated by

the neighboring birds. In this work we use a simple model for the upwash

generated by a flying bird, and show that a flock of birds can self-organize

into a V-formation if every bird were to employ a distributed LMS

algorithm, known as diffusion LMS. The algorithm requires the birds

to obtain measurements of the upwash, and also to communicate with

neighboring birds. The result has interesting implications. First, a simple

diffusion LMS-based algorithm can account for the self-organization of

birds. The algorithm is fully distributed and runs in real time. Second,

that birds can self-organize based on the air pressures generated by the

other birds. Third, that some form of communication among birds is

crucial to achieve the flight formation.

Index Terms—Adaptive networks, distributed estimation, V-formation,

bird flight, self-organization, diffusion LMS.

I. INTRODUCTION

Self-organization is a remarkable property of nature and it has

been observed in several physical and biological systems. Examples

include fish joining together in schools, chemicals forming spirals,

and sand grains assembling into rippling dunes [1]. In self-organizing

systems, a global pattern emerges from the interactions of the

individual components of the system.

Biologically inspired techniques have been advanced in the liter-

ature. For example, Ant Colony Optimization [2] is based on how

ants organize in order to find the shortest path to food, and Particle

Swarm Optimization [3] is based on how birds flock to find food.

Both algorithms have been applied to solve different optimization

problems [4]. Algorithms based on how fireflies synchronize have

been proposed for wireless network synchronization [5], [6].

In this work we focus on bird flocks, and specifically on V-

shaped formations obtained during bird flight. It has been argued

before [7] that birds form into V-shapes in order to save energy. The

reason, although yet debated, is that a flying bird generates an upward

pressure known as upwash, which a trailing bird can use to maintain

its altitude and save energy. Still, what type of algorithm is employed

by the birds to get into this formation is unknown.

In order to obtain these formations, we employ a distributed

estimation algorithm over cognitive, adaptive networks, which is

based on the popular LMS algorithm of adaptive filtering [8], [9].

Distributed estimation algorithms are based on the principle that

its nodes should obtain some estimate by communicating only with

their neighbors. A class of distributed estimation algorithms is known

as diffusion algorithms, whereby nodes perform an adaptation step

using the available measurements, followed by a diffusion step

which requires combining the estimates from the neighboring nodes.

This material was based on work supported in part by the National Science
Foundation under awards ECS-0601266 and ECS-0725441.

Diffusion algorithms based on LMS and RLS have been proposed

before [10]-[13].

In this work we focus on the more general diffusion LMS algorithm

of [12]. We show by simulation that if birds were to employ this

algorithm to attempt to estimate the best position relative to a

reference bird, they would end up in a V-formation. We start by

introducing the diffusion LMS algorithm.

A. The diffusion LMS algorithm

The diffusion LMS algorithm [10]-[12] is a distributed estimation

scheme that allows every node in a network to estimate an unknown

parameter from local measurements and local interactions with neigh-

boring nodes. In this work we use the Adapt-Then-Combine (ATC)

version of the diffusion LMS algorithm [12], though we will refer to

it simply as diffusion LMS.

Consider a set of N nodes distributed over some region. We say

that two nodes are connected if they can communicate directly with

each other. Every node is always connected to itself. The set of nodes

connected to node k is called the neighborhood of node k, and is

denoted by Nk. It is assumed that at every time instant i, every node

k measures a scalar dk(i), drawn from some random process dk(i),

and a row regression vector uk,i of size M , drawn from a random

process uk,i, which are related to an unknown vector wo of size M
as follows:

dk(i) = uk,iw
o + vk(i) (1)

It is assumed that uk,i is wide-sense stationary with mean zero and

covariance matrix Ru,k = E u
∗
k,iuk,i > 0, and vk(i) is a scalar,

zero-mean random process, independent of uk,i and uncorrelated

in time and space, i.e., E vk(i)vl(j) = δklδijσ
2
vk

. The operator E
denotes expectation, ∗ denotes conjugate transposition, and δkl is the

Kronecker delta.

The diffusion LMS algorithm allows every node in the network

to obtain an estimate of the unknown parameter wo from a linear

observation model as in (1), by communicating only with their

neighbors. The estimate obtained by node k at time i is denoted

by wk,i. The algorithm uses a so-called diffusion matrix A of size

N by N , with non-negative real entries al,k satisfying:

al,k = 0 if l 6∈ Nk 1
TA = 1

T

The ATC version of the algorithm without measurement exchange

is shown below for convenience. Notice that nodes only need to

communicate to their neighbors the vectors ψk,i of size M .

ATC Diffusion LMS (no measurement exchange) [12]

At every time i ≥ 0, repeat for every node k:
{

ψk,i = wk,i−1 + µku
∗
k,i[dk(i) − uk,iwk,i−1]

wk,i =
∑

l∈Nk

al,kψl,i
(2)
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Fig. 1. Bird reference system with respect to leading bird.

II. METHODOLOGY

A. Upwash model

Consider a reference system as shown in Figure 1. It is assumed

that birds fly at a constant velocity V in the direction of negative y.

The wingspan of a bird is denoted by b, and is assumed constant for

all birds. With respect to the trailing bird, the leading bird is located at

position (0, 0), and moves in the direction of negative y. The trailing

bird will locate itself at position (±xopt, yopt) relative to the position

of the leading bird. The optimal bird position coordinates, xopt and

yopt, will depend on the aerodynamic model employed.

It is well known that the flight of a bird generates vortices, which

in turn produce a field of of induced velocities in the proximity of

the wings [7], [14], [15]. Upward velocity, also known as upwash, is

generated near the wingtips of the bird, while downward velocity or

downwash is generated near the center of the bird. Near the wingtips,

a pair of free vortices form, and it has been shown before that the

horizontal distance between the centers of these vortices is πb/4,

where b is the wingspan [7]. Moreover, it has been argued that the

optimal position of the bird is therefore xopt = ±(1/2 + π/8)b. In

this work we use a simple model for the upwash generated by a bird.

Assuming the bird is located at position x = 0, y = 0, and moving in

the vertical direction (towards negative y), then the upwash generated

by the bird is given by:

f0(x, y,∆x,∆y) = αV (x− ∆x) · g
(

x−∆x
σx

)

· g
(

y−∆y
σy

)

−αV (x+ ∆x) · g
(

x+∆x
σx

)

· g
(

y−∆y
σy

)

(3)

where α is some constant and g(·) is the Gaussian function:

g(x) =
1√
2π
e−x2/2

Figure 2 illustrates the upwash generated by a bird located at position

x = 0, y = 0, using the parameters α = 1, σx = 0.4, σy = 0.5,

b = 1.8, ∆x = πb/8 and ∆y = 0.9. All positions have units of

meters (m), the upwash is in m/s and α is in m−1.

A bird flying on the rear of another bird will choose to position

one of its wingtips at the center of one of the vortices generated by

the leading bird. Thus, if the leading bird is in location (0, 0), the

optimal location for the trailing bird will be

xopt = ±(∆x+ b/2) yopt = ∆y (4)

Using (4), we can express (3) as a function of xopt and yopt, by

replacing:

∆x = |xopt| − b/2 ∆y = yopt (5)

−2

−1

0

1

2

−1

0

1

2

3

−0.06

−0.04

−0.02

0

0.02

0.04

x (m)y (m)

N
o

rm
al

iz
ed

u
p

w
as

h
f
0
(x

,y
)/

V

Fig. 2. Upwash generated by a bird located at position x = 0, y = 0, using
σx = 0.5, σy = 0.6, b = 1.8, ∆x = 0.49b − σx and ∆y = 0.9.

We will denote by f0(x, y, xopt, yopt) the function obtained from

f0(x, y,∆x,∆y) when using the above replacements. Consider now

the case where N birds are present, and let (xk,i, yk,i) denote the

coordinates of bird k at time i with respect to some arbitrary frame

of reference. The overall upwash observed by bird k is given by:

f(xk,i, yk,i, xopt, yopt) =
N

∑

l=1

f0(xk,i−xl,i, yk,i−yl,i, xopt, yopt) (6)

B. Model Linearization

Assume that a bird located at position (x, y) has an estimate of

the optimal position (xopt, yopt), and let us denote this estimate by

(x̂opt, ŷopt). To first order, we can approximate

f(x, y, xopt, yopt) ≈ f(x, y, x̂opt, ŷopt) +
∂f

∂xopt

∣

∣

∣

∣

xopt=x̂opt

(xopt − x̂opt) +

∂f

∂yopt

∣

∣

∣

∣

yopt=ŷopt

(yopt − ŷopt) (7)

The partial derivatives of f in (6) with respect to xopt and yopt after

replacing (5) are given by

∂f(x, y, xopt, yopt)

∂xopt

=
N

∑

l=1

∂f0(x− xl,i, y − yl,i, xopt, yopt)

∂xopt

∂f(x, y, xopt, yopt)

∂yopt

=
N

∑

l=1

∂f0(x− xl,i, y − yl,i, xopt, yopt)

∂yopt

And the partial derivatives of f0 are given by

∂f0(x, y, xopt, yopt)

∂xopt

= −αV sign(xopt)g

(

y − yopt

σy

)

·
[

x− ∆x

σx
· g′

(

x− ∆x

σx

)

+ g

(

x− ∆x

σx

)

+

x+ ∆x

σx
· g′

(

x+ ∆x

σx

)

+ g

(

x+ ∆x

σx

) ]

(8)

∂f0(x, y, xopt, yopt)

∂yopt

= −αV
σy

g′
(

y − yopt

σy

)

·
[

(x− ∆x)g

(

x− ∆x

σx

)

− (x+ ∆x)g

(

x+ ∆x

σx

) ]

(9)
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Thus, for bird k, located at position (xk,i, yk,i), we define

wo = [xopt yopt]
T

uk,i =

[

∂f

∂xopt

∣

∣

∣

∣

xopt=x̂opt

∂f

∂yopt

∣

∣

∣

∣

yopt=ŷopt

]

(10)

dk(i) = f(xk,i, yk,i, xopt, yopt) − f(xk,i, yk,i, x̂opt, ŷopt) +

∂f

∂xopt

∣

∣

∣

∣

xopt=x̂opt

x̂opt +
∂f

∂yopt

∣

∣

∣

∣

yopt=ŷopt

ŷopt (11)

It is easy to verify that with these definitions, the approximation (7)

has the same form as the observation model (1). All that remains is

to define the variables x̂opt and ŷopt for bird k at time i. From the

definition of wo, we can see that these variables can be obtained at

time i from the first two entries of the previous estimate wk,i−1, i.e.,

x̂opt = eT
1 wk,i−1 ŷopt = eT

2 wk,i−1 (12)

where em is a vector with a one at position m and zeros elsewhere.

C. Motion model

We assume that every bird positions itself with respect to a

reference bird, which is given by its closest leading bird. For every

bird k, we define a set of reference coordinates given by those of the

closest leading bird, i.e.,

(xref
k,i, y

ref
k,i) =

{

(xl,i, yl,i) if l is the closest leading bird of k
(x0,i, y0,i) if k has no leading bird

Consider again bird k at time i, located at position (xk,i, yk,i), and

having obtained a new estimate, wk,i, of the optimal position. This

bird will move to a new position xk,i+1, yk,i+1 based on the estimate

wk,i. Ideally, if the new estimate were perfect, a bird would move to

the new location given by the coordinates xk,i+1 = xref
k,i + eT

1 wk,i

and yk,i+1 = yref
k,i +e

T
2 wk,i. However, since neither the new estimate

is perfect, nor the bird can move too fast to a desired location, we use

an update that combines in a convex manner the previous position

and the desired position. Thus, the position update is given by

xk,i+1 = γxk,i + (1 − γ)(xref
k,i + eT

1 wk,i) + νk,i

yk,i+1 = γyk,i + (1 − γ)(yref
k,i + eT

2 wk,i) + ζk,i − V · ∆T
(13)

where 0 ≤ γ ≤ 1, and νk,i and ζk,i are zero-mean random

processes, independent in time and space, with variances σ2
ν and

σ2
ζ , respectively. These noise processes add randomness to the bird

movements, and account for unmodeled natural factors such as wind,

bird exhaustion, etc. In order to account for the movement of the

entire flock at velocity V in the direction of negative y, we also

subtract V · ∆T from the vertical movement equation in (13),

where ∆T is the discrete time-step, and set x0,i+1 = x0,i and

y0,i+1 = y0,i − V · ∆T .

D. Summary of Algorithm

The algorithm is as follows. At time i, bird k is located at position

(xk,i, yk,i) and has an estimate wk,i−1 of the optimal position with

respect to its reference bird. The bird measures (or “feels”) the

upwash f(xk,i, yk,i, xopt, yopt) at its current location. It also has

access to the upwash with respect to its estimated best relative

position, (x̂opt, ŷopt) (this would correspond to what they would expect

the upwash to be at their current location), and the partial derivatives

of this upwash. In essence, bird k at time i has access to dk(i)
and uk,i, and can therefore use the diffusion LMS algorithm (2)

to compute the new estimate of the best relative position, wk,i.

Notice that the bird will need to communicate its estimate with its

neighbors in order to run the diffusion algorithm. Then, the bird will

move to a new position (xk,i+1, yk,i+1) using (13), and the entire

process is repeated in the next time instant. The complete algorithm

is summarized below.

Self-organizing algorithm using diffusion LMS

Initialize wk,−1, xk,−1 and yk,−1 randomly (see remark below)

for every bird k = 1, . . . , N . At every time instant i ≥ 0, do:

1) For every bird k, set a reference by finding the leading bird

l closest to bird k. Then set xref
k,i = xl,i and yref

k,i = yl,i. If

a bird has no leading bird, set xref
k,i = x0,i and yref

k,i = y0,i.

2) For every bird k, obtain dk(i) and uk,i using (11) and (10),

where x̂opt and ŷopt are obtained from (12).

3) Use the diffusion LMS algorithm (2) to obtain wk,i for

every bird k. Notice that communication with neighboring

birds is required in this stage.

4) For every bird k, compute the new position using (13).

5) Set x0,i+1 = x0,i and y0,i+1 = y0,i − V · ∆T .

Remark: Initialization of the algorithm is important. If the birds are

initially too far apart, or their initial estimates wk,−1 are too large,

they will not be able to feel the influence from other birds, and will

not be able to form. Thus, it is assumed that the initial position is such

that the birds are influenced by other birds. One choice is to draw

the first element of wk,−1 uniformly distributed between −b and b
and the second element of wk,−1 uniformly distributed between 0
and 2yopt. Though far less critical, the initial position of the birds

should also be initialized in such a way that the formation can be

obtained. One choice is to draw the positions uniformly distributed

between −Nb/4 and Nb/4 in the horizontal direction, and between

0 and Nb/2 in the vertical direction.

III. SIMULATION RESULTS

We now present a simulation that illustrates the performance of

the self-organizing algorithm. We use a total of N = 19 birds, with

a wingspan of b = 1.8, α = 1, ∆y = yopt = 0.9, ∆x = πb/8,

xopt = ∆x+b/2 and σx = σy = 0.4. For the motion, we use V = 5
m/s, ∆T = 0.05 s, γ = 0.9, and the motion noise processes are

zero-mean Gaussian with deviations σν = σζ = 0.05. The noise

variance observed by every node is σv,k = 10−4, and the step-size

of the diffusion LMS algorithm is µk = 10 for all k. The diffusion

matrix for diffusion LMS uses uniform weights (all neighbors have

the same weight, normalized to add up to one), and the neighbors

of a bird are defined as the two closest birds, plus itself. The initial

positions are drawn uniformly between −bN/4 and bN/4 in the x
direction, and between 0 and bN/2 in the y direction. The initial

estimates are drawn uniformly, with the first entry being between −b
and b and the second entry being between 0 and b.

Figure 3 shows the resulting bird formations at different time

instants throughout the simulation. It can be observed that after about

500 iterations, the bird flock has converged to a V-shape. Notice that

the algorithm is able to resolve the case where birds get “trapped”

inside the V, as can be observed at time instant t = 4s. Figure 4

shows the resulting upwash generated by the 19 birds. The red dots

in the plot indicate the positions of the birds. Notice how every bird

flies in such a way that its generated upwash overlaps with the upwash

from its leading bird.

Finally, we study the case where nodes do not communicate with

each other. We still perform an LMS iteration at every bird, but

remove the diffusion step, or, equivalently, set A = I at all times.

Thus, birds are only influenced by neighboring birds through the
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Fig. 3. Bird positions at different time instants.

upwash, but do not communicate their estimates in any way. Figure

5 shows the resulting formations for different time instants. Note

that now the birds do not organize into a V shape, and struggle

even to organize into any similar shape. This would suggest that

communication is critical to achieve V formations.
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Fig. 4. Upwash generated by birds in steady-state.

IV. DISCUSSION AND CONCLUSIONS

We presented an algorithm for self-organization in bird formations

which uses the diffusion LMS algorithm to estimate the optimal posi-

tion, relative to the closest leading bird. The estimation is performed

using measurements from the upwash generated by neighboring birds,

and by communicating the positioning estimates in the diffusion step.

Our results indicate that birds can form into a V-shape by running

the proposed algorithm, which is fully distributed and runs in real

time. The results also indicate that birds would be able to form into
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Fig. 5. Bird positions at different time instants, when there is no communi-
cation between birds.

a V-shape based on upwash measurements and local communications.

Finally, it appears that the diffusion step, which requires communi-

cation between neighboring birds, is critical to achieve the V-shape.
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