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Abstract—In this paper, a distributed grouped-relay network
with multiple source and destination nodes is introduced, and its
distributed beamforming based on an average signal-to-leakage-
plus-noise ratio (SLNR) is proposed to mitigate interference and
colored noise from the multiple relay groups. Through system
bit-error-rate simulations, it is verified that the performance of
the leakage-based selection scheme is comparable to a signal-to-
interference-plus-noise ratio (SINR)-based optimal beamforming
method albeit at much lower complexity.

Index Terms—Signal-to-leakage-plus-noise ratio (SLNR),
beamforming, relay selection, multiuser communications.

I. INTRODUCTION

IN distributed relay networks, signal-to-interference-plus-

noise ratio (SINR) and the mean-square-error (MSE) cri-

terion have been used to measure and improve system perfor-

mance [1], [2]. However, due to the coupled nature of the

variables in the resulting optimization problems, no closed

formed solutions are generally available. In [3], grouped-relay

networks were proposed and their relay processing weights

were instead designed by using a signal-to-leakage-plus-noise

ratio (SLNR) criterion [4], [5], which leads to a decoupled

optimization problem.

In this paper, grouped-relay networks of [3] are revisited

(see Fig. 1), and their relay beamforming weights are designed

based on an average SLNR criterion. As a result, the relay

beamforming design does not require full channel information

and it degenerates to selecting the relay that yields the max-

imum average SLNR. A comparison of the system bit-error-

rate (BER) of the proposed SLNR-based selection and other

methods, such as random selection, SINR-based selection,

and SINR-based optimal beamforming methods, is performed

numerically by computer simulation to verify the reliability of

the proposed method.

Notation. Throughout this paper, for any vector or matrix,

the superscripts ‘T ’ and ‘∗’ denote transposition and complex

conjugate transposition, respectively. For any scalar q and

vector q, the notation |q| and ‖q‖ denote the absolute value

of q and the 2-norm of q, respectively; Iq is a q-dimensional

identity matrix; q(n) is the nth element of the vector q;
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diag(Q) is a column vector containing the diagonal entries

of the square matrix Q; diag(q) denotes a diagonal matrix

with the elements of the vector q as its diagonal entries; and

‘E’ stands for the expectation of a random variable.

II. SYSTEM AND SIGNAL MODELS

A two-hop grouped-relay network [3] is shown in Fig.

1. There are K sources {S1, S2 . . . , SK}, K relay groups

{1, 2, . . . , K}, and K destinations {D1, D2, . . . , DK}. Each

node has a single antenna. The ith source Si transmits data to

the ith destination Di by using the ith group consisting of Ni

relays. The first-hop channel from the ith source to the nth

relay in the jth relay group is represented by f
(n)
j,i . The second-

hop channel from the nth relay in the ith relay group to the jth

destination is represented by g
(n)
j,i . The channels f

(n)
j,i and g

(n)
j,i

are i.i.d and zero-mean complex Gaussian random variables

with variances σ
2(n)
f,j,i and σ

2(n)
g,j,i , respectively. The data symbol

of Si at time t is denoted by di(t) with E |di(t)|
2 = 1. In the

first phase, the K sources transmit their data simultaneously

to the relay groups. Through the first-hop, the received signal

vector rk(t) ∈ CNk×1 at the kth relay group is

rk(t) =

K∑

j=1

fk,jdj(t) + nr,k(t) (1)

where fk,j =
[

f
(1)
k,j

··· f
(Nk)

k,j

]T
∈ CNk×1 is a channel vector;

nr,k(t) ∈ CNk×1 is a zero-mean additive white Gaussian

noise (AWGN) vector; and Enr,k(t)n∗
r,k(t) = σ2

r,kINk
. The

nth relay in the kth group multiplies the received signal by

a complex valued weight, and forwards it to the destination

through the second-hop. Denoting the weighting vector of the

kth relay group by wk ∈ CNk×1, the received signal yi(t) at

the ith destination can be represented as:

yi(t) =

K∑

k=1

gT
i,kWkrk(t) + nd,i(t) (2)

where gi,k =
[

g
(1)
i,k

··· g
(Nk)

i,k

]T
∈ C

Nk×1 is a channel vector;

the diagonal matrix Wk = diag(wk) ∈ CNk×Nk ; and nd,i(t)
is the ith destination AWGN with variance σ2

d,i. Throughout

this paper, we assume (i) every channel remains static during

the two transmission phases; (ii) the nth relay in the ith
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Fig. 1. Distributed multiple grouped-relays network model with K sources, K destinations, and K groups. The ith relay group consists of Ni relays.

group knows σ2
r,i, σ

2(n)
f,i,i , and {σ

2(n)
g,k,i} for all k by estimation

through the first phase and by a signaling procedure from all

destinations; (iii) using a transmit power control mechanism

at the sources, the average received power at each relay group

is identical; (iv) the relay belongs to only one group; (v)

{σ
2(1)
f,i,i, . . . , σ

2(Ni)
f,i,i } ≫ {σ

2(1)
f,i,j , . . . , σ

2(Ni)
f,i,j } ≃ 0, where i 6= j,

from an intelligent selection of relays to comprise a group—

this assumption is applicable to the cellular environment where

each source is interpreted as base station in different cells

and the destinations are interpreted as subscribers at the cell

boundary; and (vi) the data symbols, channel elements, and

noises are independent of one another.

III. GROUPED-RELAY PROCESSING

Under assumptions (i) and (ii) mentioned above, the dis-

tributed relay processing {w
(n)
k }, which is the nth relay weight

in the kth group, for all n ∈ {1, . . . , Nk} and k ∈ {1, . . . , K},

will be designed with the available information. Without loss

of generality, from assumption (iii), we can set ‖wk‖
2 = 1 as

the relay transmit power constraint. Substituting (1) into (2),

the received signal at the ith destination is given by

yi =

K∑

k=1

gT
i,kWkfk,idi +

K∑

k=1

gT
i,kWk

K∑

j=1,j 6=i

fk,jdj

+

K∑

k=1

gT
i,kWknr,k + nd,i

(3)

where the time index t is dropped for notational simplicity. The

second term in (3) is the interference from the multiple sources

and the third term is the colored noise from the grouped-relays.

From assumptions (iv) and (v), the received signal (3) can be

approximated as:

yi ≈ gT
i,iWifi,idi +

K∑

k=1,k 6=i

gT
i,kWkfk,kdk

+

K∑

k=1

gT
i,kWknr,k + nd,i.

(4)

Taking expectation over the channels, the received SINR is

derived from (4) as (5) at the bottom of this page under the

assumption (vi), and it can be represented as

SINRi =
w∗

i Σiwi
∑K

k=1,k 6=i w∗
kΦi,kwk

(6)

where the Ni- and Nk-dimensional covariance matrices Σi

and Φi,k, respectively, are given by

Σi = E G∗
i,iFiGi,i

Φi,k = E G∗
i,kFkGi,k + σ2

r,i EG∗
i,kGi,k + σ2

d,iINk

(7)

Here, Fi = (fi,if
∗
i,i)

T ∈ C
Ni×Ni and Gi,k = diag(gi,k).

Noting that Gi,k is a diagonal matrix and that the channel

elements of gi,k and fi,i are independent of each other, we

can obtain Σi and Φi,k from (7) as

Σi = diag

([

σ
2(1)
f,i,iσ

2(1)
g,i,i · · · σ

2(Ni)
f,i,i σ

2(Ni)
g,i,i

]T
)

(8a)

Φi,k= diag

([

µ
(1)
i,k · · · µ

(Nk)
i,k

]T
)

(8b)

where

µ
(n)
i,k = σ

2(n)
f,i,kσ

2(n)
g,i,k + σ2

r,iσ
2(n)
g,i,k + σ2

d,i.

SINRi =
E

∣
∣gT

i,iWifi,i

∣
∣
2

E
K∑

k=1,k 6=i

∣
∣gT

i,kWkfk,k

∣
∣
2

︸ ︷︷ ︸

power of interference signal

+ σ2
r,i E

K∑

k=1,k 6=i

∥
∥gT

i,kWk

∥
∥

2

︸ ︷︷ ︸

power of colored noise

+ σ2
d,i

︸︷︷︸

power of white noise

(5)
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For determining the optimal distributed beamforming vectors

{wk}
K
k=1 with respect to the system BER, we can formulate

an optimization problem using the SINR expression in (6) for

i = {1, . . . , K} as

{wo
i } = arg max

{wi∈CNi×1}
{minSINRi}, s.t. ‖wi‖

2 = 1. (9)

However, due to the
∑K

k=1 Nk coupled variables {wk} in

(6), the SINR criterion generally results in a challenging

optimization problem [4], [5].

To avoid solving (9), the SLNR criterion in [4], [5] can

be employed. It leads to a closed form characterization of the

optimal {wk} in terms of generalized eigenvalue problems. To

begin with, note that the power of the desired signal compo-

nent for the destination Di is given by |gT
i,iWifi,i|

2 from (4),

and the interference power caused by the ith grouped-relay

on the signal received by unintended destinations Dk , where

k 6= i, is given by |gT
k,iWifi,i|

2. We then define the average

signal leakage from the ith destination Di as the total power

leaked from Di to all unintended destinations Dk:

average signal leakage = E

K∑

k=1,k 6=i

∣
∣gT

k,iWifi,i

∣
∣
2
. (10)

Similarly, note that the average power of the colored noise

component from the ith grouped-relay for Di is given by

σ2
r,i E ‖gT

i,iWi‖
2, and the average interference power caused

by colored noise from the ith grouped-relay on the signal

received by Dk , where k 6= i, is given by σ2
r,i E ‖gT

k,iWi‖
2.

We likewise define the average noise leakage from Di, as the

total power leaked from Di to Dk:

average noise leakage = σ2
r,i E

K∑

k=1,k 6=i

∥
∥gT

k,iWi

∥
∥

2
. (11)

For each destination Di, we would like its average signal

power, E |gT
i,iWifi,i|

2, to be relatively large compared to the

average noise power at its receiver, i.e., σ2
r,i E ‖gT

i,iWi‖
2+σ2

d,i.

We would also like E |gT
i,iWifi,i|

2 to be relatively large

compared to the average signal and noise power leaked from

Di to Dk, where k 6= i, i.e., (10) and (11). Consequently, the

average SLNR is defined in (12) at the bottom of this page.

Here, the numerator measures the average power of the signal

intended for the destination Di as the same as the numerator

of SINR in (5), while the denominator measures the average

signal and colored noise power that leak from Di to all other

destinations Dk in addition to the colored and white noise

power at Di. Now, we can formulate the following decoupled

optimization problem for the ith grouped-relay to maximize

SLNRi as follows:

wL
i = arg max

wi∈CNi×1
SLNRi, s.t. ‖wi‖

2 = 1. (13)

To solve problem (13), we reformulate SINRi into Rayleigh-

Ritz ratio form as

wL
i = arg max

wi∈CNi×1

w∗
i Σiwi

w∗
i Ψiwi

, s.t. ‖wi‖
2 = 1 (14)

where the Ni-dimensional covariance matrix Ψi is given by

Ψi = E

K∑

k=1,k 6=i

G∗
k,iFiGk,i + σ2

r,i E

K∑

k=1

G∗
k,iGk,i + σ2

d,iINi
.

Now, (14) can be solved by appealing to the Rayleigh-Ritz

quotient result [6], [7], as

wL
i ∝ max generalized eigenvector{Σi, Ψi} (15)

in terms of the eigenvector corresponding to the largest

generalized eigenvalue of the matrices Σi and Ψi, which is

represented as

Ψi = diag

([

ν
(1)
i · · · ν

(Ni)
i

]T
)

(16)

where

ν
(n)
i = σ

2(n)
f,i,i

K∑

k=1, k 6=i

σ
2(n)
g,k,i + σ2

r,i

K∑

k=1

σ
2(n)
g,k,i + σ2

d,i.

Since Ψi is invertible, the generalized eigenvalue problem (15)

reduces to a standard eigenvalue problem, namely

wL
i ∝ max eigenvector

(
Ψ−1

i Σi

)
(17)

in terms of the eigenvector that corresponds to the maximum

eigenvalue of Ψ−1
i Σi. Note that the eigenvalues of Ψ−1

i Σi

are the diagonal elements of Ψ−1
i Σi and the eigenvector

corresponding to the nth eigenvalue is given by en, where

the nth element of en is 1 and the other elements are 0s,

since Σi and Ψi are diagonal matrices having positive real

diagonal elements. In other words, the optimal beamforming

vector for the ith relay group is obtained by selecting the nth

relay that maximizes the average SLNR at the ith destination,

and is given by

SLNR
(n)

i =
σ

2(n)
f,i,iσ

2(n)
g,i,i

σ
2(n)
f,i,i

∑K

k=1, k 6=i σ
2(n)
g,k,i + σ2

r,i

∑K

k=1 σ
2(n)
g,k,i + σ2

d,i

(18)

SLNRi ,
E

∣
∣fT

i,iGi,iwi

∣
∣
2

E
K∑

k=1,k 6=i

∣
∣fT

i,iGk,iwi

∣
∣
2

︸ ︷︷ ︸

average power of signal leakage

+ σ2
r,i E

K∑

k=1,k 6=i

‖Gk,iwi‖
2

︸ ︷︷ ︸

average power of noise leakage

+ σ2
r,i E ‖Gi,iwi‖

2

︸ ︷︷ ︸

average power of colored noise

+ σ2
d,i

︸︷︷︸

power of white noise

(12)
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from (8a) and (16). Consequently, the optimal problem in (17)

is identical to the following problem:

wL
i = enL where nL = max

n
SLNR

(n)

i (19)

For the relay selection in (19), the nth relay in the ith

group computes (18) under the assumption (ii) and shares this

information with other relays in the same group. Finally, the

only selected relay turns on and retransmits the received signal

to the destination.

At the destination Di equalization is performed as d̂i =
(

g
(nL)
i,i f

(nL)
i,i

)−1

yi to reduce the channel effect from (4). For

the equalization, throughout the second phase, Di needs to

estimate the down link channel value g
(nL)
i,i , and the nLth

relay at the ith group also needs to inform the channel value

f
(nL)
i,i to Di.

IV. SIMULATION RESULTS

Computer simulations are conducted to evaluate the perfor-

mance of the SLNR-based relay selection for grouped-relay

networks. For comparison purposes, we consider three other

methods: random relay selection, SINR-based relay selection,

and SINR-based beamforming methods. The random selection

method chooses a relay in the group randomly. The SINR-

based selection method chooses a relay in the group to maxi-

mize the cost in (9) by comparing (ΠK
k=1Nk) number of costs,

which correspond to the set {wi = en}. The SINR-based

beamforming is also compared as an optimal method and it

can be implemented by solving (9). However, since SINR is a

coupled measure and the concavity of the cost min{SINRi} is

not guaranteed (which can be verified numerically), we find the

optimal beamforming weight by greedy search in
∑K

k=1 Nk-

dimension in our simulation. The transmitted signals from

the sources are modulated by quadrature phase-shift keying

(QPSK) and their average power is one, i.e., E ‖di(t)‖
2 = 1.

We set Ni = N and σ2
r,i = σ2

d,i = 10−5, for all i. The channel

condition is set as follows:

{σ
2(n)
f,i,j} =

{

0 i 6= j

1 i = j
and {σ

2(n)
g,i,j} =

{

U [0, η] i 6= j

1 i = j

for all n, where U [a, b] represents a random variable dis-

tributed uniformly between a and b. Under these conditions,

the average received signal power at the destination is one

and the maximum interference power is η. Here, we define

the minimum signal-to-interference ratio (SIR) as 1
η

, and the

system performance is then evaluated by system BER.

Figure 2 shows the system BER performance. As ex-

pected, the performance improves as the SIR increases; it

is bounded in high 1
η

due to the AWGN; and it slightly

decreases as the number of users increases when N = 2
in high interference region ( 1

η
< 30 dB). In contrast to the

random selection method, it is observed that the SLNR- and

SINR-based methods achieve multiuser and relay diversities,

especially in the low interference region ( 1
η

> 40 dB). The

performance gap between the proposed SLNR-based selection

20 40
Minimum SIR, 1/η dB

 

 

0 20 40

10
−4

10
−3

10
−2

10
−1

10
0

Minimum SIR, 1/η dB

 

 

S
y
s
te

m
 B

E
R

20 40
Minimum SIR, 1/η dB

 

 

random selection

SLNR−based selection

SINR−based selection

SINR−based beamforming

060 6060 0

K=2, N=2 K=3, N=2 K=2, N=3

Fig. 2. System BER performance versus minimum SIR 1

η
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and the optimal beamforming method is small and it becomes

negligible as the interference decreases. Especially, when there

is no interference, both metrics SLNR and SINR degenerate

to the signal-to-noise ratio (SNR) resulting in identical BER

performance. The proposed SLNR-based selection method has

two merits in terms of the computational complexity and the

required information at the relay nodes. It is obvious that

the computational complexity of the SLNR-based method is

substantially less than the SINR-based methods from the fact

that (
∑K

k=1 Nk) searches are required for obtaining {wL
k }

K
k=1.

Furthermore, comparing (6) with (14), we can verify that the

relays in the SLNR-based method require less information than

those in the SINR-based method. Specifically, the relays in the

ith group, (2
∑K

k=1 Nk + 2) variances are required to obtain

SINR, while (
∑K

k=1 Nk + Ni + 2) variances are required to

obtain SLNR.

V. CONCLUSION

We proposed an average SLNR-based relay selection

method for grouped-relay networks. The numerical results

show that the proposed relay selection method performs well

compared to other more computationally intensive methods.
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