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Abstract—In this work, we consider distributed adaptive learn-
ing over multitask mean-square-error (MSE) networks where
each agent is interested in estimating its own parameter vector,
also called task, and where the tasks at neighboring agents are
related according to a set of linear equality constraints. We
assume that each agent knows its own cost function of its vector
and the set of constraints involving its vector. In order to solve the
multitask problem and to optimize the individual costs subject
to all constraints, a projection based diffusion LMS approach is
derived and studied. Simulation results illustrate the efficiency
of the strategy.

I. INTRODUCTION

Distributed adaptive learning allows a collection of inter-
connected agents to perform parameter estimation tasks from
streaming data by relying solely on local computations and
interactions with immediate neighbors. Most prior literature
focuses on single-task problems, where agents with separable
objective functions need to agree on a common parameter
vector corresponding to the minimizer of the aggregate sum of
individual costs [1]-[8]. However, many network applications
require more complex models and flexible algorithms than
single-task implementations since their agents may need to
estimate and track multiple objectives simultaneously [9]-[16].
Networks of this kind, where agents need to infer multiple
parameter vectors, are referred to as multitask networks.
Although agents may generally have distinct though related
tasks to perform, they may still be able to capitalize on
inductive transfer between them to improve their estimation
accuracy [9], [11], [12]. For example, sensor networks de-
ployed to estimate a spatially varying temperature profile need
to exploit more directly spatiotemporal correlations that exist
between measurements at neighboring nodes [13]. In another
example, in distributed power system monitoring, the local
state vectors to be estimated at neighboring control centers
may overlap partially since the areas in a power system are
interconnected [14]. Likewise, in distributed wireless acoustic
sensor networks, neighboring agents need to estimate different
but overlapping active noise control filters [15].

In this work, we consider multitask estimation problems
where the parameter vectors to be estimated at neighboring
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agents are related according to a set of linear equality con-
straints. That is, we consider multitask optimization problems
subject to linear equality constraints of the form:

N
minimize J&P(wy, ..., wy) £ ZJk(wk), (la)
Wi,...,WN

k=1
subject to Z Dyw;+b,=0, p=1,...,P, (lb)

ez,

where N is the number of agents in the network. Each
agent k seeks to estimate its own M} x 1 parameter vector
wy, and has knowledge of its cost Ji(-) and the set of
linear equality constraints that agent % is involved in. Each
constraint is indexed by p, and defined by the L, x M,
matrices Dy, the L, x 1 vector b,, and the set Z,, of agent
indices involved in this constraint. It is assumed that each
agent k in Z, can collect estimates from all agents in Z,, to
satisfy the p-th constraint, i.e., Z, C N} where N, denotes
the neighborhood of agent k. In the sequel, we propose a
primal technique (based on propagating and estimating primal
variables) for solving problem (1) in a distributed manner.
The technique relies on combining a diffusion adaptation
principle with a stochastic gradient projection step, and on
the use of constant step-sizes to enable continuous learning
from streaming data. We illustrate the main results of the
analysis of the proposed algorithm in the mean and mean-
square-error sense. Simulation results are conducted to show
the effectiveness of the proposed strategy.

Notation: We use normal font letters to denote scalars, bold-
face lowercase letters to denote column vectors, and boldface
upper case letters to denote matrices. The symbols (-) T, ()71,
and ()T denote matrix transpose, matrix inverse, and matrix
pseudo-inverse, respectively.

II. PROBLEM FORMULATION AND DISTRIBUTED SOLUTION

Consider a network consisting of N agents, labeled k =
1,...,N. At each time instant ¢, each agent in the network
has access to a zero-mean observation dj (), and a zero-mean
real-valued M, x 1 regression vector (i), with positive
covariance matrix R, ; = E{z(i)z/ (i)} > 0. We assume
the data to be related via the linear data model:

di (i) =z, (D)w}, + 24 (i), )

Asilomar 2016



{dG(%ﬁﬁ(i)} W

Model at agent k: di(i) = &} (i)w$ + 21 (4)
Cost at agent k: Jx(wy) = E(d (i) — &] (i)wy)?
> Duwe+b,=0pe i}

LET, TN

Constraint sets at agent k: Wy =
Fig. 1. Multitask MSE network with local linear equality constraints.

where w¢ is an M}, x 1 unknown parameter vector, and zj(4) is
a zero-mean measurement noise of variance 037 &> independent
of x,(y) for all £ and j, and independent of z,(j) for £ # k or
i # j. We let 1y i = E{di (i) (i)} and o3, = El|d(i)|*.

Let wy, denote some generic M}, x 1 vector that is associated
with agent k. The objective at agent k is to find an estimate for
w?, and we associate with this agent the mean-square-error
criterion:

In addition, P linear equality constraints (1 < 25:1 L, <
22]:1 My,) of the form (1b) are imposed on the vectors {wy, }
of neighboring agents. Let 7, be the set of agent indices
involved in the p-th constraint. Consider agent k € I,.
We assume that k is aware of the p-th constraint, and that
it can collect estimates from all agents in Z, in order to
satisfy the p-th constraint, that is, Z,, C N. This assumption
is reasonable in many distributed monitoring applications
over networks [17]. An illustrative example for the network
considered in this work is provided in Fig. 1 where Jj
denotes the set of constraint indices containing agent k, i.e.,
Ji=1{p | keT,).

Let us collect the parameter vectors {wy} and {w¢} from
across the network into /N x 1 block column vectors:

Swyl, (@)

and let us write the P linear equality constraints in (1b) more
compactly as:

w = col{wy,...,wy}, w°®=col{wy,..

Dw +b =0, )

where D is a P x N block matrix whose (p,¢)-th block is
given by D, if ¢ € 7, and 0 otherwise, and b is a P x 1 block
column vector whose p-th block is given by b,. We assume
that D is full row rank to ensure that (5) has at least one

Fig. 2. (Left) Network topology with constraints identified by the sets 71,
I2, and Z3. (Right) Network topology model with virtual clusters shown in
grey and constraints now identified by the sets of sub-nodes Zc 1, Z¢,1, and
Ze,3 where all sub-nodes are involved in one constraint. Diffusion learning
is run in clusters with more than one sub-node in order to reach agreement
on local estimates while satisfying their respective constraints.

solution. Combining (1), (3), and (5), we find that the closed
form solution of problem (1) is unique and given by:

w* =w’ —R'D(DR;'D") " {(Dw’ +b), (6)

where w* is a block vector with IN subvectors of size M, x 1
each. Moreover, the matrix R, is given by:

R, £ diag{R;1,..., R, v} (7)

In the sequel, we show how each agent k in the network
illustrated in Fig. 1 can estimate the k-th sub-vector wj of
w* in (6) in a distributed and adaptive manner. To do so,
we first transform (1) into an equivalent optimization problem
exhibiting structure amenable for distributed optimization with
separable constraints. Let ji denote the number of constraints
that agent k is involved in, i.e., jr = |Ji|- We expand each
node k into a cluster C of ji virtual sub-nodes, namely,
Cr & {km})*_,. Bach one of these sub-nodes is involved in a
single constraint. Let wy,, denote the M}, x 1 auxiliary vector
associated with sub-node k,,. In order to ensure that agent k
satisfies simultaneously all the constraints at convergence, we
will allow all sub-nodes at agent k to run diffusion learning to
reach agreement on their estimates {wy,, } asymptotically. An
illustrative example is provided in Fig. 2. On the left of this
panel is the original network topology with N = 6 agents and
P = 3 constraints. On the right is the network topology model
with clusters of sub-nodes shown in grey color. Observe that
T, ={1,3,k} and Z3 = {4, k,(}, which means that agent k
is involved in constraints 2 and 3. Thus, agent k is expanded
into a cluster C, = {k1, k2} of 2 sub-nodes. Sub-nodes k; and
ko are assigned to constraints 2 and 3, respectively. Each other
agent, say ¢, involved in a single-constraint is renamed ¢; and
assigned to a single-node cluster C;, = {¢1} for consistency
of notation. This leads to the sets Z,o = {12,31,k1} and
T3 = {41,61,ko} where all sub-nodes are involved in a
single constraint.

Accordingly, we can reformulate problem (1) into the fol-
lowing equivalent form by introducing the auxiliary variables

{w,, }:
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N  Jjk
minimize E E Chpn T (W, )
we

(8a)

k=1m=1
subject to Z Dy, wy, +b,=0, p=1,..., P,

bn€Ze p

(3b)

Wpy, = ... =Wy, , k=1,...,N, (8c)

where w,, is an N, x 1 network block column vector:
. . N
w, £ col {col {wy.,, }‘Zr’;':l}k g )

with N, 2 SV i, and {cx
chosen by the user such that:

} are free positive coefficients

m

Jk

Ch, >0, form=1,... Gk, Dk, =1 (10)
m=1

Let wj, denote the (M}, x 1) k-th block of w* in (6). The

closed form solution w} of problem (8) can be written as:

an

In the following, we shall address the equality constraints (8c)
with a single-task diffusion algorithm [3], [6]-[8] within each
cluster of sub-nodes with the objective of reaching an agree-
ment within each cluster (all sub-nodes at agent k£ converge
to the same estimate).

Based on the gradient projection and diffusion strategies
principles, we propose in the following an iterative algorithm
to solve (8) in a distributed manner [17]. Let w, , denote the
ip X 1 block column vector given by w., = col{wy, }¢,c7. ,
where i, is the number of nodes (or equivalently sub-nodes)
involved in the p-th constraint and let €2, denote the linear
manifold corresponding to the p-th constraint in (8b), namely,
Q, £ {Dyw.,+b, = 0} where D, is a 1 x i, block matrix.
We assume that k,, € Z., and we let wy, (¢) denote the
estimate of wj at sub-node k,, and iteration ¢. Starting from
wy,, (0) = wy(0) for m = 1,..., ji, our multitask diffusion
algorithm consists of three steps [17], namely, an adaptation
step (12a), a projection step (12b) involving exchange of
estimates between agents, and a combination step (12c¢):

¥y, (i+1) =wg, (i) + pew, k(i) (di(i) — 2, (Dwy,, (i) ,

*x * 1N
w; = col{l;, x1 ® Wi}y

(12a)
O, (1 +1) = [Ppli,e - cO{tp, (i +D}e,ez., — [Fplkn
(12b)
we, (i+1)= > kg, by, (1), (12¢)
kn €Ng,, NCi
where
P,21-D!D, f,=Dlb,, (13)

where the notation DL represents the pseudo-inverse matrix of
D,,. Moreover, Ny, N Cy, is a virtual set of neighboring sub-
nodes of k,, in C; chosen by the designer (Cy, is allowed to be

strongly connected in order to reach an agreement at each sub-
node k,, and satisfy all the constraints at agent k [17]). The
non-negative combination coefficients {a } are chosen to

satisfy:
E O
km €Nk, N Ci

nkm

§ Ak, e,

kn €Ng,,, N Ck
and ay, r,, = 0if ky, & Ni,, NCy.

=1

)

(14)

By setting cy,, to Jik for all m = 1,...,ji, and combining
the intermediate estimates ¢; (i + 1) at each sub-node k;,
with the estimates of all other sub-nodes at agent & using
uniform combination coefficients, i.e., N, N Cp = Cj and
Ak, ko = J% forn=1,...,7k (12a) and (12c) reduce to:

Yy, (i +1) =¢(i+1), and wy, (i+1)=wg(i+1),
5)
for m = 1,...,jk, where (i + 1) and wy(i + 1) are

computed by agent k according to:

(i +1) = wi(i) + ;—ka(i) (di(i) — 2} (i)wi (i), (16)

. 1 &

wi(i+1) = — Y ¢y, (i +1). (17)
Tk n=1
III. PERFORMANCE ANALYSIS RESULTS

Due to space limitations, we only list the main results of the
analysis without showing the proofs'. Note that, throughout
the analysis, the regression vectors xj (i) are assumed to be

zero-mean, temporally white, and spatially independent.

A. Mean behavior

Let us introduce the N, x 1 network block error vector:
(13)

we(i) = w; — col{col{wy,, (1) }75—1 }ils-

The mean error vector of algorithm (12) evolves according
to [17]:

Ew(i4 1) = BEw,.(i) — pr, 19)
where

B2 AP.(I-pR..), (20)

2 ATP R, (W — w)), @

P.21-DiD,, (22)

Rue 2 diag{C ® Ry i )01, (23)

where A £ diag{A; ® I}}_|, A is the jj, x j, doubly-
stochastic matrix whose (n,m)-th element is ag, k.. Ck =
diag{c,, }'%_,, D, is a P x N, matrix constructed according
to (8b), and w? = col{1;, x; ®w3}. Recursion (19) converges
as i — oo if the matrix B is stable. The stability of the matrix
B is ensured by choosing p such that:

2
Ck,max * Amax(-l%x,k)7

0<p< Vk=1,...,N, (24)

The arguments are available in the technical report [17].
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A . .
where ¢ max = MaxXi<m<j, Ck,,- 1he asymptotic mean bias
is given by:

lim Ew, (i) = —p(I — B) 'r. (25)

1—>00
The bias is zero in two cases: 1) in the perfect model scenario
where {w¢} satisfy the constraints (w? = w}); 2) if each
agent is involved in at most one constraint.

B. Mean-square-error behavior

Algorithm (12) is stable in the mean-square-error sense,
i.e., the quantity E ||w,(i)||% converges as i — oo for any
positive semi-definite matrix 3 that we are free to choose, if
the algorithm is mean stable and if the matrix F given by:

F 2 E{B(i) @, B(i)} (26)

is stable, where ©@; denotes the block Kronecker product
operator. In this case, the steady-state performance with metric
3, defined as ¢* £ lim; o, E ||ﬂ)e(z)||§: can be obtained
as follows [17]:

¢* = [bvec(Y(co))] T (I — F) 'bvec(Ts.)—

27
2hTZ}ss(u}Z - w;) + sz - w;”%ss
where bvec(-) is the block vectorization operator and
V() £ 1’6" +qq +2qh "B, (28)
h < (I-B)"q, (29)
g2 A (I-Pow;+A'f,. (30)
G £ A'P.diag{cre) © 02 jRop}ini PeA,  (G1)

with f, 2 Db and ¢, 2 col{cy,, }/5_,. The steady-state
network MSD is defined as:

N Jk
1 1
a L L . ~ N2
MSD 2 3 (5 i Bl ) 62
N
which is obtained by setting 3., = +-diag {ijIjk‘]wk }k )
=1

IV. SIMULATION RESULTS

In the following, we provide an example to illustrate the
behavior of algorithm (12). We considered a network of 14
agents with the topology shown in Fig. 3 (left). The regressors
had size M} = 2 Vk, were zero-mean Gaussian, independent
in time and space and had covariance matrices R, j > 0. The
noises z(4) were zero-mean i.i.d. Gaussian random variables
with variances ai «- Figure 3 (right) shows how the signal and
noise powers vary across the agents. We randomly sampled
P = 9 linear equality constraints of the form (1b) where the
matrices Dy, are of dimension 1 x 2 if p = {1,3,5,7,9} and
2 x 2 otherwise. The entries of the matrices D,,, and vectors
b, were sampled from the Gaussian distribution N(0, 1). The
factors ¢y, were set equal to Jik and the sets Ny, NCy = Cx

for m = 1,..., ji. We ran algorithm (12) with ay, . = L
forn=1,...,jk.

Jk

We used a constant step-size ¢ = 0.02 for all agents. The
results were averaged over 200 Monte-Carlo runs. Let

w(o) = col{wZ(a)}fc\f:1 =w, + u(o), (33)

where w, is a parameter vector satisfying the constraint Dw+
b = 0 and u(o) is a vector whose entries are sampled from
the Gaussian distribution A(0, o2). To test the tracking ability
of the algorithm, we set the parameter vectors wy, in (2) equal
to w? (o) in (33) and we modified o every 500 iterations as
shown in Fig. 4. We observe that the theoretical model (27)
matches well the actual performance of the network.

In order to characterize the influence of the step-size u
on the performance, we report in Fig. 5 (left) the theoretical
steady-state MSD (27) for different values of  when o = 0.5.
We observe that the steady-state MSD is on the order of p.
Furthermore, we report in Fig. 5 (right) the squared norm
of the bias (25) for different values of u. As expected, this
quantity is on the order of .

V. CONCLUSION

In this work, we proposed a multitask diffusion LMS
algorithm for solving problems that require the simultaneous
estimation of multiple parameter vectors that are related lo-
cally via linear equality constraints. Our primal technique was
based on the stochastic gradient projection algorithm with
constant step-size. We showed through simulations that for
sufficiently small step-sizes the agents are able to reach the
optimal solution with arbitrarily good precision.
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