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Abstract—We propose an asynchronous, decentralized algo-
rithm for consensus optimization. The algorithm runs over a
network of agents, where the agents perform local computation
and communicate with neighbors. We design the algorithm so
that the agents can compute and communicate independently
at different times and for different durations. This reduces the
waiting time for the slowest agent or longest communication delay
and also eliminates the need for a global clock.

Mathematically, the algorithm involves both primal and dual
variables, uses fixed step-size parameters, and provably converges
to the exact solution under a bounded delay assumption and a
random agent assumption. When running synchronously, the al-
gorithm performs just as well as existing competitive synchronous
algorithms such as PG-EXTRA, which diverges without synchro-
nization. Numerical experiments confirm the theoretical findings
and illustrate the performance of the proposed algorithm.

Index Terms—decentralized, asynchronous, delay, consensus
optimization.

I. INTRODUCTION AND RELATED WORK

This paper considers a connected network of n agents that
cooperatively solve the consensus optimization problem

S ; 1
mininuze )= - ilr),
nimize  f(x) n;ﬂ )

where fi(z) = s;(z) +ri(z), i=1,...,n. (1)

We assume that the functions s; and r; : R? — R are convex
differentiable and possibly nondifferentiable functions, respec-
tively. We call f; = s; + r; a composite objective function.
Each s; and r; are kept private by agenti = 1,2,--- ;n, and r;
often serves as the regularization term or the indicator function
to a certain constraint on the optimization variable x € R”
that is common to all agents. Decentralized algorithms rely on
agents’ local computation, as well as the information exchange
between agents. Such algorithms are generally robust to failure
of critical relaying agents and scalable with network size.

In decentralized computation, especially with heterogeneous
agents or due to processing and communication delays, it can
be inefficient or impractical to synchronize multiple nodes and
links. To see this, let 2% € RP be the local variable of agent
i at iteration k, and let X* = [z1F g2k gnk]T ¢ Rrxp
collect all local variables, where k is the iteration index. In a
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Fig. 1: Network and uncoordinated computing.

synchronous implementation, in order to perform an iteration
that updates the entire X* to X*+1, all agents will need to
wait for the slowest agent or be held back by the slowest
communication. In addition, a clock coordinator is necessary
for synchronization, which can be expensive and demanding
to maintain in a large-scale decentralized network.

Motivated by these considerations, this paper proposes an
asynchronous decentralized algorithm where actions by agents
are not required to run synchronously. To allow agents to
compute and communicate at different moments, for different
durations, the proposed algorithm introduces delays into the
iteration — the update of X* can rely on delayed information
received from neighbors. The information may be several-
iteration out of date. Under uniformly bounded (but arbitrary)
delays and that the next update is done by a random agent',
this paper will show that the sequence {X*};>, converges to
a solution to problem (1) with probability one.

What can cause delays? Clearly, communication latency
introduces delays. Furthermore, as agents start and finish
their iterations independently, one agent may have updated
its variables while its neighbors are working on their current
iterations that still use old (i.e., delayed) copies of those
variables; this situation is illustrated in Fig. 1. For example,
before iteration 3, agents 1 and 2 have finished updating
their local variables =12 and ! respectively, but agent 3
is still relying on delayed neighboring variables {z'?, z20},
rather than the updated variables {z'2, 2%}, to update x33.
Therefore, both computation and communication cause delays.

A. Relationship to certain synchronous algorithms

The proposed algorithm, if running synchronously, can be
algebraically reduced to PG-EXTRA [1]; they solve problem
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(1) with a fixed step -size parameter and are typically faster
than algorithms using diminishing step sizes. Also, both al-
gorithms generalize EXTRA [2], which only deals with dif-
ferentiable functions. However, divergence (or convergence to
wrong solutions) can be observed when one runs EXTRA and
PG-EXTRA in the asynchronous setting, where the proposed
algorithm works correctly. The proposed algorithm in this
paper must use additional dual variables that are associated
with edges, thus leading to a moderate cost of updating and
communicating the dual variables.

The proposed algorithm is also very different from decen-
tralized ADMM [2]-[4] except that both algorithms can use
fixed parameters. Distributed consensus methods [5], [6] that
rely on fixed step-sizes can also converge fast, albeit only to
approximate solutions.

Several useful diffusion strategies [7]-[12] have also been
developed for solving stochastic decentralized optimization
problems where realizations of random cost functions are
observed at every iteration. To keep adaptation and continuous
learning alive, these strategies employ fixed step-sizes, and
they converge fast to a small neighborhood of the true solution.
The diffusion strategies operate on the primal domain, but they
can outperform some primal-dual strategies in the stochastic
setting due to the influence of gradient noise [13]. These
studies focused on synchronous implementations. Here, our
emphasis is on asynchronous networks, where delays are
present and become critical, and also on deterministic opti-
mization where convergence to the true solution of problem
(1) is desired.

B. Related decentralized algorithms under different settings

Our setting of asynchrony is different from randomized
single activation, which is assumed for the randomized gossip
algorithm [14], [15]. Their setting activates only one edge at
a time and does not allow any delay. That is, before each
activation, computation and communication associated with
previous activations must be completed, and only one edge
in each neighborhood can be activated at any time. Likewise,
our setting is different from randomized multi-activation such
as [16], [17] for consensus averaging, and [18]-[21] for
consensus optimization, which activate multiple edges each
time and still do not allow any delay. These algorithms can
be alternatively viewed as synchronous algorithms running in
a sequence of varying subgraphs. Since each iteration waits
for the slowest agent or longest communication, a certain
coordinator or global clock is needed.

Our setting is also different from [22]-[25], in which other
sources of asynchronous behavior in networks are allowed,
such as different arrival times of data at the agents, random
on/off activation of edges and neighbors, random on/off up-
dates by the agents, and random link failures, etc. Although
the results in these works provide notable evidence for the
resilience of decentralized algorithms to network uncertainties,
they do not consider delays.

We also distinguish our setting from the fixed-
communication-delay setting [26], [27], where the information
passing through each edge takes a fixed number of iterations
to arrive. Different edges can have different such numbers,

and agents can compute with only the information they have,
instead of waiting. As demonstrated in [26], this setting can
be transferred into no communication delay by replacing an
edge with a chain of dummy nodes. Information passing
through a chain of 7 dummy nodes simulates an edge with
a t-iteration delay. The computation in this setting is still
synchronous, so a coordinator or global clock is still needed.
Other works [26], [28] consider random communication
delays in their setting. However, they are only suitable for
consensus averaging, not generalized for the optimization
problem (1).

Our setting is identical to the setting outlined in Section
2.6 of [29], where the introduced asynchronous decentralized
ADMM allows both computation and communication delays.
Our algorithm, however, handles composite functions and
avoids solving possibly complicated subproblems.

C. Contributions

This paper introduces an asynchronous, decentralized algo-
rithm for problem (1) that provably converges to an optimal
solution assuming that the next update is performed by a
random agent and that communication is subject to arbitrary
but bounded delays. If running synchronously, the proposed
algorithm is as fast as the competitive PG-EXTRA algorithm
except, for asynchrony, the proposed algorithm involves up-
dating and communicating additional edge variable. When the
proposed algorithm runs asynchronously, it eliminates waits
and becomes significantly faster.

Our asynchronous setting is considerably less restrictive
than the settings under which existing non-synchronous or
non-deterministic decentralized algorithms are proposed. In
our setting, the computation and communication of agents are
uncoordinated. A global clock is not needed.

D. Notation

Each agent ¢ holds a local variable € RP, whose value
at iteration % is denoted by z**. We introduce variable X to
stack all local variables z’:

X = : € R"*P, ()
— @)’
We further define functions
s(X) = sia'), r(X):=) ria), 3)
i=1 i=1
as well as
F(X) = fila') = s(X) + r(X). 4)
i=1
The gradient of s(X) is defined as
-
— (Vsl(x1)> —
Vs(X) = ER™P. (5)

— (Vsn (x")) !
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The inner product on R™*? is defined as
n
> @)TE, VX, X eRMP.(6)

i=1

(X, X) = tr(XTX) =

II. ALGORITHMS

Consider a strongly connected undirected network G =
{V, €&} with |[V| = n and |£| = m. By convention, all edges
(i,7) € € obey i < j. To each edge (i,j) € &, we assign a
weight w;; > 0, which is used by agent i to scale the data
x7 it receives from agent j. Likewise, let w;; = w;; for agent
J. If (4,7) ¢ &, then w;; = w;; = 0. For 4, N; denotes the
neighborhood of agent 7 (including ¢ itself), and &; denotes
the set of all edges connected to .

Let W = [w;;] € R™*™ denote the weight matrix, which is
symmetric and assumed to be doubly stochastic. Such W can
be generated through the maximum-degree [30] or Metropolis-
Hastings rules [30]. It is easy to verify that null{ — W} =
span{1}. Introduce the diagonal matrix D € R™*™ with
diagonal entries D, . = \/w;;/2 for each edge e = (4, j). Let

C = [ces] € R™*™ be the incidence matrix of G, and define
V:=DC € R™*" (N
as the scaled incidence matrix and V' = [v,;]. It is easy to

verify the following statement:

Proposition 1 (Matrix factorization identity). When W and
V' are generated according to the above description, it holds

that
1
Vv = 5(I—W). (8)

A. Proposed primal-dual algorithm

Let us reformulate Problem (1). First, it is equivalent to

n n
minimize si(2) 4+ ) ri(x?)
{z@) sz} z:zl ' 1:21 ' '
subject to 2! =% =... =" ©)

Since null{I — W} = span{1}, Problem (9) is equivalent to

minimize s(X) + r(X)

XGR’H Xp

subject to (I — W)X = (10)
By Proposition 1, Problem (10) is further equivalent to

s(X) + r(X)

VX =0,

minimize
XERnxp

an

subject to

which can be reformulated into the saddle-point problem

max min s(X)+r(X)+
Y ER™XP X eRnXP

Xy, ay
!

where o > 0 is a parameter and Y is the variable that stacks all
local dual variables {y°}" ;. Notice that a similar formulation
using the incidence and Laplacian matrices was also employed
in [13] to derive primal-dual distributed optimization strategies

over networks. Problem (12) can be solved iteratively by the
primal-dual algorithm that is adapted from [31] [32]:

Yk+1 :Yk + VXk,
Xkt =prox,, [X*—aVs(X*)-V T (2yk+l_yk)].
(13)

where the proximal operator is defined as

prox,,.(U) := arg min {r(X) + i”X — U||12;} . (14

XeRnxp

Next, in the X-update, eliminating Y**1 by plugging in the
Y -update and, with [ — 2VTV = W, we arrive at:

Y =Yk 4+ VXF
’ 15
Xk = prox,,, [WX*—aVs(X¥) -V TY¥], (1>
which computes (Y1, X*+1) from (Y*, X*)2. Applying

W, V and VT requires communication. Other operations are
local.

B. Synchronous algorithm

Recursion (15) can run in a decentralized manner. To do so,
we associate each row of the dual variable Y with an edge
e = (i,j) € &, and for simplicity we let agent ¢ store and
update the variable y° (the choice is arbitrary). We also define

Li:={e=(i,j) €&, Vj>i}, (16)
as the index set of dual variables that agent ¢ needs to update.

Algorithm 1 implements the iteration (15) in the syn-
chronous setting, which requires two synchronization barriers
in each iteration k. The first one holds computing until an
agent receives all necessary input; after the agent finishes
updating its variables, the second barrier prevents it from
sending out information until all of its neighbors finish their
computation (otherwise, an update intended for iteration k + 1
may arrive at a neighbor too early, entering its computing still
at iteration k). Note that the second barrier can be replaced
by a buffer.

Algorithm 1: Synchronous algorithm based on (15)
. Set k= 0;

Input: Starting point {z*°}7_ , {y®9}m
while all agents i € V in parallel do

Wait until {z7%},cn; and {y®*}.ce, are received;
Compute:

" **=prox,, (Zw ik Vs (zbk Zvuy )

JEN; e€E;
yortl =y —l—( i ZF — v, xj’) VeeL;.

Wait until all neighbors finish computing;
Setk«+ k+1;
Send out 2"**+1 and {y®**1} ... to neighbors;

2Algorithm (15) is essentially equivalent to PG-EXTRA developed in [1]
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C. Asynchronous algorithm

In the asynchronous setting, each agent computes and com-
municates independently without any coordinator. Whenever
an arbitrary agent finishes a round of its variables’ updates,
we let the iteration index k increase by 1 (see Fig. 1). As
discussed in Sec. I, communication latency and uncoordinated
computation result in delays. Therefore, in the asynchronous
algorithm the agent will compute with delayed information
from its neighbors. Suppose agent 7 is activated at iteration k,
and let Tjk > 0 and 6* > 0 denote the delays for agent j and
edge e at iteration k. Agent ¢ will compute

~ik PR ok 5K
:L'""H:proxa,.l(g ’wijxj’k i —aVs; (¢F T )—E Veiy ™" 56),
jEN; ec&;
~e,k+1_, e k—6F ’ ik—1F G k—7F
gertl=yeh=dc 4 (v a™h T v a? T, Ve € L.
(17)

Tlc

In recursion (17), T Tf-iteration out of date and

y®F=%¢ is §F-iteration out of date. To guarantee convergence,

instead of letting x»*+1 = ZHF+1 and yoktl = gek+l
directly, we propose a relaxation step
ZiRt = gk g (fiJchl _ xz},kfrf)
)
. X o sk (18)
ye,k+1 — ye,k+ni (ye7k+1 _ yeA,k OE)’ Ve € ‘Cz
— . k ~, k
where THFTT — ghk=7 and gektl — y&k—% behave as

updating directions, and 7; € (0,1) behaves as the relax-
ation parameter which depends on how out of date an agent
knows about the inputs from its neighbors. For agent j not
activated at iteration k, its local variables remain the same,
ie. xPFtl = g3k and yek+l = yok Ve € £;. Algorithm 2
implements the asynchronous updates.

Algorithm 2: Asynchronous algorithm

Input: Starting point {z%°}" |, {y
while each agent i asynchronously do
L Compute per (17)—(18) using the information it has;

e,01m
e=1"

Set k =0;

Send out x***+1 and {y®**1} .. to neighbors;

III. CONVERGENCE ANALYSIS

We present our main assumptions and convergence results.
As space is limited, all proofs are left to the longer report. We
first introduce a new symmetric matrix G = [I,, V';V I,,.],
which can be further verified to be positive definite. Let
Pmin = Amin(G), then pni > 0. We also Let k be the
condition number of G.

Assumption 1.

1) The functions s; and r; are closed, proper and convex.
2) The functions s; are differentiable and satisfy:

[Vsi(x) = Vsi(@)|| < Lillz — 2|, Vz,z€RP,

where L; > 0 is the Lipschitz constant.

3) The parameter « in synchronous algorithm (15) and
asynchronous algorithm (17) satisfies 0 < a < 2pmin/L,
where L := max; L;.

Assumption 2. The delays Tf,j =1,2,...,n and §* e =
1,2,...,m, Yk, defined in (17) have an upper bound T > Q.

As we nearly finish this paper, we notice that this assumption
can be relaxed using the results in the recent paper [33].

Assumption 3. For any k > 0, the index iy, of the agent
responsible for the kth update is random and has probability

gi == P(i, =1) > 0.

The random variables 11,12, -- are independent.

Assumption 3 is satisfied under either of the following sce-
narios: (i) every agent i is activated following an independent
Poisson process with parameter \; and its computation is
instant, leading to ¢ = X\;/(3__, \i); (ii) every agent
¢ runs continuously, and the duration of each round fol-
lows the exponential distribution exp(f;), leading to ¢; =

Bt/ (i B

Assumption 4. The delays 7F,j = 1,2,...,n and 6F e =
1,2,...,m, at iteration k, are independent of the index ij, of
the agent responsible for the update.

We admit that Assumption 4 is not always practical, but it is
a key assumption for our proof to go through. One of the cases
for this assumption to hold is when each agent and edge always
have the maximum delay 7. In reality, what happens is between
this worst case and the no-delay case. Besides, Assumption 4 is
also a common assumption in the recent literature of stochastic
asynchronous algorithms; see [29] and the references therein.

Based on the above assumptions, we have the following
theorem for Z% := [ X%, Y*].

Theorem 1. Let Z* be the set of primal-dual solutions
to (12), {Z*}r>o be the sequence generated by Alg. 2, and

N = i with 1 € (0,7max] Where fmax < 27'\/71:?% and
Gmin = min; g;. Then {Z*}>0 converges to a point in Z*

with probability 1.

This theorem guarantees that, if we run the asynchronous
algorithm 2 from an arbitrary starting point X°, then with
probability 1, the sequence {X*};> produced will converge
to one of the solutions to problem (12).

IV. NUMERICAL EXPERIMENTS

In this part we simulate the performance of the proposed
asynchronous algorithm (Alg. 2). We will compare it with its
synchronous counterpart (Alg. 1).

The tested problem is decentralized compressed sensing.
Each agent i € {1,---,n} holds some measurements: b; =
Az +e; € R™, where A; € R™*P is a sensing matrix,
z € RP is the common unknown sparse signal, and e; is
i.i.d. Gaussian noise. The goal is to recover x. The number
of measurements Y, m; may be less than the number of
unknowns p, so we solve the ¢;-regularized least squares:

1 n
minimize — Z si(x) +ri(x),

i=1

19)

where s;(z) = 3[|Aix —b;l|3, 7i(x) = 0;]|z||1, and 6; is the
regularization parameter with agent ¢ and we set 6; = 0.01.
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Fig. 2: asynchronous and synchronous algorithms

The tested network has 10 nodes and 14 edges. We set
m; = 3fori=1,---,10 and p = 50. The entries of A;, e; are
independently sampled from the standard normal distribution
N(0,1), and A; is normalized so that [|A(;)|[2 = 1. The signal
x is generated randomly with 20% nonzero elements.

We also simulate the computation and communication
times. The computation time of agent ¢ is sampled from
exp(u;). For agent 4, p; is set as 2 + |i| where it ~ N(0, 1).
The communication time between agents are independently
sampled from exp(1/0.6). After the computation time is
generated, the probability ¢; can be computed accordingly.

We run the synchronous A%cg. 1 and the asynchronous Alg. 2
and plot the relative error M against time, as depicted
in Fig. 2. X™ is the exact solution. The step-sizes for both algo-
rithms are tuned to be 1, and for Alg. 2 we set 7; = 0.0288/¢;.
From Fig. 2 we can see that both algorithms exhibit linear
convergence and that Alg. 2 converges significantly faster.
Within the same period (roughtly 2760ms), the asynchronous
algorithm finishes 21 times as many rounds of computation
and communication as the synchronous counterparts, due to
the elimination of waiting time.
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