
Performance analysis of multitask diffusion
adaptation over asynchronous networks

Roula Nassif†, Cédric Richard†, André Ferrari†, Ali H. Sayed‡
† Université de Nice Sophia-Antipolis, CNRS, France

Email: {roula.nassif, cedric.richard, andre.ferrari}@oca.eu
‡University of California, Los Angeles, USA

Email: sayed@ee.ucla.edu

Abstract—The multitask diffusion LMS algorithm is an effi-
cient strategy to address distributed estimation problems that
are multitask-oriented in the sense that the optimum parameter
vector may not be the same for every cluster of nodes. In this
work, we explore the adaptation and learning behavior of the
algorithm under asynchronous conditions when networks are
subject to various sources of uncertainties, including random link
failures and agents turning on and off randomly. We conduct
a mean-square-error performance analysis and examine how
asynchronous events interfere with the learning performance.

I. INTRODUCTION

Distributed optimization enables the solution of inference

problems in a decentralized manner over networks [1]. De-

pending on the number of parameter vectors to estimate,

we distinguish between two types of networks: single-task

networks and multitask networks. Several strategies have been

proposed for single-task scenarios in the literature where

the entire network is employed to collectively estimate a

single parameter vector. Among these techniques, we men-

tion consensus strategies, incremental strategies, and diffusion

strategies (e.g., [2]–[5]). Diffusion strategies are particularly

attractive due to their enhanced adaptation performance and

stability.
In some application scenarios, however, there is need to

employ distributed algorithms that can handle clustered models

with multiple parameter vectors. In this work, we are therefore

interested in distributed and collaborative estimation over

clustered multitask networks where agents are grouped into

clusters, and each cluster has to estimate its own parameter

vector. Existing strategies for these cases tend to depend on

how the tasks relate to each other and on the availability or

not of prior information. For instance, the scenarios studied

in [6], [7] do not assume any prior information. In particular,

nodes do not know which other nodes share similar objectives.

The scenarios described in [8]–[11], on the other hand, assume

that the local parameter vectors share a common latent signal

subspace. Another way to exploit and model relationships

among tasks is to formulate local optimization problems

with appropriate regularizers. The multitask diffusion LMS

algorithm developed in [12] uses co-regularization between

neighboring clusters to enhance estimation accuracy.

The work of C. Richard and A. Ferrari was supported in part by ANR and
DGA grant ANR-13-ASTR-0030 (ODISSEE). The work of A. H. Sayed was
supported in part by NSF grants CCF-1011918 and ECCS-1407712.

The strategy developed in [12] assumes that all agents act

synchronously. Nevertheless, in many real-world applications,

networks are subject to uncertainties, such as random agent

and link failures, changing topologies, or agents turning on/off

randomly for energy conservation. An extensive study on the

performance of the diffusion strategies in the presence of asyn-

chronous events or changing topologies has been developed

in [13]–[15] for single-task adaptation. In this work, we extend

the analysis to multitask scenarios involving mean-square-

error designs.

Notation. We use normal font letters to denote scalars, bold-

face lowercase letters to denote column vectors and boldface

uppercase letters to denote matrices. We use the symbol ⊗ to

denote Kronecker operation and the symbol tr(·) to denote the

trace operator.

II. ASYNCHRONOUS MULTITASK DIFFUSION ADAPTATION

We consider a connected network consisting of N nodes

grouped into Q clusters. At each time instant i, node k
collects a scalar zero-mean measurement dk(i) and a zero-

mean L × 1 regression vector xk(i) with positive-definite

covariance matrix Rx,k = E{xk(i)x
�
k (i)}. We assume that

the temporal measurement sequence {dk(i),xk(i)} is related

to the unknown parameter vector w�
k via the linear regression

model:

dk(i) = x�k (i)w
�
k + zk(i), (1)

with zk(i) a zero-mean measurement noise of variance σ2
z,k.

The noise process is assumed to be temporally white and spa-

tially independent of any other signal. The optimum parameter

vectors are only constrained to be equal within each cluster,

namely, w�
k = w�

Cj whenever node k belongs to cluster Cj .

However, if cluster Cp is connected to cluster Cq , that is, there

exists at least one edge connecting a node of Cp to a node

of Cq , then their optimum parameter vectors are allowed to

jointly satisfy certain properties. In [12], smoothness of the

graph signal W� = {w�
1, . . . ,w

�
N} is enforced by regularizing

the estimation problem with the squared �2-norm of the graph

gradient at each node k, namely, by using

‖∇kW‖2 =
∑
�∈Nk

ρk�‖wk −w�‖2 (2)

where Nk denotes the neighborhood of node k, and ρk� is

the nonnegative weight assigned to the edge between nodes k

and �. In a manner similar to [12], combining the mean-square

error criterion and the regularizer (2) at each node to estimate

the unknown parameter vector w�
Cj at the level of each cluster

leads to a Nash equilibrium problem [16] defined by the Q
subproblems (Pj):

(Pj) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
wCj

JCj (wCj ,w−Cj)

with JCj (wCj ,w−Cj)

=
∑
k∈Cj

E{|dk(i)− x�k (i)wCj |2}

+ η
∑
k∈Cj

∑
�∈Nk\Cj

ρk�‖wCj −wC(�)‖2

(3)

where C(�) is the cluster to which node � belongs, and η
is the regularization strength. The notation w−Ci denotes the

collection of weight vectors estimated by the other clusters,

namely, w−Ci = {wCk : k = 1, . . . , Q} − {wCi}. Note in (3)

that the regularizer excludes those neighbors of node k that

belong to its cluster. This is because these particular neighbors

will be pursuing the same vector as node k.

An adapt-then-combine diffusion algorithm is derived

in [12] for solving (3). Following the same procedure as [14],

which provides a general framework for single-task asyn-

chronous networks, we introduce the following multitask dif-

fusion LMS algorithm for asynchronous networks:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ψk(i+ 1) = wk(i) + μk(i)
[
dk(i)− x�k (i)wk(i)]xk(i)

+ ημk(i)
∑

�∈Nk(i)\C(k)−
ρk�(i)(w�(i)−wk(i))

wk(i+ 1) =
∑

�∈Nk(i)∩C(k)
a�k(i)ψ�(i+ 1)

(4)

where wk(i) is the estimate of w�
k at time i, ψk(i) is an

intermediate estimate, and C(k)− is the cluster to which node

k belongs, excluding k. To model the asynchronous behavior

of agent k at time i, we allow its step-size parameter to be

a bounded random variable μk(i) ∈ [0, μmax,k]. Furthermore,

we model uncertainties in the links within and among clusters

by the use of nonnegative random combination coefficients

{a�k(i)} and regularization factors {ρk�(i)}. The notation

Nk(i) denotes the random neighborhood of agent k at time i.
At each time i, the random coefficients a�k(i) and ρk�(i)

are required to satisfy the following constraints:∑
�∈Nk(i)∩C(k)

a�k(i) = 1, and

{
a�k(i) > 0, if � ∈ Nk(i) ∩ C(k),
a�k(i) = 0, otherwise.

(5)∑
�∈Nk(i)\C(k)−

ρk�(i) = 1, and

⎧⎨
⎩

ρk�(i) > 0, if � ∈ Nk(i) \ C(k),
ρkk(i) ≥ 0,
ρk�(i) = 0, otherwise.

(6)

Let M(i) be the diagonal matrix with entries μk(i), A(i) the

left-stochastic matrix whose (�, k)-th entry is a�k(i), and P (i)
the right-stochastic matrix whose (k, �)-th element is ρk�(i).
The random matrices M(i), A(i), and P (i) are assumed

to be mutually independent, and independent of any other

random variables. We further assume that {M(i)}, {A(i)}
and {P (i)} are weakly stationary processes with means M , A
and P , respectively. Let CM , CA and CP be their Kronecker

covariance matrices defined as

CM � E{(M(i)−M)⊗ (M(i)−M)} (7)

CA � E{(A(i)−A)⊗ (A(i)−A)} (8)

CP � E{(P (i)− P)⊗ (P (i)− P)}. (9)

III. STOCHASTIC PERFORMANCE ANALYSIS

Let us denote by w(i) and w� the block weight estimate

vector and the block optimum weight vector, namely,

w(i) � col{w1(i), . . . ,wN (i)} (10)

w� � col{w�
1, . . . ,w

�
N} (11)

where col{·} stacks its column vector arguments on top of

each other. Let us define the block weight error vector as:

w̃(i) � w� −w(i). (12)

To perform the theoretical analysis, we introduce the following

independence assumption.

Assumption 1: (Independent regressors) The regression vec-

tors xk(i) arise from a zero-mean random process that is

temporally stationary, white, and independent over space. �

Using data model (1), the error recursion can be written in

the following form:

w̃(i+ 1) = B(i)w̃(i)− g(i) + ηr(i) (13)

where

B(i) � A�(i)[INL −M(i)(Rx(i) + ηQ(i))] (14)

g(i) � A�(i)M(i)col{xk(i)zk(i)}Nk=1 (15)

r(i) � A�(i)M(i)Q(i)w� (16)

with

A(i) � A(i)⊗ IL (17)

M(i) � M(i)⊗ IL (18)

Q(i) � INL − P (i)⊗ IL (19)

and Rx(i) is the N × N block diagonal matrix whose k-th

block is the L× L matrix xk(i)x
�
k (i).

A. Mean behavior analysis

Taking the expectation of both sides of (13) and using

Assumption 1 yields the following condition for stability.

The result follows from the analysis of the spectral radius

of B � E{B(i)} defined in (22).

Lemma 1: (Mean stability) Assume that all agents have the

same step-size expectation, that is, E{μk(i)} = μ̄ for all k.

For any initial conditions, the asynchronous multitask diffusion

algorithm (4) converges in the mean if μ̄ satisfies:

0 < μ̄ <
2

max1≤k≤N{ρ(Rx,k)}+ 2η
(20)

where ρ denotes the spectral radius of its matrix argument.

The asymptotic mean bias is given by:

lim
i→∞

E{w̃(i)} = η(INL −B)−1r (21)

where

B � A�[INL −M(Rx + ηQ)] (22)

r � A�MQw� (23)

with A � A⊗IL, M �M ⊗IL, Q � INL−P ⊗IL, and

Rx is the block diagonal matrix whose k-th block is Rx,k.�

B. Mean-square behavior analysis

We shall now use the block Kronecker product ⊗b, and the

block vectorization operation bvec(·), since these operators

allow to exploit the block structure of matrices [15], [17].

Before proceeding, let us introduce some useful matrices:

M I � E{M(i)⊗b M(i)} = (M⊗M +CM)⊗ IL2 (24)

A I � E{A(i)⊗b A(i)} = (A⊗A+CA)⊗ IL2 (25)

Q I � E{Q(i)⊗b Q(i)} (26)

= (IN2 − IN ⊗ P − P ⊗ IN + P ⊗ P +CP)⊗ IL2

By Assumption 1 and (13), the mean-square of the weight

error vector w̃(i+ 1), weighted by any positive semi-definite

matrix Σ, satisfies the following relation:

E{‖w̃(i+ 1)‖2Σ} = E{‖w̃(i)‖2Σ′}+ E{‖g(i)‖2Σ}+
2ηE{r�(i)ΣB(i)w̃(i)}+ η2E{‖r(i)‖2Σ} (27)

with ‖x‖2Σ = x�Σx and Σ′ = E{B�(i)ΣB(i)}. The free-

dom in selecting Σ will allow us to derive several performance

metrics. Let σ � bvec(Σ) and σ′ � bvec(Σ′). Using that

bvec(UV W) = (W�⊗bU)bvec(V), it can be checked that

σ and σ′ are related by the following relationship σ′ = F�σ,

where F is the (NL)2 × (NL)2 matrix given by:

F � E{B(i)⊗b B(i)}
≈ A�

I

[
I(NL)2 − INL ⊗b M(Rx + ηQ)−

M(Rx + ηQ)⊗b INL

]
(28)

where, considering the case of sufficiently small step-sizes,

terms involving higher order moments of the step-sizes have

been ignored.

By expressing the second term on the RHS of equation (27)

as tr(ΣE{g(i)g�(i)}) and using tr(ΣW) = bvec(W�)�σ,

we obtain:

E{‖g(i)‖2Σ} = g�b σ (29)

with gb � A�
I M I bvec(S) and S � diag{σ2

z,kRx,k}Nk=1. In

the same way, we get:

E{‖r(i)‖2Σ} = r�b σ (30)

where rb � A�
I M IQ I bvec(w�w��). Finally, the third term

on the RHS of (27) is given by:

E{r�(i)ΣB(i)w̃(i)} = E{w̃(i)}�E{B(i)⊗b r(i)}�σ (31)

where

K � E{B(i)⊗b r(i)}
= A�

I

[
(INL ⊗b MQw�)−

M I((Rx ⊗b Qw�) + ηQ I(INL ⊗b w
�))

]
. (32)

Finally, the weighted variance E{‖w̃(i)‖2Σ} can be expressed

as:

E{‖w̃(i+ 1)‖2σ} = E{‖w̃(i)‖2F�σ}+ g�b σ +

2ηE{w̃(i)}�K�σ + η2r�b σ. (33)

Note that we use interchangeably ‖.‖2Σ and ‖.‖2σ to refer to

the same square weighted norm using Σ or its block vector

representation σ. Iterating expression (33) starting from i = 0,

it can be shown that E{‖w̃(i+1)‖2σ} converges to a bounded

value, as i tends to infinity provided that F in (28) is stable.

Lemma 2: (Mean-square stability) Assume that all agents

have the same step-size expectation, that is, E{μk(i)} = μ̄ for

all k. Assume further that {μmax,k} are sufficiently small. The

asynchronous multitask diffusion algorithm (4) is mean-square

stable if the matrix F is stable. �
Iterating equation (33) until time instants i and i + 1, and

comparinfg these expressions, we can relate E{‖w̃(i+1)‖2σ}
to E{‖w̃(i)‖2σ}. This leads to the following result.

Corollary 1: (Transient behavior) Consider sufficiently

small step-sizes that ensure mean and mean-square stability.

Then, the variance curve ζ(i+1) = E{‖w̃(i+1)‖2σ} evolves

according to the following recursion for i ≥ 0:

ζ(i+ 1) =ζ(i)− ‖w̃(0)‖2(I(NL)2−F�)(F�)iσ+

g�b (F�)iσ + η2r�b (F�)iσ+

2ηE{w̃(i)}�K�σ + 2ηΓ(i)σ

(34)

where Γ(i) is the 1× (NL)2 row vector updated as follows:

Γ(i+ 1) = Γ(i)F� + E{w̃(i)}�K�(F� − I(NL)2), (35)

and w̃(0) is the initial condition. �
Expression (34) allows us to derive several performance

metrics through the proper selection of Σ. For instance, the

network MSD value at time instant i, defined by MSDnet(i) �
1
NE{‖w̃(i)‖2}, is obtained for Σ = 1

N INL. The MSD of

cluster Cq at time instant i is defined as:

MSDCq (i) �
1

nq

∑
k∈Cq

E{‖w̃k(i)‖2} (36)

where nq is the number of nodes in cluster Cq . This quantity

can be obtained by computing E{‖w̃(i+1)‖2ΣCq
} with a block

diagonal weighting matrix ΣCq that has the block 1
nq

IL as k-

th entry, for all k ∈ Cq , and zeros elsewhere.

Corollary 2: (Steady-state variance relation) If convergence

is achieved, then

lim
i→∞

E{‖w̃(i)‖2(I(NL)2−F�)σ}
= g�b σ + η2r�b σ + 2ηE{w̃(∞)}�K�σ. (37)

�

1

C1

C2

C5

C6

C7

C3

C4 C8
19

18

20

17

109

8 7

5

4 6

11

2

11

3 12 13

1516

14

Fig. 1. Network topology.

0.98

1

1.02

−0.51

−0.5

−0.49
0.49

0.5

0.51

x-
va
lu
ey -valu

e

z
-
v
a
l
u
e

w
�

C 6

w
�

C5

w
�

C3

w
�

C4

w
�

C2

w
�

C1

w
�

C 7

w
�

C 8

Fig. 2. Network configuration: parameter vector inputs.

To determine the steady-state network MSD from equa-

tion (37), we set σ to 1
N (I(NL)2 − F�)−1bvec(INL). The

steady-state MSD of cluster Cq is obtained by setting σ to

(I(LN)2 −F�)−1bvec(ΣCq).

IV. SIMULATION RESULTS

The asynchronous ATC model (4) was run over the clustered

network shown in Fig. 1, consisting of N = 20 nodes

divided into 8 clusters. The vectors to estimate, w�
Ci , were

of length L = 3, with entries defined as in Fig. 2. As we

can see from Figs. 1 and 2, two clusters are connected if

their optimum parameter vectors share two identical compo-

nents. The regression vectors were zero-mean random vectors

governed by a Gaussian distribution with covariance matrix

Rx,k = σ2
x,kIL. The background noises zk(i) were i.i.d. zero-

mean Gaussian random variables, independent of any other

signal, with variance σ2
z,k. The variances σ2

x,k and σ2
z,k are

shown in Fig. 3.

We used the Bernoulli asynchronous model [14] with fixed

underlying topology. The step-sizes μk(i) were distributed as:

μk(i) =

{
μk, with probability qk
0, with probability 1− qk

(38)

2 4 6 8 10 12 14 16 18 20
0.8

0.9

1

1.1

1.2

Node number, k

σ
2 x
,
k

2 4 6 8 10 12 14 16 18 20
0.1

0.11

0.12

0.13

0.14

Node number, k

σ
2 z
,
k

Fig. 3. Network configuration: input and noise variances.

with μk a fixed step-size. The combination weights {a�k(i)}
were distributed as follows:

a�k(i) =

{
a�k, with probability p�k
0, with probability 1− p�k

(39)

for all � ∈ N−
k (i) ∩ C(k), where 0 < a�k < 1 is a fixed

coefficient, and N−
k (i) denotes Nk(i) \ {k}. The combination

coefficients {a�k(i)} were spatially uncorrelated for �
= k.

Each node k was able to set the combination coefficient akk(i)
at each iteration i as follows:

akk(i) = 1−
∑

�∈N−
k (i)∩C(k)

a�k(i) (40)

to ensure condition (5). The weights {ρk�(i)} were distributed

as follows:

ρk�(i) =

{
ρk�, with probability rk�
0, with probability 1− rk�

(41)

for all � ∈ Nk(i) \ C(k), where 0 < ρk� < 1 is a

fixed regularization factor. The factors {ρk�(i)} were spatially

uncorrelated for k
= �. At each iteration i, each node k was

able to adjust ρkk(i) as follows:

ρkk(i) = 1−
∑

�∈Nk(i)\C(k)
ρk�(i) (42)

to ensure condition (6).

We set the coefficient a�k in (39) such that a�k = |Nk ∩
C(k)|−1 for all � ∈ Nk∩C(k), where |·| denotes the cardinality

of its argument and the neighborhood Nk is the union of all

possible realizations for the random neighborhood Nk(i). We

set the factors ρk� in (41) to ρk� = |Nk \ C(k)|−1 for � ∈
Nk \ C(k), and ρk� = 0 for any other �. The upper bounds

μmax,k were uniformly set to 0.03. The regularization strength

η was set to 1. The MSD curves were averaged over 100
Monte-Carlo runs. Three different scenarios were considered:

1) 50% idle: qk = p�k = rk� = 0.5;

2) 30% idle: qk = p�k = rk� = 0.7;

3) no idle nodes: qk = p�k = rk� = 1.

It can be observed in Fig. 4 that the simulation results match

well the theoretical results.

We also considered the following simulation. We kept the

same coefficients {a�k} and {ρk�} as the previous simulation.

0 500 1000 1500
−30

−25

−20

−15

−10

−5

0

5

Iteration i

M
S
D

i
n

d
B

0% idleness

30% idleness

50% idleness

Theoreti cal MSD

Experimental MSD

Steady-state MSD

Fig. 4. Network mean-square deviation (MSD).

0 500 1000 1500
−35

−30

−25

−20

−15

−10

−5

0

5

Iteration i

M
S
D

i
n
d
B

Cluste r 1: 50% idl e , non-coop. al g.

Cluste r 3: 50% idl e , non-coop. al g.

Cluste r 7: 10% idl e , non-coop. al g.

Cluste r 1: 50% idl e , c oop. al g.

Cluste r 3: 50% idl e , c oop. al g.

Cluste r 7: 10% idl e , c oop. al g.

Fig. 5. Cooperative vs. noncooperative multitask learning.

Parameters μk in (38) were set to μk = 0.03 for clusters

C1, C2, C3, C4 and to μk = 0.015 for the remaining clusters.

For the first four clusters, nodes turned off with probability

1 − qk = 0.5, and intra-cluster links failed with probability

1 − p�k = 0.5. For the four last clusters, we used 1 − p�k =
1−qk = 0.1. The probability that an inter-cluster link between

two nodes k and � fails was set to 1−rk� = 0.3. We compared

the asynchronous multitask network with its noncooperative

multitask counterpart obtained by setting η to 0. As shown in

Fig. 5, the performance improves by exploiting cooperation

between clusters. Moreover, for a given cluster, when the

number of nodes increases or the probabilities of success

associated with the Bernoulli variables increase, the learning

is enhanced.

V. CONCLUSION

In this paper, we studied the performance of the multitask

diffusion LMS algorithm over asynchronous networks. We

analyzed the behavior of the proposed asynchronous model

in the mean and mean-square error sense. Simulations were

presented to illustrate our theoretical results. Several open

problems still have to be solved for specific applications. For

instance, it would be interesting to show which regularization

can be advantageously used with our distributed multitask

algorithm, and how they can be efficiently implemented in

an adaptive manner. It would also be interesting to investigate

how nodes can autonomously adjust regularization parameters

to optimize the learning performance and how they can learn

the structure of the clusters in real-time.

REFERENCES

[1] A. H. Sayed, “Adaptive networks,” Proc. of IEEE, vol. 102, no. 4, pp.
460–497, Apr. 2014.

[2] J. Tsitsiklis, D. Bertsekas, and M. Athans, “Distributed asynchronous
deterministic and stochastic gradient optimization algorithms,” IEEE
Trans. Autom. Control, vol. 31, no. 9, pp. 803–812, Sept. 1986.

[3] A. G. Dimakis, S. Kar, J. M. F. Moura, M. G. Rabbat, and A. Scaglione,
“Gossip algorithms for distributed signal processing,” Proc. of IEEE,
vol. 98, no. 11, pp. 1847–1864, Nov. 2010.

[4] M. G. Rabbat and R. D. Nowak, “Quantized incremental algorithms for
distributed optimization,” IEEE J. Sel. Areas Commun., vol. 23, no. 4,
pp. 798–808, Apr. 2005.

[5] A. H. Sayed, S.-Y. Tu, J. Chen, X. Zhao, and Z. Towfic, “Diffusion
strategies for adaptation and learning over networks: an examination
of distributed strategies and network behavior,” IEEE Signal Process.
Mag., vol. 30, no. 3, pp. 155–171, May 2013.

[6] J. Chen, C. Richard, and A. H. Sayed, “Diffusion LMS over
multitask networks,” Submitted for publication. Also available as
arXiv:1404.6813, Apr. 2014.

[7] X. Zhao and A. H. Sayed, “Clustering via diffusion adaptation over
networks,” in Proc. CIP, Parador de Baiona, Spain, May 2012, pp. 1–6.

[8] A. Bertrand and M. Moonen, “Distributed adaptive node-specific signal
estimation in fully connected sensor networks – Part I: sequential node
updating,” IEEE Trans. Signal Process., vol. 58, no. 10, pp. 5277–5291,
Oct. 2010.

[9] A. Bertrand and M. Moonen, “Distributed adaptive estimation of node-
specific signals in wireless sensor networks with a tree topology,” IEEE
Trans. Signal Process., vol. 59, no. 5, pp. 2196–2210, May 2011.

[10] N. Bogdanović, J. Plata-Chaves, and K. Berberidis, “Distributed
diffusion-based LMS for node-specific parameter estimation over adap-
tive networks,” in Proc. IEEE ICASSP, Florence, Italy, May 2014, pp.
7223–7227.

[11] J. Chen, C. Richard, A. O. Hero, and A. H. Sayed, “Diffusion LMS for
multitask problems with overlapping hypothesis subspaces,” in Proc.
IEEE MLSP, Reims, France, Sept. 2014, pp. 1–6.

[12] J. Chen, C. Richard, and A. H. Sayed, “Multitask diffusion adaptation
over networks,” IEEE Trans. Signal Process., vol. 62, no. 16, pp. 4129–
4144, Aug. 2014.

[13] X. Zhao and A. H. Sayed, “Asynchronous diffusion adaptation over
networks,” in Proc. EUSIPCO, Romania, Aug. 2012, pp. 86–90.

[14] X. Zhao and A. H. Sayed, “Asynchronous adaptation and learning
over networks-Part I: Modeling and stability analysis,” available as
arXiv:1312.5434, Dec. 2013.

[15] X. Zhao and A. H. Sayed, “Asynchronous adaptation and learning over
networks-Part II: Performance analysis,” available as arXiv:1312.5438,
Dec. 2013.

[16] T. Basar and G. J. Olsder, Dynamic Noncooperative Game Theory,
SIAM, PA, 1999.

[17] R. H. Koning, H. Neudecker, and T. Wansbeek, “Block Kronecker
products and the vecb operator,” Linear Algebra and its Applications,
vol. 149, pp. 165–184, April 1991.

