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Abstract-This work shows how to develop distributed versions 
of block blind estimation techniques that have been proposed 
before for batch processing. Using diffusion adaptation tech­
niques, data are accumulated at the nodes to form estimates of 
the auto-correlation matrices and to carry out local SVD and/or 
Cholesky decomposition steps. Local estimates at neighborhoods 
are then aggregated to provide online streaming estimates of 
the parameters of interest. Sim ulation results illustrate the 

performance of the algorithms. 

Index Terms - Blind estimation, diffusion strategy, SVD, 
Cholesky factorization, auto-correlation matrix. 

I. INTRODUCTION 

This work studies the problem of blind distributed estima­
tion over an ad-hoc network. We consider a set of N sensor 
nodes spread over a geographic area as shown in Fig. 1. Sensor 
measurements are taken at each node at every time instant. The 
objective of the network is to estimate an unknown parameter 
vector using the node measurements. Several algorithms have 
been devised in the literature for distributed estimation using 
diffusion strategies or consensus strategies- see, e.g., [1]-[7] 
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Fig. 1. A network of N nodes collecting measurements {�(i), uk(i)}. 

In these previous works on distributed estimation, it is 
generally assumed that the regression data, u d i), are available 
at the sensors. If this information is not available, then the 
estimation problem needs to be solved in a blind manner. 
There have been considerable contributions in the literature 
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to the problem of blind estimation, but mainly in the context 
of stand-alone filters. Among the many useful works on blind 
estimation and equalization, we may mention [8]-[12]. 

In this paper we extend the diffusion strategy of [1], [2] 
to the case of distributed blind estimation over networks. 
Diffusion strategies have several useful properties compared to 
other distributed techniques in terms of their convergence rate, 
mean-square performance, robustness, stability and scalability 
[3]. 

Notation. We use boldface letters for vectors/matrices and 
normal font for scalar quantities. Matrices are defined b� 
capital letters and vectors by small letters. The notation (.) 
stands for transposition for vectors and matrices and E [.J 
denotes expectation. 

II. PROBLEM STATEMENT 

Each node k has access to a time realization of a scalar 
process dk (i), which is assumed to satisfy the linear regression 
model: 

(1) 

where Uk (i) is the M x 1 unavailable regression vector, v k (i) 
is a spatially independent zero-mean additive white noise with 
variance (T; k and i denotes the time index. The objective 
is to estimate the unknown M x 1 vector WO through local 
collaboration among the nodes by using only the sensed data 
dk (i). The estimate of the unknown vector by node k at time 
i is denoted by W k (i). Assuming that each node cooperates 
only with its neighbors, each node k has access to estimates 
wl(i) from its neighborhood l E Nk, where Nk denotes the 
set of neighbors of node k. 

III. BATCH BLIND ALGORITHMS 

The analysis that follows benefits from the contributions of 
[10], [11] in the context of blind channel estimation for stand­
alone nodes. The work in [10] exploits the data second-order­
statistics to estimate the unknown parameter vector, while 
reference [11] simplifies the construction of [10] at the cost 
of performance degradation. In the sequel, we show how 
the diffusion framework for adaptation and estimation over 
networks from [1]-[3] can be extended to handle similar blind 
estimation formulations. 
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A. Singular Value Decomposition-Based Solution 
The batch processing version of the singular value decom­

position (SVD) method involves the following steps. Select an 
integer L ?: M and let P = 2M - 1. Introduce the following 
P x 1 vector with P - M trailing zeros 

uk(i) = [Uk,O (i), ... , Uk,M-l (i), 0, ... , O]T, (2) 

Introduce further the following convolution matrix of size P x 

P and defined in tenns of the entries of the unknown parameter 
vector WO = [wo," " WM_l]T: 

r 
WM-l ° 

Wo WM-l 
(3) 

A total of P data points are collected at node k at each time 
i. Collecting these measurements into a vector dk(i), we find 
that it satisfies: 

(4) 

where vk(i) = [vk,o(i),'" ,Vk,P_l(i)]T is the noise vector. 
The output blocks {d k( i)} are collected together over a period 
of size N to form the matrix: 

(5) 

where it is assumed that sufficient data are collected for D k,N 
to be full-rank. The SVD of the auto-correlation ofD k,N gives 
a set of null eigenvectors. Specifically, if we introduce the 
eigen-decomposition: 

B. Cholesky Factorization Based Solution 
The work in [11] describes a method that replaces the 

SVD operation with a Cholesky factorization. Evaluating the 
auto-correlation of dk(i) in equation (4) and assuming the 
regression data arises from a zero-mean white noise process 
with variance O'�k' we get 

(10) 

Now if the second-order statistics of both the input regressor 
data as well as the additive noise are known beforehand then 
we can recover the matrix: 

WWT 
(Rdk - O';k I) / O'�k • 

(11) 

As such, the Cholesky decomposition of Rwo can be related 
to the desired channel vector. However, the information about 
the input regressor data is not always known. Therefore, Rwo 
needs to be approximated. The algorithm in [11] uses the 
Cholesky factor of this estimated matrix to provide a least­
squares estimate for the unknown parameter vector. 

The method is summarized as follows. Using K blocks of 
data we compute the ensemble average: 

and estimate Rwo at node k as: 
A A 

A 2 RWk = Rdk - O'vkI, 

(12) 

(13) 

where a;k is the noise variance estimated by averaging the 
smallest eigenvalues of Rdk [11]. We now determine the upper 
triangular Cholesky factor of RWk and define the vector: 

Dk,ND[,N = 

(Sk Sk) ( 
�k,MXM 

°CM-l)XM 
OMxCM-l) 

°CM-l)XCM-l) 

(14) 

) ( �� ) 
gk = vec { chol { RWk } } , 

k . 
where chol {.} is the Cholesky factorization operation. It is 

(6) shown in [11] that the actual vector gk and the parameter 

Then, the columns of the P x (M - 1) matrix Sk form a 
basis for the null space of D k,N. This implies that for the 
case where there is no added noise 

sIW= 0, (7) 

where k = 1, ... , M -1  and sic is the kth column of Sk. Since 
W is a convolution matrix, equation (7) can be rewritten as: 

where Sk,ic is an M x M Hankel matrix given by 

1 (9) 
It is important to note that in the presence of noise (8) becomes 
approximately equal to zero. The desired parameter estimate 
can be obtained by solving (8) up to a constant factor. 
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vector Wo are related through gk = Qwo, where Q is an 
M2 x M selection matrix given by Q = [JPf ... Jk 1 T , and 
the M x M matrices J q are defined as 

if r + t = q - 1 
otherwise. 

(15) 

The least-squares estimate of the unknown parameter vector 
is then constructed as: 

(16) 

IV. BLIND DIFFUSION ALGORITHMS 

The two aforementioned methods require several blocks of 
data to be stored before estimation can be performed. Although 
the least-squares approximation gives a good estimate, it is 
nevertheless a centralized solution. We now show how to 
develop fully decentralized and recursive solutions. 

We start with the SVD-based solution. Rather than collect 
blocks of data at each node for every time instant, we use the 



available dk (i) to update the estimate of the auto-correlation 
matrix iteratively as follows: 

Rdk (i) = Rdk (i - 1) + dk(i)d[(i). (\7) 

As more data blocks are processed, the rank of Rdk (i) 
becomes gradually full. Next, computing the SVD of Rdk (i), 
we obtain the P x (M - 1) null space matrix Sk. From Sk, 
we then form the M Hankel matrices of size M x M each, 
which are then concatenated to form the matrix S k (i) from 
which the estimate Wk (i) is finally derived. This sequential 
derivation process is summarized below 

SVD {Rdk (i)} =? Sk (i) =? Sk (i) =? Sk (i) =? wk(i). 
(18) 

The update for the estimate of the unknown parameter vector 
is then given by 

where 15k is a forgetting factor. It can be seen from (18) that 
the recursive algorithm does not become computationally less 
complex. However, it does require less memory compared to 
the original algorithm of [10] and the result improves with an 
increase in the number of data blocks processed. 

With regards to the Cholesky-based construction, expression 
(12) motivates the following recursive construction as time 
progresses: 

RWk (i) = � [dk(i)df(i) - o-;kI] + 
i � 1Rwk (i - 1). (20) 

z z 

Let 
(2\) 

and 
(22) 

which can be evaluated offline. Then 

(23) 

We further apply a smoothing step to get the final estimate: 

wk(i) = Ak(i)wdi - 1) + (1 - Ak(i)) wk(i), (24) 

where Ak (i) = 1 - t is a variable forgetting factor. 
The works in [\ ]-[3] proposed diffusion strategies that 

improve the estimation performance of the network through 
data sharing. Motivated by these schemes (and especially 
the adapt-then-combine (ATC) version), we list in the tables 
below, the distributed versions of the blind solutions described 
before. In these implementations, each node in the network 
cooperates with its neighbors to compute its local estimate 
of the parameter vector. Moreover, the term hk (i) denotes an 
intermediate weight estimate by node k at time i. 

V. SIMULATIONS AND RESULTS 

We simulate the algorithms for a network with N = 20 
nodes, shown in Fig. 2. The two blind distributed algorithms of 
Tables I and II are used to identify an unknown vector of length 
M = 4. The block size is taken as K = 8. Figure 3 shows the 
performance of the proposed algorithms with diffusion (DBC, 
DBS) and no cooperation (NBC, NBS) for a signal-to-noise 

ratio (SNR) of 20 dB. As can be seen from this figure, a 
5 dB improvement is brought about by the algorithms with 
diffusion as compared to no cooperation. The performance of 
the SVD-based algorithm is better than that of the Cholesky­
based algorithm. It should be noted that the Cholesky-based 
algorithm is less complex than the SVD-based algorithm. 

SVD-based Diffusion Strategy 
Step 1. At each node k and time i, form 

Rd,k (i) = dk(i)dI(i) + Rd,k (i - 1) 
Step 2. Get Sk (i) from the null space of the SVD ofRd,k (i). 
Step 3. Form Hankel matrices of size M x M from Sk (i). 
Step 4. Form Sk (i) by concatenating the Hankel matrices. 
Step 5. The null eigenvector from the SVD of Sk (i) is the estimate wk(i). 
Step 6. Compute the intennediate update hk(i). 

hk(i) = 6kWk(i - 1) + (1 - 6k) Wk(i) 
Step 7. Combine estimates from neighbors of node k to get wk (i). 

wk(i) = L Clkhl(i), 
leNk 

where the nonnegative coefficients satisfy: 
LIEN. Clk = 1, clk = 0 if I 1. Nk 

TABLE I 
ALGORITHM FOR SVD-BASED DIFFUSION STRATEGY 

Cholesky-based Diffusion Strategy 
Step 1. Let Ak(i) = 1 - + 
Step 2. At each node k and time i, compute 

Rw,k (i) = (1- Ak(i)) (dk(i)dI(i) - &;
,k

') + Ak(i)Rw,k (i - 1) 
Step 3. Get the Cholesky factor of Rw,k (i) and apply the vee operator 

to get gk(i). 
Step 4. The intermediate update is given by 

hk(i) = (1 - Ak(i))QAgkCi) + AkCi)Wk(i - 1). 
Step 5. Combine the estimates from the neighbors of node k: 

wk(i) = L clkhl(i) 
leNk 

TABLE II 
ALGORITHM FOR CHOLESKY-BASED DIFFUSION STRATEGY 

The robustness of the proposed diffusion algorithms is tested 
under a scenario where five nodes with the maximum number 
of neighbors switch off during the estimation process after 750 
data blocks. The network readjusts accordingly and the results 
in Fig. 4 show that both diffusion algorithms still perform close 
to the case where all nodes function perfectly. In this figure, 
the word "off:" indicates the curves obtained for the case when 
the five nodes stopped working. 

VI. CONCLUSION 

This work develops diffusion algorithms for blind estima­
tion over networks; the algorithms are based on the SVD 
and Cholesky factorization of the auto-correlation matrix and 
involve cooperation among neighboring nodes to enhance 
performance. 
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Fig. 2. Network with N = 20 nodes used in the simulations. 
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Fig. 3. Comparison of the Mean Square Deviation at SNR=20 dB. 
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