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ABSTRACT 

In this work, we study the mean-square-error performance of 
a diffusion strategy for continuous-time estimation over net­
works. We derive differential equations that describe the evo­
lution of the mean and correlation of the weight-error vector, 
and provide expressions for the steady-state mean-square de­
viation and excess mean-square error measures. Simulation 
results illustrate a good match between the theoretical model 
and the practical results. 

1. INTRODUCTION 

Distributed estimation and control algorithms are useful in 
several contexts involving decentralized inference and deci­
sion tasks; they are also useful in the modeling and analysis of 
biological and social networks [1-11]. Although many recent 
works treat discrete-time distributed techniques, continuous­
time (CT) strategies are also generating interest [2, 5, 11]. 
For example, many systems operate in continuous-time and, 
therefore, models for naturally-occurring distributed networks 
should take continuous-time effects into account. 

We recently developed continuous-time distributed learn­
ing strategies that enable a network of nodes to cooperate 
through in-network processing to solve a global estimation 
problem [12, 13] by exploiting useful discrete-time diffusion 
learning strategies from [6,8]. Using deterministic arguments, 
we examined the stability of the continuous-time diffusion 
strategies. In this work we examine the CT strategies from 
a stochastic point of view by evaluating the influence of noise 
on the quality of the solution computed by the network. Al­
though CT estimation algorithms such as the stand-alone CT 
least-mean square (LMS) algorithm [14-16] and the CT Kal­
man fi Iter [17] have been studied before in the literature, mean­
square analyses of continuous-time parameter estimation al­
gorithms that take into account the stochastic nature of both 
the measurement noise and the regressor vector are not as 
prevalent, and more so in the context of distributed solutions. 
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There is one important difference between the Kalman fi 1-
tering set-up and the adaptive fi Itering set-up that does not 
allow us to directly apply Kalman filtering results to the cur­
rent problem. Specifically, in the context of adaptation, the 
measurement equation takes the form: 

d(t) = uT(t)wo + v(t), (1) 

where u(t) E �M is the regressor vector, d(t) is the (scalar) 
measured output (known as the desired signal [19]), Wo E 
�M is the parameter vector we wish to estimate, and v(t) is 
noise. In the Kalman filtering framework, u(t) is modeled as 
a known, deterministic function, whereas in the adaptive fil­
tering framework, {u( t)} is modeled as a stochastic process, 
usually assumed to be stationary. 

Much of the previous work on continuous-time adaptation 
considers worst-case deterministic models [20]. Fewer works 
develop stochastic models for the CT LMS. In [14], the pro­
posed model takes into account only the steady-state effect 
of the offsets in the filter implementation. Reference [15] 
proves almost-sure stability of the CT LMS algorithm, but 
does not provide expressions for performance measures such 
as mean-square deviation (MSD) or excess mean-square error 
(EMSE). Finally, [16] considers deterministic (sinusoidal) re­
gressors. 

The mean-square error analysis in this work studies mean­
square performance in the presence of both gradient noise and 
stochastic regressors. In addition, the analysis derives expres­
sions that quantify the MSD and EMSE performance of the 
CT solution for both cases of network adaptation and, by spe­
cialization, of stand-alone adaptation. In the following sec­
tion we develop our mean-square model for the stand-alone 
CT LMS algorithm. Later, in Section 3, we extend the anal­
ysis to distributed diffusion estimation strategies. Simulation 
examples verifying the accuracy of the model are presented 
in Section 4, and Section 5 concludes the paper. 

2. MEAN-SQUARE ANALYSIS FOR THE 
STAND-ALONE CT LMS ALGORITHM 

The continuous-time LMS algorithm forms estimates w(t) 
for the unknown parameter vector Wo from (1) through the 
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update law 

e(t) = d(t) - UT(t)W(t), 
W(t) = "(e(t)u(t), 

(2) 

where the initial condition to the differential equation is w(O), 
assumed to be deterministic, d(t) and u(t) are as in (1), e(t) 
is the estimation error, "( > 0 is a constant and w(t) = 
dw(t)/ d t. 

Using (1), we can rewrite (2) in terms of the parameter 
error vector w(t) = Wo - w(t) as 

fu(t) = -"(u(t)uT(t)w(t) - "(u(t)v(t), (3) 

where we assume that v(t) is zero-mean white noise, inde­
pendent of U(T) for all t, T, with covariance E{v(t)v(t -
Tn = Nvo (T), where E{-} represents expectation, and 0 (T) 
is Dirac's delta function. We further assume that {u(t)} is a 
zero-mean stationary process with continuous autocorrelation 
function Ru(T) = E{u(t)u(t - Tn and finite fourth-order 
moments. 

Given our assumption that v(t) is white noise, relation (3) 
should in principle be treated using stochastic calculus tools 
[21]. However, since we are interested only in finding the 
mean and covariance of w(t), we can follow a simpler route, 
described in [17, pp. 618-620]. The idea is to discretize (3) 
using Euler's rule, replacing the continuous-time variables by 
discrete-time approximations, such as 

6 1 1(n+l)6o 
Vn = A v(t)dt, 

Ll n60 
(4) 

and similarly for Un and wn. It can be shown [17] that under 
these conditions, we have 

E{vn} = 0, 

E{un} = 0, 

Nv 
E{vmvn} = -X-0mn, 

E{umun} � Ru ((m - n)6), 

where now omn = 1 if m = n and zero otherwise. The last 
approximation holds for processes with continuous autocor­
relation functions. 

To proceed, we use Euler's rule to discretize (3), replacing 
the variables by their discrete-time approximations 

(5) 

which gives 

(6) 

Since (6) is now a difference equation, we can more easily 
evaluate the evolution of its mean and correlation. Let us de­
note R � Ru(O) for simplicity, and define 

w(t) = E{w(tn, 
Wn = E{wn}, 

K(t, T) = E{w(t)WT(Tn, 

Km,n = E{wmw;} 

(7) 

(8) 

In order to proceed, we must consider the correlation between 
wn and Un. These variables will be in general correlated, but 
it is known that for small step-size "(6, the correlation can be 
disregarded in the analysis of the discrete-time LMS [19] (the 
results shown below can be precisely justified using the ODE 
method [22, 23], in which the performance of a discrete-time 
filter is approximated by an ordinary differential equation). 
For small 6 and using the independence between u(t) and 
v(t), we can then write from (6), 

Rearranging this expression and taking 6 --+ 0, we obtain: 

w(t) = -"(Rw(t), w(O) = w(O) = Wo - w(O). (9) 

Since R is a positive semi-definite matrix, the origin w = 
OM is a stable equilibrium point of (9). If R > 0 (positive­
definite), the equilibrium point will be exponentially stable, 
and w(t) --+ 0 as t --+ 00. 

For the autocorrelation we obtain 

Kn+l � Kn - 6"(KnR - 6"(RKn + 6"(2 NvR 

+ 62"(2E{unu;Knunu;}, 

and rearranging terms, 

Kn+l - Kn 2 
6 

� -"(KnR - "(RKn + "( NvR 

+ 6"(2 E{ unu;Knunu;}, 

Taking 6 --+ 0, we obtain a differential equation for K(t), 

K(t) = -"(RK(t) - "(K(t)R + "(2 NvR, (10) 

with initial condition K(O) = W(O)WT (0). Note that we 
used the assumption of finite fourth-order moments ofu(t) in 
the last step. Note also that the fourth-order term in u(t) dis­
appears in the continuous-time case, which does not happen 
in the discrete-time case. 

One approach to prove the stability of (10) is to exploit 
some useful Kronecker product relations [24]. Defining 

k(t) = vec(K(t)) E ]RMN
, r = vec(R), (11) 

where vec(A) is a vector obtained by stacking the columns 
of matrix A in order, one on top of the other. Using standard 
properties of the Kronecker product [24], we can write 

. 2 k(t) = -"( [1M lSi R + R lSi 1 MJ k(t) + "( Nvr, (12) 

where lSi denotes the Kronecker product. If R > 0, the only 
equilibrium point of (12) is 
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This equilibrium point is exponentially stable, since the eigen­
values of B = 1M Q9 R + R Q9 1M are Ai + Aj, where Ai, Aj 
are eigenvalues of R. Since R > 0, the eigenvalues of -B 
lie all in the left-half complex plane. 

The excess mean-square error (EMSE) is defined as ((t) = 
E{(uT(t)w(t))2}, while the mean-square deviation is de­
fined as �(t) = E{wT(t)w(t)}. Both can be obtained easily 
from K(t): 

�(t) = Tr(K(t)), ((t) = Tr(RK(t))} 

where Tr(A) represents the trace of A. Their steady-state 
values can be obtained from (10) by setting K(t) = O. De­
note limt-+CX) ((t) = (, and similarly for�. In steady-state, 
taking the trace of (1 0), we obtain 

- /Nv Tr(R) (= 
2 ' 

(14) 

and taking the trace after mUltiplying (10) from the left by 
R-1 and recalling that Tr(AB) = Tr(BA) if both products 
are well-defined, we obtain in steady-state 

� = /NvM
. 

2 
(15) 

In the next section, these results are extended to the CT diffu­
sion strategies of [13] for adaptation over networks. 

3. MEAN-SQUARE ANALYSIS FOR DISTRIBUTED 
CT ADAPTIVE DIFFUSION STRATEGIES 

Consider now a network of N nodes that cooperate to esti­
mate a common vector Woo Each node k has access to mea­
surements Uk(t) E ]RM and dk(t) E ]R, that are assumed 
related to each other through 

(16) 

where Vk(t) is zero-mean white noise with autocovariance 
E{ Vk(t)Vk(t - r) = Nv,ko(r), independent of Uk(t). We 
assume that Uk (t) is a zero-mean stationary vector process 
with continuous autocorrelation matrix Rk(r). For simplic­
ity, we also assume that the noise and regressor variables for 
different nodes are independent of each other. 

In the distributed estimation scheme proposed in [13], each 
node k computes a local estimate Wk(t), and transmits it to its 
local neighborhood Nk(t). Each node then combines the es­
timates from its neighborhood, forming a combined estimate 
'l/Jk(t), which is used in the update law as follows. 

N 
'lfJk(t) = 2:: aRk(t)wR(t), (17a) 

R=l 
ek(t) = dk(t) - Ur(t)Wk(t), (17b) 

Wk(t) = -/0 (Wk(t) - 'lfJk(t)) + /kek(t)Uk(t), (17c) 
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where the aRk(t) are nonnegative weights satisfying 

N 
2:: aRk(t) = 1,  (18) 
R=O 

Nk(t) contains the nodes £ for which aRk(t) i- 0, and /0 
and /k are positive constants. Introduce the mixing matrix 
A(t) = [aRk(t)] E ]RNxN. We assume that A(t) is a station­
ary process, independent of Uk (t) and of Vk (t) for all k and 
with mean A. Note that (18) implies that AT(t)Jt = AT Jt = 
Jt, where Jt E ]RN has all entries equal to one. 

The stability of (17c) was analyzed using deterministic 
arguments in [13]. We now examine its mean-square-error 
performance. Define 

The overall error equation is then given by 

fu(t) = -B(t)w(t) - U(t)rv(t), (19) 

with 

B(t) � /0 (1MN - AT(t) Q9 1M) + U(t)rUT(t), (20) 

where v(t) = [V1(t) V2(t) . . .  vN(t)f , r = diaghd 
and the regressor matrix U(t) E ]RMNxN is constructed as 

U(t) = diag{ U1(t), U2(t), . . .  , UN(t)}. (21) 

Introduce the average error vector w (t) = E { w (t)} and the 
correlation matrix K(t) = E{w(t)wT(t)}, as well as B = 
E{B(t)}. Note that, since A is not necessarily symmetric, 
B(t) and B in general will not be symmetric matrices. 

Using similar arguments as in the previous section, we can 
argue that 

w(t) = -Bw(t), (22) 

K(t) = -BK(t) - K(t)BT + C, (23) 

with initial conditions w(O) = W(O), K(O) = w(O)wT (0), 
and 

B = /0 (1 MN - A Q9 1M) + diaghkRk}, (24) 

C = diagh�Nv,kRd. (25) 

In order to show that w (t) exponentially converges to OM N , 
we consider the Lyapunov function V(t) = wT(t)w(t). Its 
derivative is 

(26) 

If A(t) is doubly-stochastic, that is, if A(t)Jt = AT(t)Jt = 
Jt, then 21 MN -A(t) -AT (t) � 0 [13]. Therefore, if A(t) is 
doubly-stochastic for all t, then A is also doubly-stochastic, 



and 21 MN - A - AT is positive semi-definite. This in turn 
implies that lJ + lJT > O. This result and (26) imply that 
w(t) --+ OMN exponentially fast. 

A similar approach can be used for the correlation. Define 
as before k(t) = vec(K(t)), c = vec(C). We have then 

k(t) = - [lJ lSI 1MN + 1MN ISIlJ] k(t) + c. (27) 

-T - -
Let Vdt) = k (t)k(t), where k(t) = keq - k(t) and keq is 
the equilibrium point of (27). Its derivative is 

VI(t) = - il (t) [(lJ + lJT) lSI hIN 

+1MNlSI (lJ+ lJT)] k(t). 
(28) 

- -T - -T -SinceB+B > 0 implies (B+B )ISI1MN+1MNISI(B+ 
-T B ) > 0, we conclude that k(t) converges exponentially to 

the steady-state value (equilibrium point) 

keq = [(lJ + lJT) lSI hm + 1MN lSI (lJ + lJT)r l 
c. 
(29) 

The EMSE and MSD for each node and for the overall net­
work can be obtained directly from (27) and (29) as follows. 
We re-arrange the solution k(t) from (27) to form K(t), and 
then, to obtain the overall MSD and EMSE, compute 

�(t) = Tr(K(t)), ((t) = Tr (diag{Rk}K(t)) . (30) 

4. SIMULATIONS 

In this section we verify the theoretical results through sim­
ulated examples. All simulations were made in Simulink, 
using the "band-limited white noise" block to approximate 
white noise. This block approximates white noise by gen­
erating discrete-time random sequences with a high sampling 
rate, compared to the time constants in the system being simu­
lated. In our simulations, this sampling rate was fs = 103Hz. 
Since the generated noise is actually band-limited, its vari­
ance is finite, and set by Simulink to fs(J2, where (J2 is the 
desired power spectrum density (the "noise power" parame­
ter in Simulink) of the ideal white noise. 

When using these blocks to generate a regressor vector, 
one caution is necessary, because the simulation explicitly 
computes the squares of the regressors' entries. Given the 
sampling rate correction explained above, if the power set 
in Simulink for an entry Uk,i(t) of Uk(t) is (J�, the average 
E{ uL (t)) considered in the theoretical models should be 
fs(J�.

' 
The randseed function should be used as seed for 

the white noise blocks, in order to evaluate ensemble-average 
learning curves. 

Our first example is the ten-node network shown in Figure 
1 (weights akk are not drawn; their values are such that (18) 
is satisfied). In the simulations shown below, the unknown 
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Fig. 1. 10-node network. Self-connections are not drawn. 

weight vector is Wo = [0. 5 _O.l] T. The regressors are 
either band-limited noise (nodes 3, 5-9, 10) or sinusoids with 
random initial phase (node 1, frequency II = 10Hz, nodes 2 
and 4, h = 5Hz, node 10, II 0 = 6Hz), as shown below. We 
only list the covariance matrices in (31). The values for the 
noise powers for nodes k = 1, 5-10 are Nv,k = 10-4, while 
Nv,2 = Nv,4 = 10-3, Nv,3 = 2 X 10-3• We set "Ii = 1, 
i = O . . .  N. 

RI = 
[� 

�] , 

R4= 
[ 

0. 5 
0. 25 

0. 25 ] 0. 125 ' 

Rk=rk [� �] , 

R = [0. 18 
2 0.45 

RIO = [� 

0.45 ] 1. 1 25 ' 

1.�25] , 

for k = 3,5-9, 

(31a) 

(31b) 

(31c) 

where r3 = r7 = 3, r5 = 0. 6, r6 = 0.4, r8 = 4, rg = 0. 5. 
Note that all the Rk are singular, which means that stand­
alone LMS filters would not converge to a neighborhood of 
Woo However, as Figure 2 shows, the MSD does converge 
to a small value for each node (we show only results for the 
first three nodes, the behavior for the other nodes is similar). 
Note also how the theoretical model follows closely the sim­
ulated results, even following the slight increase in MSD in 
the initial transient for node 1. Figure 3 shows a simulation 

____ Node 1 

-"o�-�----""""""""';""""""=� 
t (5) 

Fig. 2. Mean-square deviation (MSD) for the first three nodes 
in the 10-node network. The smooth curves correspond to 
the theoretical model. Experimental MSD obtained from the 
average of L = 500 realizations. 

in which a46, a48, a49, a96, a98 vary. The parameters follow 
a sinusoid with frequency 1Hz and random phase, saturated 
between 0 and the maximum values of 0. 2, 0. 1, 0. 3, 0. 2, 0. 1, 
respectively, so that A T (t)lL = A(t)lL = lL at all times. The 
average values are half the maxima. 



Node 2 

Node 1 
-,,:Lo -----�"-----==�==�=====�,50 

t (s) 

t (s) 

Fig. 3. (a) Mean-square deviation (MSD) for nodes 1-3 for 
time-variant A(t) -the smooth curves correspond to the the­
oretical model. (b) a49(t) in the interval 50 ::; t ::; 70. 

5. CONCLUSION 

We performed a mean-square-error analysis of a continuous­
time learning strategy and derived expressions for the MSD 
and EMSE performance of the network. We verified the re­
sults through simulations showing good agreement between 
theory and practice. 
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