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Abstract-We propose a diffusion strategy to enable social 
learning over networks. Individual agents observe signals in­

fluenced by the state of the environment. The individual mea­
surements are not sufficient to enable the agents to detect 
the true state of the environment on their own. Agents are 

then encouraged to cooperate through a diffusive process of 
self-learning and social-learning. We show that the diffusion 

algorithm converges almost surely to the true state. Simulation 
results also illustrate the superior convergence rate of the 

diffusion strategy over consensus-based strategies since diffusion 
schemes allow information to diffuse more thoroughly through 
the network. 

Index Terms-Diffusion adaptation, non-Bayesian learning, 
social networks, consensus, belief update. 

I. INTRODUCTION 

One problem of particular interest is the study of mecha­
nisms by which beliefs and opinions are formed and propa­
gated through social networks [1]-[3]. There are two major ap­
proaches that are often considered to model social interactions 
and their related learning procedures. In the Bayesian learning 
approach, agents employ the Bayesian rule to incorporate 
information from their observations and from their neighbors 
into their private beliefs [1], [2], [4]-[6]. In the non-Bayesian 
learning approach, some heuristic updates as in (8) and (11) 
further ahead are used to guide the learning process by the 
agents [3], [7]-[16]. 

The work [3] is particularly relevant to our discussion 
since it proposes a fully-distributed, non-Bayesian learning 
procedure whereby beliefs of the agents are shown to con­
verge almost surely to the true model. A distributed solution 
is attractive because connections over social networks tend 
to be dynamic and interactions need to be localized. The 
learning procedure employed by [3] relies on a consensus-type 
construction - see (8) further ahead. In their construction, 
agents combine their private beliefs with the old beliefs from 
their neighbors. In this article, we propose an alternative 
construction that relies on diffusion strategies [17]-[19] as 
opposed to consensus strategies. In the diffusion procedure, 
agents combine their beliefs with their neighbors' updated 
beliefs. In doing so, information ends up diffusing more 
thoroughly through the network. In the context of mean­
square-error (MSE) estimation, it was shown in [20] that 
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diffusion strategies outperform consensus strategies in terms of 
MSE performance. The simulations further ahead illustrate the 
faster convergence rate of the diffusion social learning process 
over the consensus alternative. To facilitate comparison of our 
results and algorithm with the presentation in [3], we use 
similar notation whenever possible. 

II. PROBLEM FORMULATION 

Consider a group of N agents interconnected through a 
certain topology over a social network. Let N � {I, 2, ... , N} 
denote the indexes of the agents in the network. Let El denote 
a finite set of all possible events that can be detected by the 
social network. Let eo E El denote an unknown event that 
has happened and the objective of the network is to select the 
event that is most likely to have occurred based on available 
observations. 

Initially at time i = 0, each agent k in the network assumes 
a private prior belief, denoted by Mk,O (e) E [0, 1], which 
represents the probability distribution over the events e E El, 
i.e., Mk,O (e) = lP'( (1 = e); note that in our notation, we use 
boldface letters to denote random variables and plain letters 
for their realizations. For subsequent time instants i :::: 1, the 
private belief of agent k is denoted by Mk,i (e) E [0, 1]. All 
beliefs across all agents must be valid probability measures 
over the entire event set El. That is, they must obey the 
following constraint: 

(1) 
OE8 

for any kEN and i :::: 0. Agents continually update their 
private beliefs { Mk,i( e)} over time based on the private signals 
they observe from the environment and the information shared 
by their social neighbors. 

At each time i :::: 1, we assume that a signal profile ei � 
(6,i, 6,i, ... , eN,i) is randomly drawn from a probability 
distribution LO dependent on the true event eo: 

ei rv L(Sl,S2, ... , SNleO) (2) 

where ek,i E 5k and ei E 5 � 51 x52 x··· X5N. We assume 
that the signal space 5 is finite and therefore each partial signal 
space 5k is also finite. Each agent k can only observe its partial 
signal ek,i, which follows the marginal distribution Lk(SkleO): 

ek,i rv Lk(SkleO) � 2..= L(Sl, S2, ···, sNleO) (3) 
{Be ESc ,Ro;ik} 

Asilomar 2012 



We assume that Lk(skle) > 0 for any Sk E Sk, 19 E 8, and 
k E N. We further assume that the signals {ei} are temporally 
independent and define the history of the sequence {ed up to 
time j 2: 1 as the a-algebra generated by {ei; 1 S; i S; j} : 

Fj £a(6, 6, . . .  ,ej) (4) 

We assume a directed graph model in which each agent 
is connected to some local neighbors and hence can get 
information from them. We denote the neighborhood of agent 
k by Nk � N such that any agent R E Nk is connected to 
agent k. We assume k E Nk for convenience. We assume that 
the network is strongly-connected, namely, there exists a path 
connecting any pair of agents in the network, and, moreover, 
there is at least one self-loop. We further assume that agents 
can only share their private beliefs, {tLk,i (e)} ,  rather than 
their private signals, {�k,d, with their local neighbors. This is 
because the support of beliefs, 8, is common for all agents 
but the supports for the private signals, { Sd, may be quite 
different across the agents. 

We further assume that the individual agents may not be able 
to identify the unknown event e° on their own [3]. Specifically, 
we assume that for every agent k, there exists a nonempty 
subset of events, 8k � 8, with maybe more than one element 
such that 

(5) 

for any 19 E 8k and Sk E Sk. Therefore, from agent k's 
perspective, all events in 8k are equivalent to e° and there 
is no way for agent k to distinguish between these events on 
its own. However, to guarantee that the identification problem 
is still feasible, we require, 

n 8k = {eO} (6) 
kEN 

We denote the complement of 8k by 8k such that 8k n8k = 

o and 8k U 8k = 8. 
III. DIFFUSION SOCIAL LEARNING 

At every time i 2: 1, each agent k first updates its private 
belief based on its observed private signal �k,i (which IS a 
realization of ek,i) by means of the Bayesian rule: 

'l/; (e) = 
/-Lk,i-l(e)Lk(�k,ile) 

(7) k,t 
I:0'E8 /-Lk,i-l (fJ')Lk(�k,i Ie') 

This step leads to an intermediate belief 'l/;k,i (e). After learning 
from their observed signals, agents can then learn from their 
social neighbors through cooperation. For example, in [3] a 
convex combination rule was proposed for fusing the {/-LC,i-l}: 

where 

/-Lk,i (e) = akk 'l/;k,i (e) + L ack /-LC,i-l (e) (8) 
CENk\{k} 

aCk > 0 if R E Nk, Lack = 1, aCk = 0 otherwise (9) 
CENk 

We collect the combination weights {acd into an N x N 
matrix A such that its (R, k)-th element is aCk. In general, 
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matrix A is asymmetric due to the directed graph model. It 
follows from (9) that A is a left-stochastic matrix. Since the 
network is assumed to be strongly-connected, then it can be 
verified that A is primitive. By the Perron-Frobenius theorem 
[21], there exists a positive vector y E lR�Xl such that 

(10) 

where]. denotes the vector with all entries equal to one. 
If neighbors share instead their intermediate private beliefs 

{'l/;c,d, agent k can fuse the information by using 

/-Lk,i(e) = akk'l/;k,i(e) + L aCk'l/;C,i(e) (11) 
CENk\{k} 

Rule (11), where the intermediate beliefs are aggregated, is 
an extension of the class of diffusion strategies [17]-[19] 
to the context of social learning. In comparison, rule (8) is 
reminiscent of consensus strategies where the old beliefs are 
aggregated. Com bing (7) and (11) we arrive at the two-step 
diffusion social learning process that we study in this work: 

(self-learning) 

(social-learning) 

(12) 
Using the updated private belief /-Lk,i (e), agent k can now 
make a forecast or prediction on the probability of a certain 
signal Sk E Sk occurring in the next time instance i + l. This 
probability can be computed as follows 

mk,i(Sk) £ L /-Lk,i(e)Lk(skle) (13) 
OE8 

In the sequel, we shall establish the fact that the agents in the 
social network eventually learn the truth, namely, the private 
beliefs of agents converge asymptotically and almost surely to 
an impulse of size one at the location 19 = e°. 

IV. CONVERGENCE ANALYSIS 

For the sake of the analysis, we view the signal sequence 
{ei;i 2: 1} as a stochastic process. Therefore, the diffusion 
social learning process (12) becomes a stochastic system of 
equations, which we rewrite as 

k,' 
I:O'E8 ILk,i-l (fJ')Lk(ek,i Ie') (14) 

{ 'IjJ(e) = 
ILk,i-l(e)Lk(ek,ile) 

ILk,i(e) = LCENk 
aCk 'ljJc,i(e) 

Likewise, the forecast { mk,i(sk); i 2: 1} also becomes a 
stochastic process and we rewrite it as 

mk,i(Sk) = L ILk,i(e)Lk(skle) (15) 
OE8 

for any kEN. Let us denote the truth, namely, the true 
probability mass function (PMF) over the event set 8, by p( e) 
so that 

p(e) = 00,00 (16) 



where 6x,y is the Kronecker delta function such that 6x,y = 1 
when x = Y and 6x,y = 0 otherwise. 

The structure of the diffusion strategy (12) relies on the 
use of updated beliefs. Therefore, some effort is needed 
to study the learning ability of the agents. In order to as­
sess the performance of the diffusion learning strategy, we 
employ the expectation of the Kullback-Leibler divergence 
(KL-divergence) [22] from p(e) to ILk,i(e) as a performance 
measure. Specifically, we define agent k's regret at time i as 

(17) 

where D(pllq) denotes the KL-divergence from P to q. Then, 
we define agent k's risk at time i as 

(18) 

where IEFi denotes the expectation with respect to IP' over the 
filtration Fi in (4). The overall performance at time i is defined 
as the weighted average risk across the network: 

N 

J( ILi) £ LYkJ( ILk,i) (19) 
k=l 

where Yk denotes the k-th element ofy given in (10). We first 
establish the convergence of the overall average risk J( ILi). 

Lemma 1: Assume that A is left-stochastic and primitive, 
and that there exists at least one agent with a positive prior 
belief about the true event eo. Then, the network risk J( ILi) 
converges as i -+ 00. 

Proof From (16) and (17), we get 

" p(e) ° 
Q( ILk,i) = L.., p(e)log �(e) = -log ILk,i(e ) 

8E8 ILk,t 
(20) 

where we adopt the convention 0 log 0 = O. Without loss of 
generality, we assume that agent £0 has a positive prior belief 
M£o,o(eO) > O. By the nonnegativity of A and (14), the private 
belief about eo of any agent k with £0 in its neighborhood 
will become positive in the next time instance i = 1 because 

(21) 

Repeating this argument for a finite time, every agent in the 
network ends up with a positive belief about eo due to the 
primitivity of A. For large enough i, from (17}-(19) we get 

N 

J( ILi) = IEFi LYkD(pI I ILk,i) ;:::: 0 (22) 
k=l 

due to Gibbs' inequality [22], namely, D(pllq) ;:::: 0 for any 
two PMFs {p, q} over 8 satisfying the absolute-continuity 
condition, p(e) = 0 if q(e) = 0 for any e E 8. It is obvious 
that our p and ILk,i in (22) satisfy the absolute-continuity 
condition because of (16) and (21). Then, the risk of agent 
k at time i can be upper bounded by 
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where step (a) is by (18) and (20), step (b) by (14), step 
(c) by the convexity of -log(·), step (d) by the conditional 
expectation, and step (e) by the nonnegativity of the KL­
divergence from L£(s£leO) to m£,i-1(S£). By (9), (19), and 
(23), we get 

N N 

J( ILi) S; LYk L O!£k J( IL£,i-l) 
k=l £=1 

(24) 

where step (a) is due to (10). From (22) and (24), we conclude 
that { J( ILi)} is a nonnegative, monotonically decreasing real 
sequence. By the monotone convergence theorem of real 
sequences [23], { J( ILi)} converges to a real number. • 

From Lemma 1, we arrive at the following result 

N 

lim J( ILi) = in
>
fo' -IEF; LYkloglLk,i(eO) 

t--+(X) t - k=l 
(25) 

We shall show in the sequel that the convergence of the overall 
average risk implies the asymptotic correctness of the forecast 
of the incoming signal. 

Lemma 2: Under the same conditions of Lemma 1, agents 
develop correct forecasts of the incoming signals, namely, 

(26) 

for any Sk E Sk and k E N, where ad- denotes almost surely 
convergence. 

Proof From steps (d) and (e) in (23) we get 

L 0!£kJ( IL£,i-1) - J( ILk,i) 
£ENk 

Scaling by Yk, then summing over k on both sides of (27) and 
using (24) gives 



By the Cauchy criterion for convergence [23], we get 

. � [ LC(eC'i 18°) 
I 

] 
hm IEFi_1 � YcIEeC,i log . (c . ) Fi-1 2: 0 (29) t-+oo C=1 mC,1-1 ",C,t 

where the last inequality is because J(J-ti) is monotonically 
decreasing as shown in (24). Therefore, it holds that 

By Gibbs' inequality, the conditional expectations in (30) are 
nonnegative random variables, i.e., 

(31) 

for any t Since YC > 0, from (30) and (31), we obtain 

lim " Lc(scI8°) log Lc(scI8°) a�. 0 (32) i-+oo � mC i-l(SC) 
seESe ' 

for any t According to Gibbs's inequality, equation (32) 
(almost surely) equals to zero if, and only if, 

(33) 

for any Sc E Sc and t • 
It is worth noting that the correct forecasting result (26) 

is guaranteed by requiring A to be a primitive matrix. This 
condition is satisfied if at least one diagonal entry of A is 
strictly positive. That is, we only require at least one agent 
to have a positive self-reliance akk. In contrast, Proposition 
1 in [3] imposes the stronger condition that all agents must 
have positive self-reliances. The reason behind this difference 
is that even though some agent k may not integrate its 
own intermediate belief 'ljJk,i into the new belief J-tk,i by 
having akk = 0, the new-information-bearing belief 'ljJk,i will 
still be utilized by some other agent € who has agent k 
in its neighborhood (i.e., aCk > 0). This fact explains why 
the diffusion strategy (11) can distribute information more 
thoroughly over the network than the consensus strategy (8). 

In the following we shall show that as i --+ 00, each agent 
k will assign zero belief to any event 8 E 8k. In order to 
proceed with the analysis, we assume that for each agent k, 
there exists at least one prevailing signal s% such that 

� lim L J-tk,i-l(8) [Lk(SkI8°) - Lk(SkI8)] a� 0 1-+00 BEe 
� lim L J-tk,i-l(8)[Lk(SkI8°) - Lk(SkI8)] a� 0 (36) 

�--+CX) _ BEek 
for any Sk E Sk, where step (a) is by (IS) and step (b) by 
(S). By (34), applying signal s% to (36) yields 

lim L J-tk,i-l (8) [Lk(s% 18°) - Lk(S%18)] a� 0 ===} 1-+00 BEE", 
o 2: lim 6% L J-tk,i-l (8) 2: 0, a.s. ===} 

1-+00 _ BEek 
lim " J-tk,i-l (8) a� 0 ===} lim J-tk,i-l (8) a�. 0 (37) 

2--+00 � 2--+00 BEek 
for any 8 E 8k and k E N. • 

With Lemma 3, we can now proceed to show that all agents 
learn the truth asymptotically. 

Lemma 4: Assume that (a) the combination matrix A is 
left-stochastic and primitive; (b) there exists at least one agent 
with positive prior belief about the true event; and (c) there 
exists at least one prevailing signal for each agent. Then, all 
agents in the social network learn the truth asymptotically, 
namely, 

(38) 

for any k E N. 
Proof From (14) and (3S), we obtain that for any 8 E 8k, 

lim " ack 'ljJc,i(8) a� 0 � lim 'ljJc,i(8) a� 0 t --+ 00 L..,.; t --+ 00 CENk 
� lim J-tC,i-l(8) a� 0 (39) 1-+00 

for any € E Nk and k E N, where step (a) is because 
both aCk and 'ljJC,i are nonnegative and step (b) is by the 
absolute-continuity of 'ljJC,i with respect to J-tC,i-l because of 
the Bayesian update step in (12). Since the combination matrix 
A is primitive, propagating the argument in (39) by at most 
N - 1 iterations will cross over every agent and enforce the 
following relation 

lim J-tc,i(8) a� 0 t-+oo (40) 

for any 8 E 8k, € E N, and k E N. Repeating this argument 
for all agents in the network yields 

lim J-tk,i(8) a� 0, V 8 E U 8c, k E N  (41) t-+oo CEN 
(34) By (6), we obtain 

Lemma 3: Given the existence of prevailing signals, asymp­
totically correct forecasting implies that each agent k eventu­
ally identifies its "unlikely" event set 8k, namely, 

lim J-tk,i(8) a� 0 (3S) 1-+00 
for any 8 E 8k and k E N. 

Proof Assuming 8k =1= 0. From (26) we get 

lim [Lk(SkI8°) - mk,i-l(Sk)] a� 0 t-+oo 
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U 8c= n 8c=8\{8°} 
CEN CEN 

From (41) and (42), we therefore arrive at 

I· (8) a.s. 0 .lm J-tk,i = ) 1-+00 
or, equivalently, 

I· (8°) a.s. 1 .lm J-tk,i = , 1-+00 
which completes the proof. 

Vk E N  

(42) 

(43) 

(44) 

• 
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Fig. I. Network topology and comparison of the learning curves: diffusion 
(12) vs. consensus (7) and (8). 

V. SIMULATION RESULTS 

We illustrate the perfonnance of the diffusion learning strat­
egy by a simulation. For a fair comparison with the consensus­
based learning strategy (7) and (8) from [3], we adopt a 
simulation setup similar to Example 2 in [3] and apply it to 
a more arbitrary topology rather than a ring. We assume that 
the social network consists of N = 8 agents interconnected 
via the topology shown in Fig. l. The combination matrix A 
is formed by the Metropolis rule [24], i.e., 

{ 1 
£ E Nk \{ k} 

aRk = max{nk,nc} , 

1 
- 2::RENk\{k} aRk, 

£ = k 
(45) 

We assume that there are M = 9 possible events, e = 

{eO, e1, e2, ... , e8}, where eo is the true event of interest. 
Agents continuously observe binary signals randomly drawn 
from Sk = {H, T} over time i � 1. Signals for different 
agents are generated independently. The likelihood function 
for agent k is given by { k � l' 

Lk(Sk = Hie) = 1 
(k + 1)2' 

(46) 
otherwise 

We simulate both the diffusion social learning strategy (12) 
and the consensus social learning strategy (8) and plot the 
results in Fig. 1. The learning curves for the overall average 
risk J(JLi) are obtained by averaging over 100 independent 
experiments, or sample paths. Each sample path is obtained 
by feeding the social network a sequence of signals of length 
1000. The prior beliefs are randomly generated by the uniform 
distribution U(0,1). From Fig. 1, we see that the diffusion 
strategy (12) converges faster than the consensus strategy (8). 

V I. CONCLUSION 

In this work we proposed a non-Bayesian social learning 
strategy of the diffusion-type given by (12). We showed 
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that the diffusion strategy endows social networks with the 
ability to learn the truth. Simulation results indicate that 
the diffusion learning strategy has a faster convergence rate 
than the consensus learning strategy proposed in [3]. This is 
because the diffusion strategy allows information to diffuse 
through the network more thoroughly. 
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