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Abstract—It is common for biological networks to encounter
situations where agents need to decide between multiple options,
such as deciding between moving towards one food source or
another or between moving towards a new hive or another.
In previous works, we developed several powerful diffusion
strategies that allow agents to estimate a model of interest in
an adaptive and distributed manner through a process of in-
network collaboration and learning. In this work, we consider
the situation in which the data observed by the agents may arise
from two different distributions or models. We develop and study
a procedure by which the entire network can be made to follow
one objective or the other through a distributed and collaborative
decision process.

Index Terms—Adaptive networks, diffusion adaptation, learn-
ing, decision-making process, biological networks.

I. INTRODUCTION

Self-organized behavior is a remarkable property of biolog-

ical networks [1], [2]. The behavior is attained in a distributed

manner where agents interact with their immediate neigh-

bors. It is a remarkable feature of biological networks that

sophisticated behavior can emerge from localized interactions

among agents with limited capabilities. One example of such

sophisticated behavior is the group decision-making process by

animals [3]. Examples include fish deciding between following

one food source or another [4], and bees or ants moving

towards a new hive or another [5], [6]. Even though several

options may be available, the agents are able to achieve

agreement and move towards a common target of interest.

Motivated by these examples, we study in this work the

decision-making process over adaptive networks. These net-

works consist of a collection of agents with adaptation and

learning abilities. The agents interact with each other on a

local level to perform estimation and inference tasks in a

distributed manner [7]–[9]. Adaptive networks are suitable

to model collective motion in biological networks [10], [11].

They are also suitable to solve estimation and optimization

problems in a distributed manner [9], [12]. In this article, we

study the situation in which the data collected by the agents

are influenced by one of two underlying models. At every

time instant, the data arriving at any particular node could

have originated from one model or the other. The objective of

the network is to achieve agreement among the agents about

which model to estimate as a group. A good analogy is the

behavior of a fish school sensing two separate food sources.

This work was supported in part by NSF grant CCF-1011918.

Through a process of in-network decision making, the entire

fish school ends up moving towards one source in lieu of the

other. We are interested in showing how adaptive networks

can be designed to generally mimic this useful behavior; in

this work, we focus on the case of static agents.

This objective is more challenging than earlier works on

distributed estimation because each agent now needs to distin-

guish between which model each of its neighbors is collecting

data from (this is called the observed model) and which

model the network is evolving to (this is called the desired

model). Therefore, in addition to the traditional learning and

adaptation process, the agents should also be equipped with a

decision-making process to distinguish between the observed

and desired models and to help reach agreement on the desired

model. The estimation and decision processes need to be

implemented in a fully distributed manner and in real-time.

Furthermore, the learning and decision-making processes are

intertwined in that the decisions by the agents depend on their

estimates and, conversely, the decisions affect the evolution of

the estimates.

II. DISTRIBUTED LEARNING AND ADAPTATION PROCESS

Consider a collection of N agents distributed over a spatial

domain. Two agents are said to be neighbors if they can

share information. The set of neighbors of agent k is called

the neighborhood of k and is denoted by Nk. At every time

instant, i, each agent (or node) k is able to observe realizations

{dk(i), uk,i} of a scalar random process dk(i) and a 1×M row

vector random process uk,i with a positive-definite covariance

matrix, Ru,k = Eu∗
k,iuk,i > 0. We denote random quantities

by boldface letters and their realizations or deterministic

quantities by normal letters. The data {dk(i),uk,i} collected

at node k originate from one of two unknown column vectors

{w◦
0 , w

◦
1} of size M . The data at node k are related to the

observed model z◦k ∈ {w◦
0 , w

◦
1} via a linear regression model

of the form [13]:

dk(i) = uk,iz
◦
k + vk(i) (1)

where vk(i) is measurement noise with variance σ2
v,k and

assumed to be temporally white and spatially independent, i.e.,

Ev∗k(i)vl(j) = σ2
v,k · δkl · δij (2)

in terms of the Kronecker delta function. The regression data

uk,i is likewise assumed to be temporally white and spatially

independent. The noise vk(i) is assumed to be independent of
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Fig. 1. A connected network where data collected by the agents are influenced
by one of two models. The weight al,k scales the data transmitted from node
l to node k over the edge linking them.

ul,j for all l and j. All random processes are assumed to be

zero mean.

Although the agents are subjected to data arising from

different models, the objective of the network is to have all

agents converge to an estimate for one of the models. For

example, if the model happens to represent the location of

a food source [11], then this agreement will make all agents

move towards one particular food source in lieu of the other.

More specifically, let wk,i denote the estimate at node k at

time i. The network would like to achieve

wk,i → w◦
q for q = 0 or q = 1 and for all k as i→ ∞ (3)

where convergence is in some desirable sense (such as the

mean-square-error sense). To achieve agreement, it is reason-

able to assume that the network topology is connected where

a path always exists between any two nodes.

A. Diffusion Strategy

Several diffusion adaptation schemes for distributed esti-

mation under a common model were proposed and studied in

[7]–[9]. One such scheme is the Adapt-then-Combine (ATC)

diffusion algorithm [8], which has been shown in [14] to

outperform other variations of diffusion strategies as well as

consensus-based strategies [15]–[18]. ATC diffusion operates

as follows. We select an N × N matrix A with nonnegative

entries {al,k} satisfying:

AT
1 = 1 and al,k = 0 if l /∈ Nk (4)

where 1 is the vector of size N with all entries equal to one.

The entry al,k denotes the weight that node k assigns to data

arriving from node l (see Fig. 1). The larger the value of al,k
is, the higher the confidence of node k is on the information

provided by node l. The ATC strategy consists of two steps

and is described as follows:

ψk,i = wk,i−1 + µu∗
k,i[dk(i)− uk,iwk,i−1] (5)

wk,i =
∑

l∈Nk

al,kψl,i (6)

where µ is the positive step-size. The first step (5) involves

local adaptation, where node k uses its own data {dk(i),uk,i}
to update the weight estimate at node k from wk,i−1 to an

intermediate value ψk,i. The second step (6) is a combination

step where the intermediate estimates {ψl,i} from the neigh-

borhood of node k are combined through the weights {al,k}
to obtain the updated weight estimate wk,i.

When the data arriving at the nodes could have risen from

one model or another, the diffusion strategy (5)-(6) will not be

able to achieve agreement among the nodes and the resulting

weight estimates will include a bias term. We first explain how

this degradation arises and subsequently explain how it can be

remedied.

B. Mean Convergence

Let us assume for the time being that the agents in the

network have agreed on converging towards one of the models,

say, w◦
0 or w◦

1 . We denote the desired model generically by w◦
q .

In the next section we explain how this agreement process can

be attained. Let us first explain that even when agreement is

present, the diffusion strategy (5)-(6) leads to biased estimates

unless it is modified in a proper way. To see this, we introduce

the following error vectors for any node k:

w̃k,i , w◦
q −wk,i and z̃◦k , w◦

q − z◦k. (7)

Observe that these quantities measure the error relative to the

desired objective, w◦
q . Moreover, this desired model may or

may not be the model that is influencing the data received by

node k. We collect all error vectors across the network into

block vectors:

w̃i , col {w̃k,i} and z̃◦ , col {z̃◦k} (8)

where the notation col{·} denotes the vector that is obtained by

stacking its arguments on top of each other. We also introduce

the extended combination matrix:

A , A⊗ IM (9)

where the symbol ⊗ denotes the Kronecker product of two

matrices. Then, starting from (5)-(6) and using model (1), we

can verify that the global error vector w̃i evolves over time

according to the recursions:

w̃i = AT (INM − µRi)w̃i−1 + µAT
Riz̃

◦ − µAT si (10)

where Ri , diag{u∗
k,iuk,i}Nk=1 and si , col{u∗

k,ivk,i}
N
k=1,

and where the notation diag{·} constructs a diagonal matrix

from its arguments. Since the regressors {uk,i} are temporally

white and spatially independent, then the {uk,i} are indepen-

dent of w̃i−1. In addition, since uk,i is independent of vk(i),
the vector si in (10) has zero mean. Taking expectation of

both sides of (10), we find that the mean of w̃i evolves over

time according to the recursion:

Ew̃i = B · Ew̃i−1 + y (11)

where

B , AT (INM − µR) (12)

R , ERi = diag{Ru,1, · · · , Ru,N} (13)

y , µATRz̃◦. (14)
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Fig. 2. A three-node network. Node 1 observes data from w◦

0
while nodes

2 and 3 observe data from w
◦

1
.

The following result provides conditions to ensure the mean

convergence of the network, namely, that Ew̃i → 0 as i→ ∞.

Theorem 1. Recursion (11) for Ew̃i converges to zero if, and

only if,

ρ(B) < 1 and y = 0 (15)

where ρ(·) denotes the spectral radius of its argument. �

Therefore, to guarantee mean convergence, the nodes need

to select the step-size µ and the combination matrix A so that

conditions (15) are satisfied. It can be verified that the spectral

radius of B is less than one as long as [14]:

0 < µ < 2/max
k

ρ(Ru,k) (16)

This conclusion is independent of A. However, for the second

condition in (15), we note that in general, the vector y cannot

be zero no matter how the nodes select the combination matrix

A. When this happens, the weight estimate will be biased. Let

us consider an example with three nodes in Fig. 2 where node

1 observes data from model w◦
0 , while nodes 2 and 3 observe

data from model w◦
1 . The combination matrix in this case is

given by

AT =





1− a a 0
b 1− b− c c
0 d 1− d



 (17)

with the parameters {a, b, c, d} lying in the interval [0, 1] and

b+c ≤ 1. For simplicity, we assume that the vectors {w◦
0 , w

◦
1}

are scalars and the regressors have the same variance, i.e.,

Ru,k = σ2
u for all k. If the desired model of the network is

w◦
q = w◦

0 , then the vector y from (14) becomes

y = µσ2
u(w

◦
0 − w◦

1)





a
1− b
1



 (18)

We observe that no matter how we select the parameters

{a, b, c, d}, the third entry of the vector y cannot become

zero. To deal with this problem, we show how to modify the

diffusion strategy (5)-(6).

C. Modified Diffusion Strategy

We observe from (18) that the vector y cannot be zero

because of node 3 whose neighbors observe data arising from

a model that is different from the desired model. In addition,

note that the bias comes from the intermediate estimates in

(5). Therefore, to ensure mean convergence, a node should

not combine intermediate estimates from neighbors whose

observed model is different from the desired model. Instead,

we replace the intermediate estimates from these neighbors

by their previous estimates {wl,i−1} in the combination step

(6). Specifically, we adjust the diffusion strategy (5)-(6) in the

following manner:

ψk,i = wk,i−1 + µku
∗
k,i[dk(i)− uk,iwk,i−1] (19)

wk,i =
∑

l∈Nk

(

a
(1)
l,kψl,i + a

(2)
l,kwl,i−1

)

(20)

where a
(1)
l,k and a

(2)
l,k are nonnegative entries of two matrices A1

and A2 that satisfy A1+A2 = A, with A being left-stochastic.

More specifically, as the discussion in the sequel will reveal,

starting from the same combination matrix A used in (6), we

are going to split its entries into two sets: some entries will

be assigned to the matrix A1 and the remaining entries will

be assigned to the matrix A2. The choice of which entries of

A go into A1 or A2 will depend on which of the neighbors

of node k are observing data arising from a model that agrees

with the desired objective for node k. Nodes that observe data

arising from the same model that node k wishes to converge

to will be reinforced and their intermediate estimates {ψl,i}
will be used (their combination weights enter into A1), while

nodes that observe data arising from a different model than

the objective of node k will be de-emphasized and their prior

estimates {wl,i−1} will be used (their combination weights

enter into A2). Note that the first step (19) is the same as

step (5). However, in the second step (20), a node is able

to aggregate the {ψl,i,wl,i−1} from its neighborhood. With

such adjustment, we will verify that by properly selecting

{a
(1)
l,k , a

(2)
l,k }, mean convergence can be guaranteed for any

connected network.

To begin with, the recursion for the global error vector w̃i

of the modified diffusion strategy (19)-(20) is given by:

w̃i =
[

AT
1 (INM − µRi) +AT

2

]

w̃i−1 +µAT
1 Riz̃

◦−µAT
1 si
(21)

where A1 and A2 are defined in a manner similar to A in

(9). Taking the expectation of the both sides of (21), we get

(compare with (11)):

Ew̃i =
[

AT
1 (INM − µR) +AT

2

]

· Ew̃i−1 + µAT
1 Rz̃

◦

(22)

Now we specify a way to select the combination weights

{A1, A2} to guarantee the convergence of Ew̃i in (22) to zero.

We assume the matrix A = A1 + A2 is primitive, i.e., there

exists an integer power j > 0 such that

[Aj ]l,k > 0 for all l and k. (23)

For example, it can be verified that for any connected network,

if the matrix A satisfies condition (4) and ak,k > 0 for at

least one k, then condition (23) holds. Next, let us introduce

two network vectors {f, gi} of size N each with the kth

entries {f(k), gi(k)} indicating the indices of the observed
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and desired models for node k, respectively. The value of f(k)
is set to f(k) = 0 if the observed model of node k is w◦

0 ;

otherwise, f(k) = 1. Likewise for gi(k), whose value will be

zero or one depending on whether the desired model of node

k is w◦
0 or w◦

1 . Note that we assume that the observed model

of a node is fixed (f is independent of i), whereas the {gi(k)}
may change over time since the decision by each node about

what the desired model should be is an evolving decision that

changes over time. Since we are assuming for the time being

that the nodes have achieved agreement on the desired model,

which we are denoting by w◦
q , we have that:

gi(1) = gi(2) = · · · = gi(N) = q, for all i. (24)

Then, we set the entries of A1 and A2 according to the

following rules:

a
(1)
l,k =

{

al,k, if l ∈ Nk and f(l) = gi(k)

0, otherwise
(25)

a
(2)
l,k =

{

al,k, if l ∈ Nk and f(l) 6= gi(k)

0, otherwise
(26)

That is, the weights to the nodes whose observed model is the

same as the desired model are collected into the matrix A1,

while the remaining weights are collected into the matrix A2.

The following result states that by selecting the combination

weights according to (25)-(26), the modified diffusion strategy

(19)-(20) converges in the mean.

Theorem 2. Assume that the network is connected and A is

primitive. The mean recursion in (22) converges to zero if the

step size µ satisfies (16) and the matrices A1 and A2 are

chosen according to (25)-(26).

Proof: It suffices to show that the vector µAT
1 Rz̃

◦ is

zero and the matrix AT
1 (INM −µR)+AT

2 has spectral radius

strictly less than one. Without loss of generality, let w◦
0 be

the desired model for the network (i.e., q = 0) and assume

there are N0 nodes with indices {1, 2, . . . , N0} observing data

arising from the model w◦
0 , while the remaining N−N0 nodes

observe data arising from the model w◦
1 . Then, we obtain from

(7), (25), and (26) that

z̃◦k =

{

0, if k ≤ N0

w◦
0 − w◦

1 , if k > N0

(27)

a
(1)
l,k = 0 if l > N0 (28)

a
(2)
l,k = 0 if l ≤ N0 (29)

Therefore, we conclude that the vector µAT
1 Rz̃

◦ is zero.

Moreover, in view of (28)-(29), we can write:

AT
1 (INM − µR) +AT

2 = AT (INM −MR) (30)

where M is an N×N block diagonal matrix with each block

of size M ×M and the kth diagonal block of M, denoted by

Mk, has the form

Mk =

{

µIM , if k ≤ N0

0, otherwise
(31)

Therefore, recursion (22) is equivalent to the mean recursion

of the network with N0 informed nodes (nodes 1 to N0) and

N−N0 uninformed nodes [19]. If the step-size is set to satisfy

(16), then according to Theorem 1 of [19], the spectral radius

of AT
1 (INM − µR) +AT

2 will be strictly less than one.

III. DISTRIBUTED DECISION-MAKING PROCESS

The result of Theorem 2 establishes that it is possible for

connected networks to converge on average to a common

desired model by using (19)-(20). However, the analysis so far

is based on the assumption that the nodes know what are the

observed models influencing their neighbors (i.e., they need

to know f(l) for their neighbors); they also need to know

how to update their target in gi(k). This information is then

used in (25)-(26) to construct the combination weights. In this

section, we describe a procedure by which this information

can be estimated through local cooperation. The procedure

is motivated by the process used by animal groups to reach

agreement, and which is known as quorum sensing [3], [5],

[6].

Assume that at time i, node k has access to the desired

models of its neighborhood from the previous time instant, i.e.,

{gi−1(l)} for l ∈ Nk. Then, one way for node k to participate

in the quorum setting process is to update its target value in

gi(k) according to the following rule:

gi(k) = q with probability
nk(q)

K

∑

r nk(r)K
(32)

where nk(q) denotes the number of neighbors of node k whose

desired model is w◦
q and the exponent K is a positive constant

(k = 1 in simulations). That is, node k determines its desired

model in a probabilistic manner, and the probability that node

k set its desired target to w◦
q is proportional to the Kth power

of the number of neighbors whose desired model is w◦
q as

well. Using such stochastic approach, we are able to verify

the agreement on the desired model among the nodes.

Lemma 1. Starting from an initial arbitrary selection of

targets, {g−1(l)} for all nodes l in the network, and applying

the update rule (32), then all nodes will eventually achieve

agreement on the desired model, i.e., g∞(1) = g∞(2) = . . . =
g∞(N).

Proof: The result follows from the fact that the

{gi(1), gi(2), . . . , gi(N)} form an absorbing Markov chain

with 2N possible states and two absorbing states, namely,

gi(1) = gi(2) = · · · = gi(N) = q for q = 0 or q = 1.

However, rule (32) is still not a distributed solution for one

subtle reason: nodes need to agree on which index (0 or 1)

to use to refer to either model {w◦
0 , w

◦
1}. This task would

require the nodes to share some global information. To avoid

this difficulty, we shall associate with each node k two local

vectors {fk, gk,i}. Each node will then assign the index one

to its observed model, i.e., each node k sets fk(k) = 1. Then,

fk(l) and gk,i−1(l) are set to one if they represent the same

model as the one observed by node k; otherwise, fk(l) and
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gk,i−1(l) are set to zero. Specifically, node k needs to adjust

gl,i−1(l) from node l according to the rule:

gk,i−1(l) =

{

gl,i−1(l), if fk(l) = fk(k)

1− gl,i−1(l), otherwise
(33)

That is, if node l has the same observed model as node k, node

k simply assigns the value of gl,i−1(l) to gk,i−1(l); otherwise,

node k needs to change the value of gl,i−1(l) (from 0 to 1

or from 1 to 0) from node l. It can be verified that the local

vectors {fk, gk,i} are equivalent to the network vectors {f, gi}
in the sense that for l ∈ Nk, it holds that

fk(k)⊕ fk(l) = f(k)⊕ f(l) (34)

fk(k)⊕ gk,i(l) = f(k)⊕ gi(l) (35)

where the symbol ⊕ denotes the exclusive-OR operation. To

implement (33), node k still needs to determine fk, i.e.,

the ability to differentiate between observed models. We

propose a procedure to determine fk using the available data

{wl,i−1,ψl,i}.

A. Information Classification

To determine the vector fk, we introduce another vector

bk,i, whose lth entry, bk,i(l), will be a measure of the belief

by node k that node l has the same observed model. The value

of bk,i(l) lies in the range [0, 1]. The higher the value of bk,i(l)
is, the more confidence node k has that node l is subject to the

same model as its own model. In this construction, the vector

bk,i changes over time according to the data {wl,i−1,ψl,i}.

Node k adjusts {bk,i(l)} according to the rule:

bk,i(l) =

{

(1− α) · bk,i−1(l) + α, if belief is increased

(1− α) · bk,i−1(l), if belief is decreased

(36)

for some positive step-size α ∈ [0, 1]. That is, node k increases

the belief by linearly combining the belief from the previous

time instant with one. In contrast, node k linearly combines

bk,i−1(l) and zero to decrease the belief. Node k then set fk(l)
according to the rule:

fk(l) =

{

1, if bk,i(l) ≥ 0.5

0, otherwise
(37)

To update bk,i(l), we use model (1) and obtain from the

adaptation step (19) that

ψl,i −wl,i−1 = µu∗
l,iul,i(z

◦
l −wl,i−1) + µu∗

l,ivl(i) (38)

Taking expectation of the both sides, we have that

E[ψl,i −wl,i−1] = µRu,lE[z
◦
l −wl,i−1] (39)

That is, on average, the adaptation term is a scaled vector

pointing from wl,i−1 towards z◦l with scaling matrix µRu,l.

Note that since Ru,l is a positive-definite matrix, the adaptation

term lies in the same half plane of the vector E[z◦l −wl,i−1].
Therefore, the term E[ψl,i−wl,i−1] provides useful informa-

tion about the observed model at node l. In addition, this term

also tells us how close the estimate at node l is to its observed

model. We know that if the magnitude of E[ψl,i −wl,i−1] is

large, or the estimate at node l is far from z◦l , then node l
is in the transient state. On the contrary, if the magnitude is

small, then the estimate wl,i−1 at node l is close to z◦l and the

node is operating close to steady-state. The expected value of

(ψl,i −wl,i−1) can be estimated by the first-order recursion:

φl,i = (1− ν) · φl,i−1 + ν · (ψl,i − wl,i−1) (40)

where ν is a positive step-size smaller than one. Note that

recursion (40) is able to track the variation of E[ψl,i−wl,i−1]
over time. There are four scenarios to consider depending on

whether nodes k or l are in the transient phase or in steady-

state operation.

We first assume that both nodes k and l are in transient

state, i.e., ‖φk,i‖ > η1 and ‖φl,i‖ > η1 for some threshold η1.

Node k will increase the belief value bk,i(l) using (36) if

φTk,iφl,i > 0 (41)

Otherwise, node k decreases the belief bk,i(l). That is, if both

nodes k and l are in transient state, then node k increases its

belief of node l when their adaptation terms {φk,i, φl,i} lie in

the same half plan. Next we assume that both nodes k and l
are in steady-state, i.e., ‖φk,i‖ ≤ η1 and ‖φl,i‖ ≤ η1. In this

case, node k increases the belief bk,i(l) if

‖wk,i−1 − wl,i−1‖ ≤ η2 (42)

for some threshold η2. Otherwise, node k decreases the belief

bk,i(l). That is, when both nodes k and l converge to their

observed models (namely, wk,i−1 ≈ z◦k and wl,i−1 ≈ z◦l ),

node k increases the belief to node l if they converge to the

same model. Finally, when one of nodes k or l is in transient

state and the other is in steady-state, node k decreases the

belief bk,i(l) if one of the following conditions holds:
{

‖φk,i‖ ≤ η1 and φTl,i(wk,i−1 − wl,i−1) ≤ 0

‖φl,i‖ ≤ η1 and φTk,i(wl,i−1 − wk,i−1) ≤ 0
(43)

That is, when node k is in steady-state and node l is in transient

state, then we have wk,i−1 ≈ z◦k and node k decreases the

belief to node l if the adaptation term of node l points towards

the opposite direction of the observed model of node k. Similar

explanation applies to the other case.

We now explain how to determine the thresholds η1 and

η2. First, it is reasonable to assume that two model vectors

are sufficiently away from each other, i.e., ‖w◦
0 − w◦

1‖ ≫ 1.

In addition, in steady-state, the error vector (z◦k − wk,i) has

magnitude much less than 1. To determine η1, we observe

from (39) that the magnitude of φl,i is of the order of µ, i.e.,

φl,i = c ·µ and that the term c is much smaller than 1 if node

l is in steady-state. Hence, we set η1 to η1 = µ. In terms of

η2, by the triangular inequality, we have that

‖wk,i−1 − wl,i−1‖

≤ ‖z◦k − wk,i−1‖+ ‖z◦l − wl,i−1‖+ ‖z◦k − z◦l ‖ (44)

If both nodes k and l are in steady-state, then the first two

terms on the right-hand side of (44) are much less than one.
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Fig. 3. Transient network MSD over a network with 40 nodes in the case with perfect information (left), in the case with imperfect information (middle),
and in the case with the conventional diffusion strategy (5)-(6) (right).

Therefore, the term on the left-hand side of (44) is much less

than one if z◦k = z◦l ; otherwise, it is much greater than one.

Hence, we set η2 = 1.

IV. SIMULATION RESULTS

We consider a connected networks with 40 static nodes

randomly connected. The model vectors are set to w◦
0 = [3; 3]

and w◦
1 = [3;−3] (M = 2). Assume that the first 20 nodes

(nodes 1 through 20) observe data arising from the model

w◦
0 , while the remaining nodes observe data originating from

the model w◦
1 . The step-sizes are set to µ = 0.05, ν = 0.2,

and α = 0.05. The network employs the uniform combination

rule: al,k = 1/nk if l ∈ Nk, where nk denotes the number of

neighbors of node k.

In Fig. 3, we illustrate the network mean-square deviation

(MSD) with respect to the two model vectors over time, i.e.,

MSDq(i) =
1

N

N
∑

k=1

E‖w◦
q −wk,i‖

2 (45)

for q = 0 and q = 1. We consider three situations: the

case with known vectors {f, gi} (perfect information), the

case with estimated vectors {fk, gk,i} (imperfect information),

and the case with the conventional diffusion strategy (5)-

(6). We observe that our proposed algorithm successfully

converges to one of the models, although it takes about 200

iterations to achieve agreement. Moreover, the algorithm with

imperfect information converges to the perfect case. However,

for the conventional diffusion strategy, the nodes converge to

a common vector that does not coincide with either of the

model vectors.
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