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Abstract—Adaptive networks consist of a collection of nodes
with adaptation and learning abilities. The nodes interact with
each other on a local level and diffuse information across the
network through their collaborations, as dictated by the network
topology and by the spatial distribution of the nodes. In this
work, we consider two types of nodes: informed and uninformed.
The former collect data and perform processing, while the
latter only participate in the processing tasks. We examine the
performance of adaptive networks as a function of the fraction
of informed nodes. The results reveal an interesting trade-off
between convergence and performance. The analysis indicates
that the larger the proportion of informed nodes in a network,
the faster the convergence rate is at the expense of a deterioration
in the mean-square-error performance. The conclusion suggests
an important interplay relating the number of informed nodes,
the desired convergence rate, and the desired estimation accuracy.

Index Terms—Adaptive networks, diffusion adaptation, learn-
ing, topology, Erdos-Renyi network, scale-free network, power
law, small world phenomenon, informed nodes.

I. INTRODUCTION

Adaptive networks consist of a collection of spatially dis-

tributed nodes that are linked together through a connection

topology and that cooperate with each other through local

interactions. Adaptive networks are well-suited to perform

decentralized information processing and inference tasks [1],

[2] and to model complex and self-organized behavior encoun-

tered in biological systems [3], such as fish joining together in

schools [4], birds flying in formation [5], and bees swarming

towards a new hive [6].

In the previous works [1], [2], [4], the nodes in the network

were assumed to be homogeneous in that all nodes had

similar capabilities and were able to have continuous access

to measurements. However, it is often observed in biological

networks that the behavior of the network tends to be dictated

more heavily by a small fraction of the agents, as happens with

bees [7] and fish [8]. This observation motivates us to study

what we shall refer to as heterogeneous adaptive networks,

where a fraction of the nodes are assumed to be informed while

the remaining nodes are assumed to be uninformed. Informed

nodes collect data and perform in-network processing, while

uninformed nodes only participate in the processing tasks.

This work was supported in part by NSF grants CCF-1011918 and CCF-
0942936.

We shall examine how the transient and steady-state be-

havior of the network is dependent on its topology and on

the distribution of informed nodes. The results reveal an

interesting trade-off between convergence and performance. In

particular, the analysis shows that the larger the proportion of

informed nodes in a network, the faster the convergence rate

is at the expense of a deterioration in the mean-square-error

performance. We apply the results to two types of topology

models widely used in the complex networks literature [9]:

Erdos-Renyi models and scale-free models.

II. DIFFUSION ADAPTATION ALGORITHM

Consider a collection of N nodes distributed over a spatial

domain. Two nodes are said to be neighbors if they can share

information. The set of neighbors of node k, including k itself,

is called the neighborhood of k and is denoted by Nk. The

nodes would like to estimate an unknown column vector, w◦,

of size M . At every time instant, i, each node k is able to

observe realizations {dk(i), uk,i} of a scalar random process

dk(i) and a 1×M vector random process uk,i with a positive-

definite covariance matrix, Ru,k = Eu∗
k,iuk,i. All vectors

in our treatment are column vectors with the exception of

the regression vector, uk,i. We also denote random quantities

by boldface letters. The random processes {dk(i),uk,i} are

assumed to be related to w◦ via a linear regression model of

the form [10]:

dk(i) = uk,iw
◦ + vk(i) (1)

where vk(i) is measurement noise with variance σ2
v,k and

assumed to be spatially and temporally white, i.e.,

Ev∗
k(i)vl(j) = σ2

v,k · δkl · δij (2)

in terms of the Kronecker delta function. The noise vk(i) is

also assumed to be independent of ul,j for all l and j. All

random processes are assumed to be zero mean.
The objective of the network is to estimate w◦ in a dis-

tributed manner and in real-time through an online learning

process, where each node is allowed to interact only with its

neighbors. The nodes estimate w◦ by seeking to minimize the

following global cost function:

Jglob(w) �
N∑

k=1

E|dk(i)− uk,iw|2 (3)
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Several diffusion adaptation schemes for solving (3) in a

distributed manner were proposed in [1], [2]. One such scheme

is the Adapt-then-Combine (ATC) diffusion algorithm [2]. It

operates as follows. We assign an N × N matrix A with

nonnegative entries {al,k} satisfying:

AT1 = 1 and al,k = 0 if, and only if, l /∈ Nk (4)

where 1 is a vector of size N with all entries equal to one.

The entry al,k denotes the weight on the link connecting node

l to node k. The ATC algorithm consists of two steps. The

first step (5a) involves local adaptation, where node k uses its

own data {dk(i), uk,i}. This step updates the weight estimate

at node k from wk,i−1 to an intermediate value ψk,i. The

second step (5b) is a combination step where the intermediate

estimates {ψl,i} from the neighborhood are combined through

the coefficients {al,k} to obtain the updated weight estimate

wk,i. The algorithm is described as follows:⎧⎨
⎩
ψk,i = wk,i−1 + μku

∗
k,i[dk(i)− uk,iwk,i−1] (5a)

wk,i =
∑
l∈Nk

al,kψl,i (5b)

where μk is the positive step-size used by node k. To model

heterogeneity over the network, we set μk = 0 if node k is

uninformed. In this model, uninformed nodes do not perform

the adaptation step (5a) but continue to perform (5b).

III. PERFORMANCE ANALYSIS

The mean-square performance of the ATC algorithm was

studied in detail in [2] by applying the energy conservation

approach of [10], [11].

A. Mean Stability

Let the error vector for any node k be w̃k,i = w◦ −wk,i.

We collect all weight error vectors and step-sizes across the

network into a block vector and block matrix: w̃i = col{w̃k,i}
and M = diag{μkIM}, and introduce the extended combina-

tion matrix A = A ⊗ IM where the symbol ⊗ denotes the

Kronecker product operation of two matrices. Then, starting

from (5a)-(5b) and using model (1), we can verify that the

global error vector evolves according to the relation:

w̃i = AT (I −MRi)w̃i−1 −ATMgi (6)

where Ri = diag{u∗
k,iuk,i} and gi = col{u∗

k,ivk,i}. Suppose

that the regressors {uk,i} are spatially and temporally inde-

pendent. This assumption implies that uk,i is independent of

w̃i−1. Taking expectation of both sides of (6), we find that the

mean relation of w̃i evolves in time according to the recursion:

Ew̃i = X · Ew̃i−1 (7)

where X = AT (I −MR) with R = ERi = diag{Ru,k}.

In the following, we give conditions to ensure mean sta-

bility, i.e., Ew̃i → 0 as i → ∞, even in the presence of

uninformed nodes.

Theorem 1 (Mean stability). For heterogeneous networks, the
ATC algorithm converges in the mean if the step-sizes {μk}
and the combination matrix A satisfy the following conditions:

1) For every informed node l, the step-size μl satisfies:

0 < μl · ρ(Ru,l) < 2 (8)

where ρ(·) denotes the spectral radius.
2) For every node k, there exists an informed node l and

a finite integer j such that[
Aj
]
l,k
> 0 (9)

That is, the (l, k)th entry of Aj is positive.

Result (9) states that as long as there exists a path from

informed nodes to every other node, the mean stability holds.

Usually, we are interested in connected networks where a

path always exists between any two arbitrary nodes. This in

turn implies that there exists a finite integer j such that all

entries in the matrix (AT )j are positive [12] so that condition

(9) is automatically satisfied. In this case, the ATC algorithm

converges in the mean if there exists at least one informed node

with its step-size satisfying condition (8). In the following,

we show that conditions (8)-(9) also guarantee mean-square

convergence when the step-size is sufficiently small.

B. Mean-Square Performance

The network mean-square-deviation (MSD) is used to assess

how well the network estimates the weight vector, w◦. The

MSD is defined as follows:

MSD � lim
i→∞

1

N

N∑
k=1

E‖w̃k,i‖2 (10)

Let Σ denote a nonnegative-definite Hermitian matrix that we

are free to choose and let σ = vec(Σ) denote the vector that

is obtained by stacking the columns of Σ on top of each other.

We shall interchangeably use the notation ‖x‖2σ and ‖x‖2Σ
to denote the same weighted norm of a vector x. Following

the energy conservation approach of [10], we can derive the

following weighted variance relation:

E‖w̃i‖2Σ =E
(
‖w̃i−1‖2(I−RiM)AΣAT (I−MRi)

)
+ Tr(ΣATMGMA)

(11)

where G = Egig
∗
i = diag{σ2

v,kRu,k}. Some algebra (see [2])

shows that under a sufficiently small step-size assumption,

expression (11) can be approximated and rewritten as:

E‖w̃i‖2σ = E‖w̃i−1‖2Fσ + [vec(YT )]Tσ (12)

where F ≈ X T ⊗ X ∗ and Y = ATMGMA. The following

result ensures that E‖w̃i‖2σ remains bounded and converges

as i goes to infinity.

Theorem 2 (Mean-square stability). For sufficiently small
step-sizes, the ATC algorithm is mean-square stable if the step-
sizes {μk} and the matrix A satisfy conditions (8)-(9).
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Now, let the time index i tend to infinity. From (12), we ob-

tain the steady-state relation E‖w̃∞‖2(I−F )σ = [vec(YT )]Tσ.

Since the eigenvalues of the matrix F are within the unit disc,

the matrix (I − F ) is invertible. Thus, the network MSD can

be obtained by choosing σ = (I − F )
−1

vec(INM )/N , which

gives

MSD =
1

N
[vec(YT )]T (I − F )

−1
vec(INM ) (13)

IV. NETWORK TOPOLOGY MODELS

In this section, we consider two popular models used in the

study of complex networks. In both models, we let nk denote

the degree (number of neighbors) of node k. Note that since

node k is a neighbor of itself, we have nk ≥ 1. In addition,

we assume the topology is symmetric. That is, if node l is a

neighbor of node k, then node k is also a neighbor of node l.

A. Erdos-Renyi Networks

The Erdos-Renyi model [13] is widely used to model

network behavior over complex networks. In the model, there

is a single parameter, called edge probability, and denoted

by p ∈ [0, 1]. The edge probability specifies the probability

that two distinct nodes are connected. In this way, the degree

distribution of any node k becomes a binomial distribution:

f(nk) =

(
N − 1
nk − 1

)
pnk−1(1− p)N−nk (14)

and the expected degree, n̄k, for node k is

n̄k = (N − 1)p+ 1 (15)

By adjusting the parameter p, we are able to control the

distribution of the degrees of the nodes.

B. Scale-Free Networks

The Erdos-Renyi model does not capture several prominent

features of real networks such as the small world phenomenon
and the power-law degree phenomenon [9]. The small world

phenomenon refers to the fact that the number of edges

between two arbitrary nodes is small on average. The power-

law degree effect refers to the fact that the number of nodes

with degree nk falls off as an inverse power of nk, namely,

f(nk) ∼ cn−γ
k (16)

with two positive constants c and γ. Networks with degree dis-

tributions of the form (16) are called scale-free networks [14]

and can be generated using preferential attachment models.

We briefly describe the model proposed by [15]. The model

starts with a small network with N0 nodes. We assume the

network is connected. At every iteration, we add a new node,

which will connect to m ≤ N0 distinct nodes besides itself.

The probability of connecting to node k is proportional to the

degree of node k. As time evolves, nodes with higher degree

are more likely to be connected to new nodes. Eventually,

there are a few nodes that connect to most of the network.

This phenomenon is observed in real networks. If N � N0,

the expected degree of the network, η̄, is

η̄ � 1

N

N∑
k=1

n̄k ≈ 2m+ 1 (17)

because every new arrival node contributes 2m+ 1 degree.

V. EFFECT OF TOPOLOGY AND NODE DISTRIBUTION

From (12), we note that the convergence behavior of the

network depends on the eigenstructure of the matrix F . This

matrix reflects two kinds of influences: the effect of the

network topology through its dependence on A, and the effect

of the spatial distribution of informed nodes through M. In

this section, we use the theoretical expressions to examine the

effect of the topology and node distribution on the convergence

rate and mean-square performance of the network.

A. Convergence Rate

The convergence rate relates to the transient behavior of

the algorithm and shows how fast the network converges to

steady-state. We define the convergence factor, f , as the rate

at which E‖w̃i‖2 decays during the transient phase, so that

the smaller the value of f is, the faster the rate of decay of

E‖w̃i‖2 is. As shown in [2], [10] and as indicated by (12),

the convergence factor is determined by the spectral radius of

the matrix F in (12), i.e.,

f = ρ(F ) = [ρ(X )]
2

(18)

Let us assume from now on that μk = μ for all informed

nodes and that Ru,k = Ru for all k. In addition, we assume

that the step-size is small enough such that μ · ρ(Ru) < 1.

Let NI denote the set of informed nodes. Then, we have the

following result.

Lemma 1 (Monotonicity). Consider two configurations of the
network: one with NI,1 informed nodes and another with NI,2

informed nodes. If NI,1 ⊆ NI,2, then f1 ≥ f2. In other words,
configurations with a larger proportion of informed nodes,
converge faster.

The following result provides bounds for the convergence

factor.

Lemma 2 (Bounds). The convergence factor is bounded by

[1− μ · λM (Ru)]
2 ≤ f < 1 (19)

where λM (Ru) denotes the smallest eigenvalue of Ru.

B. Network MSD

Using the equalities for arbitrary matrices {U,W,Σ}:

vec(UΣW ) = (WT ⊗ U)σ and Tr(ΣW ) = vec(WT )Tσ, we

can obtain an alternative expression for the network MSD from

(13):

MSD =
1

N

∞∑
j=0

Tr[X jY(X ∗)j ] (20)

We observe that the MSD depends on X in a nontrivial

manner. In an effort to gain insight into the behavior of the
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network, we further assume that the nodes use the uniform

combination rule in step (5b), i.e.,

al,k =

{
1/nk, if l ∈ Nk

0, otherwise
(21)

It can be verified that the matrix A defined by (21) is

diagonalizable and has real eigenvalues. Let rk and s∗k denote

an arbitrary right and left eigenvector pair for AT corre-

sponding to eigenvalue λk(A). Without loss of generality,

we order the eigenvalues of AT in decreasing order, i.e.,

|λ1(A)| ≥ |λ2(A)| ≥ · · · ≥ |λN (A)|. We also normalize rk
to satisfy ‖rk‖2 = 1. Then, the eigen-decomposition of A can

be written as:

AT =
N∑

k=1

λk(A)rks
∗
k (22)

Note that r∗ksl = δkl. For Erdos-Renyi networks, since, on

average, all nodes have the same degree value, then the cor-

responding matrix AT is approximately symmetric. As such,

its eigenvectors {rk, sk} are approximately orthonormal, i.e.,

r∗krl ≈ δkl and s∗ksl ≈ δkl. Even though this approximation

is not generally valid for scale-free networks, simulations

indicate that the approximation leads to good match between

theory and practice. Since Ru is assumed to be positive-

definite, we let zm (m = 1, . . . ,M ) be an eigenvector of

Ru associated with the eigenvalue λm(Ru). Then, the eigen-

decomposition of Ru is given by:

Ru =
M∑

m=1

λm(Ru)zmz
∗
m (23)

where the {zm} have unit magnitude, i.e., ‖zm‖2 = 1, and

{λm(Ru)} are positive. In the sequel, for any vector x, we

shall use the notation xk:l to denote a sub-vector of x formed

from the kth up to the lth entries of x. Let NI denote the

number of informed nodes in the network. Without loss of

generality, we assume that {1, 2, . . . , NI} ∈ NI .

Lemma 3 (Eigenstructure of X ). The matrix X = AT (I −
MR) has approximate right and left eigenvector pairs
{rxk,m, sxk,m} of the form:

rxk,m ≈ rk ⊗ zm (24)

sxk,m ≈ λk(A)

λ∗k,m(X )

[
[1− μλm(Ru)] sk,1:NI ⊗ zm

sk,NI+1:N ⊗ zm

]
(25)

where λk,m(X ) denotes the eigenvalue of the eigenvector pair
{rxk,m, sxk,m} and has the approximate value

λk,m(X ) ≈ [1− s∗k,1:NI
rk,1:NIμλm(Ru)]λk(A) (26)

Therefore, the eigen-decomposition of the matrix X j in (20)

has the approximate form:

X j ≈
N∑

k=1

M∑
m=1

λjk,m(X )rxk,ms
x∗
k,m (27)

In this way, the network MSD (24) simplifies to:

MSD ≈
N∑

k=1

M∑
m=1

sx∗k,mYsxk,m
N [1− |λk,m(X )|2] (28)

where we used (24) to get rx∗l,nr
x
k,m ≈ δkl · δmn. Next, we

focus on the term sx∗k,mYsxk,m in (28). We rewrite the matrix

Y from (12) as:

Y = ZΩ−1Z∗ (29)

where Z = ATMR = AT − X and Ω = diag{σ−2
v,kRu}.

Then, some algebra shows that

sx∗k,mYsxk,m ≈ μ2λm(Ru)λ
2
k(A)

NI∑
l=1

σ2
v,l|sk,l|2 (30)

Substituting (26) and (30) into (28), the MSD expression

becomes

MSD ≈
N∑

k=1

M∑
m=1

μ2λm(Ru)λ
2
k(A)

∑NI

l=1 σ
2
v,l|sk,l|2

N [1− λ2k(A)|1− s∗k,1:NI
rk,1:NIμλm(Ru)|2]

(31)

Expression (31) only depends on the eigenvalues of A and

Ru and on the eigenvectors of A. In the following, we use

properties of the eigenvalues of A to provide insights into the

behavior of the network MSD.

In Fig. 1, we show the averaged distribution of |λk(A)|
for the Erdos-Renyi and scale-free models and observe that

there is an eigenvalue (i.e., λ1(A)) greater than the remaining

eigenvalues, especially for highly connected networks (i.e.,

high values of p or m). We then decompose the MSD in (31)

into two parts. The first part is determined by λ1(A), i.e.,

k = 1 in (31), and is denoted by MSDk=1. The second part is

contributed by the remaining eigenvalues of A, i.e., k > 1 in

(31), and is denoted by MSDk>1. Since λ1(A) = 1, the term

MSDk=1 becomes

MSDk=1 ≈ Mμ

2N
·
∑NI

l=1 σ
2
v,l|sk,l|2

Re(s∗1,1:NI
r1,1:NI )

(32)

where the notation Re(·) denotes the real part of its argument.

From condition (4), we know that the vector 1 is a right

eigenvector of AT corresponding to the eigenvalue λ1(A) = 1.

To satisfy the normalization condition that ‖rk‖ = 1, the

vector r1 is taken as r1 = 1/
√
N . In addition, for the uniform

combination weights (21), it can be verified that s1 has the

following form:

s1 =

√
N∑N

l=1 nl
col{n1, . . . , nN} (33)

Therefore, expression (32) becomes

MSDk=1 ≈ Mμ

2N
·
∑NI

l=1 σ
2
v,ln

2
l

η
∑NI

l=1 nl
(34)

Expression (34) reveals several interesting properties. First,

we observe that the term MSDk=1 does not depend on the

matrix Ru, which is a property for the MSD expression of
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Fig. 1. Eigenvalue distribution {|λk(A)|} for the combination matrix A
defined by (21).

stand-alone adaptive filters [10]. Second, expression (34) is

inversely proportional to the average degree of the network.

That is, when the network is more connected, the network

will have lower MSDk=1. Third, expression (34) depends on

the distribution of informed nodes through its dependence on

the degree of the informed nodes. If the number of informed

nodes increases by one, the value of MSDk=1 may increase

or decrease. More precisely, from (34) we see that MSDk=1

will increase if the degree of the added node satisfies:

σ2
v,NI+1nNI+1 >

∑NI

l=1 σ
2
v,kn

2
l∑NI

l=1 nl
(35)

Finally, we note that since we have expressions for r1 and s1,

we can obtain from (26) an expression for ρ(X ):

ρ(X ) = λ1,M (X )

≈ 1− μλM (Ru)

(∑
l∈NI

nl∑N
l=1 nl

)
(36)

Expression (36) can be motivated by noting that the decay of

ρ(X ) will be larger if the informed nodes have higher degrees.
For the second part, MSDk>1, since {λ2k(A)} for 2 ≤ k ≤

N are generally much smaller than λ1(A) = 1, for sufficiently

small step-sizes, the denominator in (31) can be approximated

to 1− λ2k(A). Then, MSDk>1 becomes

MSDk>1 ≈ μ2Tr(Ru)

N

N∑
k=2

[
λ2k(A)

1− λ2k(A)

NI∑
l=1

σ2
v,l|sk,l|2

]
(37)

Expression (37) requires the eigenvectors of the matrix AT . To

simplify the expression, we introduce the following assump-

tion:

|sk,l|2 ≈ nl∑N
j=1 nj

(38)

That is, we assume that the magnitude of sk,l is proportional

to its degree nl and that the eigenvectors {sk} for 2 ≤ k ≤ N
have unit magnitude. Then, expression (37) simplifies to:

MSDk>1 ≈ μ2Tr(Ru)

N

∑NI

l=1 σ
2
v,lnl

η

1

N

N∑
k=2

λ2k(A)

1− λ2k(A)
(39)

Furthermore, from Fig. 1, we observe that the magnitude of

the remaining eigenvalues of matrix A decreases almost in a

linear manner. This suggests the following approximation:

|λk(A)| ≈ N − k

N − 2
|λ2(A)| (40)

Using an integral approximation, the summation in (39) can

be written as:

1

N

N∑
k=2

λ2k(A)

1− λ2k(A)
≈
∫ 1

0

λ22(A) · (1− x)2

1− λ22(A) · (1− x)2
dx

= h(|λ2(A)|)
(41)

where h(α) is defined as

h(α) �
[
1

2α
log

(
1 + α

1− α

)
− 1

]
(42)

Substituting expression (41) into (39), we find that the MSD

contributed by the remaining terms (k > 1) has the form:

MSDk>1 ≈ μ2Tr(Ru)

N

∑NI

l=1 σ
2
v,lnl

η
h (|λ2(A)|) (43)

Note that, in contrast to (34), expression (43) always increases

when the number of informed nodes increases. In addition,

|λ2(A)| can be approximated to [16]:

λ2(A) ≈ 2√
η

(44)

Since the function h(α) can be shown to be strictly increasing

and convex in α when α ∈ (0, 1), when η (or, p or m)

increases, MSDk>1 in (43) decreases. That is, similar to

MSDk=1 in (34), the value of MSDk>1 is lower if the network

is more connected.

Combining expressions (34) and (43), we obtain an expres-

sion for the MSD:

MSD ≈Mμ

2Nη
·
∑

l∈NI
σ2
v,ln

2
l∑

l∈NI
nl

+
μ2Tr(Ru)h(2/

√
η)

Nη

∑
l∈NI

σ2
v,lnl

(45)

We observe that the MSD in (45) depends on the network

topology only through the average degree of the network η.

Additionally, the MSD in (45) depends on the distribution of

informed nodes through their degrees, nl, and noise variances,

σ2
v,l. That is, the effect of different types of network models

only depends on the degree distribution of the nodes.

VI. SIMULATION RESULTS

We consider networks with 200 nodes. The weight vector

is set to w◦ = [8; 5] (M = 2). All nodes have the same

covariance matrices (Ru,k = I2) and noise variances (σ2
v,k =

0.01). Also, μk = 0.05 for informed nodes. Without loss of

generality, we assume that the nodes are indexed in decreasing

order of degree, i.e., n1 ≥ n2 ≥ · · · ≥ nN .
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Fig. 2. Transient network MSD in Erdos-Renyi and scale-free models. The
dash lines represent theoretical results (18) and (20).

We first verify the theoretical results in (18) and (20). Figure

2 shows the MSD over time for two network models with

parameters p = 0.02, m = 2, and N0 = 10. In each network

model, we consider two cases: all and 50 (randomly selected)

informed nodes. We observe that when there are 50 informed

nodes, the convergence factor increases, as expected, but

interestingly, the MSD decreases. For the theoretical results,

the MSD decays at rate f in (18) during the transient stage.

When the value of the MSD is lower than the steady-state

MSD value from (20), the MSD stays constant and equals

(20). We observe that the results match well with simulations.

In Fig. 3, We show the effect of the number and distribution

of informed nodes on the convergence factor and the MSD of

the network. We increase the number of informed nodes, NI ,

from the node with the highest degree, i.e., from node 1 to

node N . For each model, we consider two possible values of

parameters: p = 0.02 and 0.075 in the Erdos-Renyi model

and m = 2 and 8 in the scale-free model. As expected, the

convergence factors is smaller for larger NI and expression

(36) matches well with the simulation results. Interesting

patterns are seen in the MSD behavior. From (35), MSDk=1

in (34) decreases in NI in this case, whereas MSDk>1 in (43)

always increase in NI . Therefore, the change of the MSD

depends on the values of these two terms. We observe from

Fig. 3 that in Erdos-Reyni model, the MSD in (45) increases in

NI . However, in scale-free model, especially for large value of

m, we observe that the MSD for scale-free network decreases

first and then increases after a certain value of NI . We also

see that the MSD in (45) matches well with expression (20).
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