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Abstract-This work investigates the influence of diffusion 
adaptation on the behavior of networks of micro-organisms that 
are subject to Brownian fluctuations in the motion of their con­
stituent agents. The organisms are assumed to share information, 
usually through chemical signaling. The information may signal 
the direction of a target (such as a foreign body) towards which 
the cells need to migrate. The sharing of information enables 
the nodes to bias the probabilities of their random walks in 
favor of the desired direction of motion. It is verified that the 
adaptive diffusion of direction information enhances the foraging 
and tracking ability of the cells. 

Index Terms-Adaptive networks, diffusion adaptation, Brow­
nian motion, diffusing particles. 

I. INTRODUCTION 

Small particles and micro-organisms in aqueous environ­
ments are subject to random Brownian fluctuations [1]. In 
the absence of external stimuli or forces, the drift velocity 
is zero and the particles wander around randomly within the 
environment. This work describes a mechanism by which the 
particles interact with their neighbors and share information 
through signaling. The information is used by the particles to 
bias the transition probabilities of the random walks. The net 
result is a network of diffusing particles that move towards 
a target location more efficiently. A representative example 
could be a situation corresponding to cells tracking a foreign 
intruder within a body. Other examples of cooperation and 
self-organization behavior are abundant in nature and occur in 
several other biological systems [2]- [4]. 

A. Random Walks 

We start by reviewing some basic facts. Consider a mi­
croscopic particle moving along the horizontal x-direction. 
The particle takes one step every �t seconds and moves a 
distance �x either to the right with probability Px, or to the 
left with probability 1 - Px; see Fig. 1. The average one-step 
displacement by the particle along the horizontal direction is 
denoted by E r and is given by: 

Er (2px - 1) . �x (1) 
The corresponding mean-square displacement is 

Er2 - (Er)2 
4�X2 . Px . (1 - Px) (2) 
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Fig. I. A particle moves a distance 6.x to the right with probability 
px or to the left with probability 1 - px· 

At time t = L�t, after a sequence of L independent ran­
dom steps {rl' r2, ... ,r L } along the x-direction, the particle 
location is the aggregate sum of the displacements up to that 
point in time and is denoted by: 

x = rl + r2 + r3 + ... + r L (3) 

The average displacement and mean-square displacement after 
L steps are then given by: 

L· Er � Vx' t 
L . (1; � 2Dx' t 

(4) 

(5) 

where the quantities Vx and Dx introduced in (4) and (5) 
denote the drift velocity and the diffusion coefficient of the 
particle [1]: 

�x 
�t 

. (2px - 1) (6) 

�X2 2· �t 
. Px . (1 - Px) (7) 

Observe that the drift velocity Vx is nonzero whenever Px i-
1/2. In this case, the particle gives preference to one direction 
over the other. Nonzero drift velocities arise due to the pres­
ence of external stimuli such as gravity forces or centrifugal 
forces. In the next section, we describe a mechanism by which 
the transition probability Px is biased away from the central 
value of 1/2 in order to help move a network of diffusing 
particles towards a desired target location more efficiently. 

In this work, we consider particles that diffuse in the plane, 
along both the x and y directions, with steps of size �x and 
�y, respectively. We assume that displacements along the x 
and y directions are independent of each other and occur with 
probabilities Px (to the right) and Py (upwards). We denote 
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the mean-square displacement of the particle in the plane by 
cr� and it is given by: 

cr� = cr; + cr� = 2(Dx + Dy) . t (8) 

where Dy is defined similarly to Dx in (7). Equation 
(8) reveals the well-known result that the mean-square 
displacement of a diffusing particle increases linearly with 
time [1]. In the context of locating a target and moving 
towards it, we would like the diffusive behavior of the 
particles in the plane to be such that the mean-square 
displacement of each particle, relative to the center of gravity 
of the network, is a decreasing function of time. 

II. NETWORK OF DIFFUSING PARTICLES 

Consider a collection of N particles diffusing within the 
rectangular domain [0, X] x [0, Y], where (0,0) denotes the 
origin of space. We assume initially that Px = 0.5 and Py = 

0.5 so that each particle is equally likely to move right and left, 
or up and down. A target, whose location is unknown to the 
particles, is assumed to be present at the coordinates (xo, Yo). 
We represent the target location by the column vector: 

Let further 

° � w = [ �: ] , 
C . � [ Xk(i) ] k,. Yk(i) ' 

(2 x 1) (9) 

(2 x 1) (10) 

denote the location of particle k at time instant t = if:j.t 
(i.e., we use a discrete representation of the time scale). It 
is assumed that at every time instant i, each particle k has 
access to two pieces of information related to wO- see Fig. 2: 

(a) A rough estimate of the distance to the target, corrupted 
by additive noise, say, 

I dk(i) = dk(i) + vk(i) I (11) 

where dk(i) denotes the actual distance between particle 
k and the target and is given by 

dk(i) Ilwo-Ck,ill (12) 

J(xo -xk(i))2 + (Yo -Yk(i))2 
where the notation II . II denotes the Euclidean norm of 
its vector argument. Moreover, the noise term vk(i) is 
assumed to be zero mean and independent of all other 
random signals. It is further assumed that the variance 
of vk(i) depends on the distance to the target: the 
closer the particle k is to the target, the less noisy the 
measurement dk (i) is expected to be. Thus, we assume 
that the variance of vk(i) has the form 

cr;,k = 13; ·ldk(i)12 (13) 

for some constant f3v. 
Notation. Observe that we use boldface letters to refer 
to random quantities, such as vk(i) and dk(i); we 
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distance to target , , 

dk(i) / , , , 

target 
• (xo,Yo) 

, 

? direction to target 
--- uk,i 

particle k - - - - - - - - - - - - - - - - - - - - -
(xk(i), Yk(i)) 

Fig. 2. The actual distance from particle k to the target is denoted 
by d%(i), and the actual unit-norm direction vector from the same 
particle to the target is denoted by u% i' Particle k is assumed to have 
access to noisy versions of {d%(i),u%,;}. 

likewise use normal font letters to refer to realizations 
of these random quantities, such as writing dk (i) to 
refer to an observation of dk (i). We also use subscripts 
to refer to time dependencies of vector quantities, such 
as Ck,i, and parentheses to refer to time dependencies 
of scalar quantities, such as v k (i). 

(b) A rough estimate of the direction vector towards the 
target, say, 

I Uk,i = uk,i + nk,i I (14) 

where uk,i is a 1 x 2 (row) unit-vector pointing from the 
particle's current location towards wO: 

Uk,i 
(WO -Ck,i)T 
IIwo -Ck,ill 

[xo -xk(i) Yo -Yk(i)] 

(15) 

The noise term nk,i is assumed to have zero mean and to 
be independent of all other random signals. We further 
assume that the covariance matrix of nk,i is of the form 
cr;',kI, where cr;',k depends on the distance to the target 
as was the case with cr;,k' say as, 

cr;',k = f3�' Idk (iW (16) 

for some constant f3u. 

Observe from (12) and (15) that dk(i) is also given by the 
inner product: 

(17) 

so that the available noisy measurements {dk(i), Uk,i} are 
related to the unknown WO via a relation of the form: 

(18) 



where the modified noise term v",(i) is related to vk(i) and transition probabilities {Pk,x,Pk,y} as follows: 
nk,i via 

(19) 

We now describe three modes of operation for the network 
of particles to diffuse towards the target location. In the first 
mode, the particles do not interact with each other. Each 
particle estimates the location of the target on its own and uses 
this information to bias the value of its probability parameters 
{Px, Py} towards the target, as explained below. In the two 
other modes of operation, the particles cooperate with their 
immediate neighbors to improve the foraging and tracking 
efficiency through a process known as diffusion adaptation 
[5], [6]. Adaptive diffusion strategies were used before in [8], 
[11]-[13] to model and study forms of organized behavior 
arising in bird flight formations, fish schooling, and bacteria 
motility. 

A. No Cooperation Among Particles 

In the first mode of operation, each particle acts individually 
and independent of the other particles in the medium. Each 
particle uses its noisy data {dk (i), Uk,i} and performs a 
standard adaptation step to estimate the location of the target 
by means of an LMS-type update as follows [7], [8]: 

dk(i) -Uk,i(Wk,i-1 -£k,i) 
Wk,i-I + J-tUk,iek(i) 

(20) 
(21) 

starting from the initial condition Wk,-I = 0 and where J-t is a 
small positive step-size. The vector Wk,i denotes the estimate 
of WO by particle k at time i. The particle uses its current 
estimate Wk i-I to assess the quality of the measurement dk(i) 
by computi�g the error signal ek(i) in (20). The error is 
subsequently used in (21) to update Wk,i-I to Wk,i and the 
process continues. Note that the updating of the successive 
weight estimates Wk,i over time is based solely on data 
collected by particle k. The star symbol appearing on uk,i 
signifies complex transposition (the vector is transposed and 
its entries are complex conjugated). 

By comparing the updated target location, Wk,i, to its current 
location, £k,i, the particle can estimate the direction towards 
which it should bias its probabilities of displacement {Px, Py } 
in order to get closer to the target. One way to achieve this 
step is as follows. We denote the individual entries of Wk,i by 

W . � [ Xk,o(i) ] k,t - Yk,o(i) (22) 

The entries of Wk,i denote the estimates by particle k at time i 
of the target coordinates Xo and Yo' Recall from (10) that the 
entries of £k,i refer to the x and Y coordinates of particle k at 
the same time i. Comparing xk,o(i) to xk(i), particle k can 
assess whether the target lies to its right or to its left; likewise, 
comparing Yk,o(i) to Yk(i), particle k can assess whether the 
target lies above it or below it. The particle then adjusts its 

xk,o(i) -xk(i) > 0: set pk,x > 0.5 (e.g., 0.7) 
xk,o(i) -xk(i) < 0: set pk,x < 0.5 (e.g., 0.3) 
xk,o(i) -xk(i) = 0: set pk,x = 0.5 

Yk,o (i) -Yk (i) > 0: set Pk,y > 0.5 (e.g., 0.7) 
Yk,o(i) -Yk(i) < 0: set pk,y < 0.5 (e.g., 0.3) 
Yk,o(i) -Yk(i) = 0: set pk,y = 0.5 

(23) 

The probabilities {Pk,x,Pk,y} change with time i, but we are 
dropping the time index to simplify the notation rather than 
write {Pk,x (i), Pk,y (in. Subsequently, the particle adjusts its 
location coordinates to: 

if IXk,o(i) -xk(i)1 > �x 
set xk(i + 1) = xk(i) + ak,x�x (24) 
otherwise xk(i + 1) = xk,o(i) 

if IYk,o(i) -Yk(i)1 > �Y 
set Yk(i + 1) = Yk(i) + ak,y�Y (25) 
otherwise Yk(i + 1) = Yk,o(i) 

where ak,x is a realization of a Bernoulli variable that assumes 
the value -1 with probability 1 -Pk,x and the value + 1 
with probability Pk,x (similarly, for the Bernoulli variable 
ak,y whose probability distribution is determined by Pk,y)' 
The variables {ak,x,ak,y} are also dependent on time but we 
are not indicating the time dependence for ease of notation. 
The conditions in (24)-(25) ensure that the particle location 
is updated whenever the particle is sufficiently away from the 
target; otherwise, the particle simply moves to its estimate of 
the target location, Wk,i' 

B. Combine-Then-Adapt (CTA) Strategy 

The second mode of operation we consider is one where 
the particles are allowed to interact with their immediate 
neighbors through a so-called combine-then-adapt (CTA) dif­
fusion strategy [5], [6]. The set of neighbors of particle k 
(including k itself) is denoted by Nk and is defined as the 
set of particles that are within a distance r from the particle. 
Observe that since we are dealing with particles that are in 
motion, the neighborhood of every particle is likely to change 
with time and, therefore, writing Nk,i with a time subscript 
is a more accurate notation. Let INk,i I denote the size of the 
neighborhood of particle k. In order to avoid unnecessarily 
large neighborhoods, we limit the number of neighbors in each 
set to some upper limit Ncta• 

In the CTA strategy, each particle k shares information with 
its neighbors in order to improve its estimation accuracy of 
woo Each particle first averages the estimates Wm,i-I from its 
neighbors m E Nk,i, and then uses this average estimate and 
its local data {dk (i), Uk,i} to improve its own estimate of WO 
via an adaptation step. Specifically, particle k performs the 
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following steps (compare with the no-cooperation case (20)­

(21)): 

'l/Jk,i-l 
1 

INk il L Wm,i-l 
, mEN'k,i 

dk(i) -Uk,i('l/Jk,i-l -fk,i) 
'l/Jk,i-l + p,u'k,iek(i) 

(26) 

(27) 

(28) 

Step (26) performs simple averaging; it can be replaced by 
a more general convex combination step where the estimates 
from different particles are weighted differently [5], [6]. For 
illustration purposes, it is sufficient for the discussion in this 
article to proceed with (26). The vector Wk,i in (28) continues 
to denote the estimate for WO by particle k at time i. This 
estimate is now based on data collected by particle k and on 
data received from the neighbors of node k through the sharing 
of {wm,i-d. Using the updated estimate Wk,i, the particle 
can now assess its location fk,i and determine the direction 
towards which it should bias its probabilities of displacement 
as in (23). The particle subsequently updates its location as in 
(24)-(25). 

When cooperation is permitted, as in the eTA strategy, 
the particles can further use their interaction to improve the 
cohesion of their motion (see, e.g., [6], [8]-[10]). This can be 
accomplished by adding a scaled driving term to expressions 
(24)-(25) as follows. Let 

where E is a small positive number related to the distance 
that we would like the nodes to maintain from each other 
on average. Then, particle k adjusts its location by replacing 
(24)-(25) by the following updates: 

xk(i + 1) 
Yk(i + 1) 

xk(i) + ak,x�x + "Y' ox(i) 
Yk(i) + ak,y�y + "Y' Oy(i) 

(30) 

(31) 

where "Y is a nonnegative scalar; the larger the value of "Y, the 
closer the particles stay to each other. And the {ak,x, ak,y} 
are realizations of Bernoulli variables whose distributions are 
determined by the probabilities {Pk,x,Pk,y}. 

C. Adapt-Then-Combine (ATC) Strategy 

The third mode of operation we consider is one where 
the particles are still allowed to interact with their neighbors 
except that now the adaptation step precedes the combination 
(averaging) step [5]. Specifically, in the ATe implementation, 
each node k first processes its local data to update its weight 
estimate Wk,i-l and subsequently averages the updated esti-

mates from its neighbors: 

ek(i) dk(i) -Uk,i(Wk,i-l -fk,i) 
'l/Jk,i Wk,i-l + P,Uk,iek(i) 

1 Wk,i 
INk il L 'l/Jm,i 

, mEN'k,i 

(32) 

(33) 

(34) 

Again, step (34) performs simple averaging; it can be replaced 
by a more general convex combination step [5], [6]. The 
vector Wk,i in (34) continues to denote the estimate for WO 
by particle k at time i. Using Wk,i, the particle can assess 
its location fk,i and determine the direction towards which it 
should bias its probabilities of displacement as in (23). The 
particle subsequently updates its location as in (24)-(25) or 
(30)-(31). 

III. SIMULATIONS RESULTS 

The table below lists the numerical values of the parameters 
used in the simulations. The target is located at coordinates 
(xo, Yo) = (90,90) and N = 50 particles are placed randomly 
inside the rectangular region [0,10] x [0, 10] . Subsequently, the 
positions of the particles start to evolve according to one of the 
strategies described in the prior sections: no-cooperation, eTA 
cooperation, and ATe cooperation. We limited the number of 
neighbors to 5 for eTA ad ATe. 

N P, 

50 0.1 

TABLE I 
SIMULATION PARAMETERS. 

/3v = /3u �x=�y 1 

0.01 1 0.25 

E r 

1 4V�X2+�y2 

Regardless of the strategy employed, the coordinates of 
the center of gravity of the network at any particular time 
instant are defined by averaging the x and Y coordinates of 
the particles, namely, 

N 

cgx(i) � � L Xk(i), 
k=l 

N 

cgy(i) � � LYk(i) 
k=l 

(35) 

Figure 3 shows a snapshot of the evolving network. Over 
repeated simulations, experiments indicate that the center 
of gravity of the network for the ATe strategy generally 
stays ahead of the centers of gravity for the eTA and no­
cooperation strategies. At higher noise levels, (say, at higher 
values for (3v and (3u), the center of gravity of eTA generally 
outruns the center of gravity for the no-cooperation strategy. 
Moreover, since cooperation enables cohesion, the particles 
end up moving more cohesively in ATe and eTA than in the 
no-cooperation case. 

Figure 4 plots the evolution of the mean-square-error curve 
that measures the squared distance from the center of gravity 
of the network to the target location (xo, Yo): 

MSE(i) = (xo -cgx(i))2 + (Yo -cgy(i))2 (36) 
The curves shown in the figure correspond to a single simu­
lation (one could consider averaging the results over multiple 
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a a 
a 50 100 a 50 100 

x location x location 

Fig. 3. A typical snapshot over one experiment of the evolving 
network under three operation modes: no cooperation (top left), eTA 
(top right), and ATe (bottom right). The red symbols within each of 
these three subplots indicate the locations of the centers of gravity 
of the respective networks; these locations are extracted and shown 
separately in the bottom-left plot with the 0 symbol corresponding 
to ATe, the 0 symbol corresponding to eTA, and the x symbol 
corresponding to no cooperation. In all cases, the target location is 
at coordinates (90,90). 

experiments). It is seen that cooperation improves the estima­
tion accuracy with the center of gravity moving closer to the 
target. It is also seen that the ATe strategy delivers superior 
performance than the eTA strategy; this is because ATe allows 
the particles to process and filter the data prior to combination. 
Figure 5 shows three typical trajectories for one of the particles 
under the three strategies. 

20 

a 

ro 
:s. -20 
w <f) ::; 

-40 

-60 

-80 

Squared error over time from center of gravity of network to target 

50 100 150 
time i 

200 

, ., eTA 
, ; ,Jt' 

, , 
, , 

, , 
�� ATe . , , , 

, . 
, 

, 
. . 

, , 
, . 

, 

, 

250 300 

Fig. 4. A typical evolution of the squared error over time from the 
center of gravity of the network to the location of the target over 
one experiment. It is observed that as time progresses, the center 
of gravity of the network gets closer to the target under the ATe 
strategy. 
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Fig. 5. Typical trajectories by one of the particles over one experiment 
from its initial location until the end of the simulation for the three 
modes of operation under consideration. 

Figure 6 illustrates the evolution of the variance of the 
particle locations relative to the center of gravity, along the 
horizontal and vertical directions. The plots provide an indi­
cation about how the particles are scattered around the centers 
of gravity. It is seen that ATe and eTA lead to more cohesive 
networks. 

Variance of particle locations along x-direction around center of gravity 
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Fig. 6. Typical evolution over one experiment of the variance of 
the distribution of the particles around the center of gravity for both 
directions: horizontal and vertical. It is observed that the particles are 
better clustered under the ATe strategy. 

Figure 7 plots the evolution of the network mean-square­
deviation (MSD), which is computed as follows (again, the 
figure shows curves that resulted from a single simulation): 

MSD(i) (37) 



Network MSD over time 
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Fig. 7. Evolution of the network MSD over time. 

A. Mean-Square Analysis 

Introduce the error vectors 
- � ° i ik,i = W - k,i (38) 

The first error measures how accurate the estimate of WO 

is by node k at time i, while the second error measures 
how far the location of node k at time i is from the target 
location. Following arguments similar to those presented in 
[5], [6], one can study the mean-square behavior of the ATC 
and CTA diffusion algorithms. Under reasonable assumptions 
on the data and for sufficiently small step-sizes, one can 
derive recursions that describe the evolution of these error 
quantities over time, as well obtain approximate expressions 
for the steady-state value of the mean-squared error measure, 
Ellwk,iIl 2 . To do so, one should extend the argument of 
[6] to incorporate the presence of the Bernoulli variables 
{Ctk,x, Ctk,y}. Due to space limitations, we forgo the details 
here. 
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