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ABSTRACT 

Adaptive diffusion models endow networks with distributed 
learning and cognitive abilities. These models have been ap­
plied recently to emulate various forms of complex and self­
organized patterns of behavior encountered in biological net­
works. In diffusion adaptation, nodes share information with 
their neighbors in real-time, and the network evolves towards 
a common objective through decentralized coordination and 
in-network processing. Current models are based on discrete­
time adaptive diffusion strategies. However, physical phe­
nomena usually are governed by continuous-time dynamics. 
In this paper, we derive continuous-time diffusion adaptive al­
gorithms, which can help provide more accurate models for 
exchanges of information, and also for systems with large 
variations in their time constants. 

1. INTRODUCTION 

Distributed learning and cognition algorithms have been ap­
plied recently to model various forms of complex and self­
organized behavior encountered in biological networks, such 
as bird flight formations [1] and fish schooling [2]. Adap­
tive diffusion models assume that each node in the network 
is able to exchange information with its neighbors, and that 
through local cooperation and processing, the network is able 
to evolve towards a common objective. 

Current models are based on discrete-time adaptive dif­
fusion strategies [3, 4]. Nevertheless, most physical phenom­
ena exhibit continuous-time (CT) dynamics. In this paper, we 
motivate and derive continuous-time adaptive diffusion strate­
gies; such schemes would help provide more accurate models 
for complex systems with large variations in their time con­
stants. In addition, CT models provide a useful framework 
for studying networks in which the exchange of information 
between nodes is non-synchronous (i.e., for networks whose 
nodes may exchange information at any instant). Continuous­
time adaptive schemes have been studied before in the con­
text of control systems [5] and numerical methods [6]. These 
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schemes, however, were limited to single and stand-alone fil­
ters. In this paper, we develop continuous-time schemes for 
adaptation over networks. We derive a stochastic gradient dif­
fusion method and prove its convergence, under certain con­
ditions on the system inputs. 

This paper is organized as follows. In the next section, we 
briefly review the discrete-time diffusion LMS strategy. In 
Sec. 3, we describe the stand-alone continuous-time LMS al­
gorithm and its relation to discrete-time LMS. Section 4 uses 
the results of the previous two sections to motivate and derive 
a continuous-time version of the diffusion LMS algorithm. 
The stability properties of the CT-diffusion LMS algorithm 
are studied in Sec. 5. Section 6 provides simulations to illus­
trate the performance of the proposed algorithm, and Sec. 7 
concludes the work. In the following, we use brackets (as in 
w[n]) to denote discrete-time variables, and parentheses (as 
in w(t)) to denote continuous-time variables. 

2. DISCRETE-TIME DIFFUSION ALGORITHMS 

Consider a connected network with N nodes, each of which 
measures at every time instant a scalar dk[n] and a (column) 
regressoruk[n] E �M. We assume the data are related through 
the linear model: 

(1) 

where Wo is a common unknown parameter vector that the 
network wishes to estimate, and vk[n] is zero-mean tempo­
rally and spatially-white noise. The notation ( .) T represents 
vector or matrix transposition. Diffusion algorithms [3, 4] 
are distributed methods for the estimation of woo There are 
several variants of diffusion LMS. Here, we restrict our dis­
cussions to the so-called combine-then-adapt (CTA) diffusion 
LMS strategy without measurement exchange [4]. In this im­
plementation, each node k first receives the current estimates 
w£[n] from its neighbors, and computes a combined interme­
diate estimate 'I/J k [n] through the convex combination: 

N 

'l/Jk[n] = L alkwe[n], (2) 
£=1 
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where the aRk are nonnegative weights associated with each 
link; these weights add up to one: 

N 
L a£k = 1 
£=1 

(3) 

for all k. Moreover, only the weights that correspond to nearby 
nodes that are connected to node k are nonzero. For each 
node k, we define its neighborhoodNk as the set of nodes for 
which aRk is nonzero (this set can include node k itself). 

After the combination step (2), each node then uses its 
current measurements to improve the intermediate estimate 
tPk[n] through an adaptation step, and subsequently shares 
the improved estimate with its neighbors. The adaptation step 
is an LMS-like update: 

ek[n] = dk[n] - uf[n]tPk[n], 
wk[n + 1] = tPk[n] + JLkUk [n]ek [n], 

where JLk is a step-size parameter. 

(4) 

In order to derive a continuous-time version of (2)-(4), 
we first review the relation between the classical CT and DT 
stand-alone LMS algorithms. 

3. CONTINUOUS-TIME LMS ADAPTATION 

The continuous-time LMS filter follows the differential equa-
tion 

w(t) = /,e(t)u(t), (5) 

where u(t) is the continuous-time regressor, e(t) = d(t) -
uT(t)w(t) is the error, d(t) is the desired signal, and /' is a 
scalar positive constant (a positive-definite matrix could also 
be used) [5]. As in the discrete-time case, we consider a 
model of the form 

d(t) = uT (t)wo + v(t) 

for the desired signal. An important feature of this filter is that 
in the absence of noise, its single equilibrium point is globally 
exponentially stable for all/, > 0, if the input satisfies a per­

sistence of excitation (PE) condition, i.e., if for all t it holds 
that 

(6) 

for some constants 0 < T, a1, a2 < 00 [5]. 
The discrete-time LMS algorithm can be obtained from 

(5) via discretization by using the Euler approximation: 

. ( ) w«n + 1)�T) - w(n�T) w t ::::J �T ' 

and substituting into (5), we obtain 

w«n + 1)�T) ::::J w(n�T) + /,�Te(n�T)u(n�T). 
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Denoting the discrete-time sequence that results from the above 
recursion by w[n] (note that w[n] approximates, but is not 
equal to w(n�T» and letting JL = /,�T, urn] = u(n�T), 
d[n] = d(n�T), we obtain the conventional LMS recursion: 

ern] = d[n] - uT [n]w [n], 
w[n + 1] = w[n] + JLe[n]u[n]. 

(7) 

Next, we use this relation in the reverse direction to derive a 
continuous-time diffusion LMS strategy from (2) and (4). 

4. CONTINUOUS-TIME DIFFUSION ADAPTATION 

It is convenient to rewrite (2)-(4) as a single recursion con­
sidering all nodes. Define w[n] by stacking the wk[n] one on 
top of the other, i.e., w[n] = Col{w1[n] ' ... wN[n]}, ak = 

[ a1k ... aNkf , and A = [a1 aN]. Then we can 
write (2) as 

N 
tPk[n] = L a£kwdn] = (ar Q9 1M) w[n], (8) 

£=1 

where A Q9 B is the Kronecker product of A and B [7] and 
1M is the M x M identity matrix. Substituting (8) into (4), 
we obtain 

wk[n + 1] = (ar Q9 1M) w[n] + JLkuk[n]ek[n]. 

Defining now d[n] = [ddn] ... dN[n] f (similarly for ern]) 
and [u1[n] OM .. . 

OM u2[n] .. . 
U[n] = . . . . . . . . . 

OM OM ... 

where OM is an M x 1 vector of zeros, and M = diag{JLk} 
we can write 

ern] = d[n] - UT[n] (AT Q9 1M) w[n], 

w[n + 1] = (AT Q9 1M)w[n] + U[n]Me[n]. (9) 

Adding and subtracting w[n] from the right-hand side, we 
obtain a recursion in the form of (7): 

w[n+l] = w[n]- (IMN - AT Q9 1M) w[n]+U[n]Me[n]. 

Comparing this equation to (7), we infer that the continuous­
time equivalent to the diffusion LMS algorithm should be 

w = -/'O (IMN - AT Q9 1M) w(t) + U(t)re(t), (lOa) 

e(t) = d(t) - UT(t) (AT Q9 1M) w(t), (lOb) 



[U1(t) 
OM 

U(t) = . 

OM 

(lOc) 

with initial condition w(O) = Winit and positive constants 
{'Yo, ... , 'YN}. Rewriting (10) in tenns of the individual nodes, 
we obtain 

N 
'lfJk(t) = L alkwl(t), (lla) 

l=l 

ek(t) = dk(t) - U'{;(t)'lfJk(t), (llb) 

Wk (t) = -'Yo (Wk (t) - 'lfJk(t)) + 'Ykek(t)Uk(t). (11c) 

Note that (11c) reduces to (5) if alk = 1 for f = k and zero 
otherwise. We study next the convergence properties of (10). 

5. CONVERGENCE AND STABILITY 

We first seek the equilibrium points of (10). For that, we need 
a model for the relation between d( t) and U ( t). We assume, 
as in the discrete-time case (1), that 

where Wo is the common parameter vector, and Vk (t) is zero­
mean temporally and spatially white-noise that is independent 
of the regression data for all times. Defining:n. = [1 . . . 1] T 
andv(t) = [V1(t) ... vN(t)(, the overall relation is 

d(t) = UT (t) (:n. ® wo) + v(t). (12) 

Consider first the case of zero noise, i.e., let v (t) = ON. 
We show next that in this case, :n. ® Wo is an equilibrium point 
of (10). Note from (3) that AT:n. = :n.. We thus obtain 

(AT ® 1M) (:n. ® Wo) = (AT:n.) ® (IMwo) = :n. ® WOo 

Substituting this result into the expression for w(t) in (10), 
we conclude that in the absence of noise, w(t) = OMN when 
w(t) =:n. ®wo. 

We must now study the stability of this equilibrium point. 
Define the weight error vector w(t) = :n. ® Wo - w(t). If we 
add 

OM N = 'Yo (1M N - AT ® 1M) (:n. ® Wo) 

to the first equation in (10), we obtain 

w(t) = 'Yo (IMN - AT ® 1M) w(t) + U(t)re(t). (13) 

1763 

Without noise, substituting d(t) from (12) into (lOb) we ob­

tain e(t) = UT(t) (AT ®IM) w(t). Noting also thatfu = 
-w, and substituting both results into (13), we obtain the er­
ror equation 

fu(t) = B(t)w(t), where 

B(t) = -'YoIMN + 'YoAT ® 1M 

-U(t)rUT(t) (AT ® 1M) . 

(14) 

We prove stability of (14) for the special case of A being sym­
metric and positive-definite. We call upon a few properties of 
Kronecker products and Markov matrices, namely [7]: 

1. For any F, G, it holds that (F ® Gf = FT ® GT. 

2. If Ai are the eigenvalues of F and Vj are the eigenvalues 
of G, then the eigenvalues of F ® G are AiVj, for all 
combinations of i, j. 

3. If the entries of FERN x N are nonnegative and F:n. = 
:n., then 1 is an eigenvalue of F, and the other eigenval-

ues Ai of F satisfy (}(F) � max1:Si:SN IAil = 1. 

4. If a matrix FE RNxN is symmetric, then for any U E 
RN, 

Amin(F)uT u :S uT Fu :S Amax(F)uT u. 

From properties 1 and 2, if A = AT is positive-definite, 
then A ® 1M is also symmetric and positive-definite. Define 
then the candidate Lyapunov function 

V(t)=wT(t)(A®IM) w(t). (15) 

From properties 2 and 4, 

so V(t) may indeed be used as a candidate Lyapunov func­
tion. In the absence of noise, its derivative is 

V(t) = wT(t) (A ® 1M) fu(t) + fuT(t) (A ® 1M) w(t) 

= wT(t) [(A ® 1M) B(t) + BT(t) (A ® 1M)] w(t). 

We now find conditions under which the matrix between brack­
ets in the last expression is nonpositive definite (and, conse­
quently, OM N is a stable equilibrium of (14).) Now, 

(A ® 1M) B(t) + BT(t) (A ® 1M) 
= -2'Yo (A ® 1M - A 2 ® 1M) 
- 2 (A ® 1M) U(t)rUT(t) (A ® 1M)' 

We see that V(t) :S 0 if both 

D � (IMN - A ® IM)(A ® 1M) and 

F� (AT®IM) U(t)rUT(t) (AT®IM) 



are nonnegative definite. Consider first D. Since A is positive­
definite, its eigenvalues Ai , 1 :::; i :::; N are real and nonnega­
tive. In addition, property 3, implies that 

(16) 

Let Q be a unitary matrix that diagonalizes A, i.e., QT Q = 

QQT = IN, and QT AQ = diag(Ai ) = A. Then we have 

( QT 0 1M) D (Q 0 1M) = (A - A 2) 0 1M, 

which is nonnegative-definite from (16). 
The other matrix, F, is always nonnegative-definite, since 

r is positive-definite by construction. We can therefore con­
clude that Vet) :::; 0 .  From Lyapunov theory, this means 
that the origin OM N will be a stable equilibrium point of (14) 
when the noise is zero [5]. 

When the regressors Uk (t) satisfy a persistence of excita­
tion condition, the system will remain stable in the presence 
of noise. This can be seen as follows. Assume that the matrix 

lto+T 
�(to, T) � (A 0 1M) U(t)rUT (t) (A 0 1M) dt 

to 

is such that there exist ° < lYl :::; lY2 < 00 and ° < T < 00 

for which, for all to � 0 ,  

(17) 

In this case, the stability proof in [5] can be modified to show 
that, in the absence of noise, the origin will be exponentially 
stable. Exponential stability implies, through the total stabil­
ity theorem [8, Lemma 5.2, p. 213], that the origin in (14) will 
remain stable in the presence of sufficiently small bounded 
noise. 

Note that the CT-diffusion LMS may remain stable even 
for a non-definite A, as the first example in next section shows. 
However, the condition of positive-definite A is necessary to 
guarantee stability for any input regressor U(t) and any val­
ues of ')'0 and r. 

6. SIMULATIONS 

We tested the proposed estimation method using Simulink, in 

an example with three nodes and Wo = [0.5 _0.2]T . The 
input sequences are 

UI(t) = [sin(21TlOt) 0.5sin(21TlOt + 1T/3)]T , 
U2(t) = [0.2sin(21T5t) 0.8sin(21T5t - 1T/2)f ' 

U3(t) = [U31(t) U32(t)]T , 

in which U3I (t) is a Gaussian white noise with power equal to 
1, and U32(t) is a second independent Gaussian white noise 
with power 0.2. The noises VI(t), V2(t) and V3(t) are also 
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Gaussian and white, independent of other signals, with pow­
ers 10 -4 , 10 -2, 2. 10 -4 , respectively. The combination ma­
trix used was [0.6 ° 0.4] 

A = ° 0.7 0.3 . 
0.4 0.3 0.3 

Note that this matrix is not positive-definite. The resulting 
estimates for each node can be seen in Figs. 1-3 (in all exam­
ples, we plot the results from a single realization of the filter.) 
Note how all estimates gravitate around the true values, for 
all nodes. Note how the combined estimates 'I/1k(t) tend to 
have faster convergence and more similar performance across 
nodes. The combined estimate '1/1 k ( t) for the third node con­
verges very quickly (the covariance matrix for U3(t) has a 
small eigenvalue spread.) 

10 

t (s) 

Fig. 1. Parameter estimates WI (t) and '1P1 (t) for node 1. 

t (s) 

Fig. 2. Parameter estimates W2(t) and '!f;2(t) for node 2. 

For comparison, we plot in Fig. 4 the first elements Wk, I (t) 
of the estimates at each node for the case of independent fil­
ters, i.e., when A = I. It can be seen that the cooperative 
estimation scheme tends to equalize the responses across all 
nodes despite their different SNR conditions. The third node 
converges very quickly, but the convergence rate of the sec­
ond node is much slower without cooperation. 

As an example of a larger network, we simulated the 10-
node network shown in Fig. 5 using diffusion (the entries of 



W3,1 (t) 

t (s) 

Fig. 3. Parameter estimates W3(t) and '1fJ3(t) for node 3. 

0 .• 

0.' 

OA \v3,I(t) 
0.3 

0.2 -------WI, I (t) 
0.1 /W2,I(t) 

-'>.1 0 10 
t (s) 

Fig. 4. Parameter estimates Wi, I (t) without diffusion. 

aRk are given next to the edges in Fig. 5 - the values of akk 
are chosen so that condition (3) is satisfied). Note that, in this 
case, A is positive-definite. We also plot the results obtained 
without diffusion (A = I). The inputs are similar to those 
in the previous example: sinusoids and random noise (in this 
case, low-pass filtered Gaussian noise). We compare in Fig. 6 
the estimates obtained for W6(t). 

Fig. 5. lO-node network. 

7. CONCLUSION 

We proposed a continuous-time adaptive diffusion strategy 
for distributed estimation, and determined conditions under 
which the algorithm is exponentially stable in the absence of 
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O .• ,-----��--�---___, 

W6,2(t), A = ho 

-'>.1 

'W6,2(t) 
-O .zo'-----7:-50-"-'--'--'-----'-IOO,--------,!,50 

t (s) 

Fig. 6. Parameter estimates W6 (t) for node 6, for two choices 
of A (with and without cooperation). 

noise, and stable in the presence of bounded noise. Our stabil­
ity proof requires the weight matrix A to be positive-definite. 
We are currently working to relax this positiveness condition 
in our proof. 
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