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Abstract—Bacteria forage by moving towards nutrient sources
in a process known as chemotaxis. The bacteria follow gradient
variations by tumbling or moving in straight lines. Both modes
of locomotion are affected by Brownian motion. Bacteria are
also capable of interactions through chemical signaling. As the
bacteria swim towards nutrients, they emit chemicals that can
be sensed by their neighboring bacteria and used to adjust
the direction of motion. In this paper, we propose schemes for
cooperation and diffusion of information [1]–[7] and study their
effect on bacteria motility. Because bacteria are limited in their
abilities, we restrict the sharing of information to binary choices
(such as whether to run or tumble). Simulation results suggest
that cooperation among bacteria is critical for effective foraging
to improve their decisions of movement.

I. INTRODUCTION

Bacteria are single-cell microscopic organisms. They sur-

vive by foraging for nutrients in the environment in a manner

that maximizes their energy intake per unit time [8]. In the

process of foraging, motility plays a critical role. Bacterial

movement is not purely random or arbitrary. Instead, bacterial

cells exhibit directed movement in response to certain stimuli

and away from others; a behavior known as “taxis” [9]. There

are three types of taxes: chemotaxis, phototaxis, and magneto-

taxis. Chemotaxis is the most common form of locomotion for

bacteria [10]. It is the phenomenon by which bacteria move

in response to certain chemicals in the environment.

Bacteria can move using a variety of mechanisms. Flagella

are used for swimming through liquids; bacterial gliding and

twitching motility move bacteria across surfaces; and changes

of buoyancy allow vertical motion [11]. Because flagellum-

dependent motility has been extensively studied, we will

only focus on this kind of movement. Bacteria with flagella

have two distinct modes of movement: forward movement

if the flagella rotate clockwise and tumbling if the flagella

rotate counter-clockwise. The two modes alternate and have

different active durations. The mean run interval is about

1s, whereas the mean tumble interval is about 0.1s. Both

times are exponentially distributed. The bacteria run and

tumble, exhibiting a two-dimensional random walk. Although

the change in angle generated by a tumble is approximately

random, there is a slight forward bias. When, by chance, a

bacterium moves up a spatial gradient of a chemical attractant,

e.g., nutrients or other chemical signals, runs are extended.

When, by chance, it moves the other way, running duration
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revert to the length observed in the absence of a gradient.

Thus, the bias in the random walk enables bacteria to move

up gradients. Finally, the behavioral response is temporal,

not spatial. Bacteria do not determine whether there is more

attractant, say, in front than in the back; rather, they determine

whether the concentration increases when they move in a

particular direction. Studies of impulsive stimuli indicate that

a bacterium compares the concentration observed over the past

1s with the concentration observed over the previous 3s and

responds to the difference [12].

Bacteria forage not only individually but also cooperatively

to improve their sensing abilities. When a bacterium is far

away from the nutrition, the density of nutrition will fall below

a threshold that the bacteria can detect. Microbiologists have

discovered that bacteria can communicate with each other by

emitting and reacting to chemical signals in a process known

as “quorum sensing” [13]–[18]. Bacteria use small molecules

for extra- and intracellular signaling. They scan small molecule

mixtures to access information about both their extracellular

environment and their intracellular physiological status. Based

on this information, they interpret the environment and react

to the changes. This kind of interaction allows a group of

bacteria to synchronize their behavior and act in coordination

[13]–[18].

In summary, bacteria forage by moving towards the direc-

tion of increasing nutrients in response to chemical signaling.

Their movement consists of two types of motion: run and

tumble. In the long term, the motion can be viewed as a biased

random walk. Besides, bacteria emit and react to chemical

signals to communicate. And they cooperate and coordinate

with others. They benefit from this inter-cell interaction to

increase the chance of successful foraging.

Based on these facts, we now proceed to build a foraging

model for bacteria. The model addresses four factors: mo-

tion, diffusion, observation, and decision. The motion model

mimics the two-mode motility of bacteria. The diffusion

model describes how bacteria diffuse information to each

other over a network in an adaptive manner. The observation

model characterizes how the bacteria receive information from

others. And the decision model defines how bacteria make

their decisions of movement in favor of foraging based on

the information received from others. We propose diffusion

and cooperation strategies to better understand the role of

collaboration in bacteria foraging. We also present computer

simulations to emulate the foraging behavior of bacteria and
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Fig. 1. Bacterial motion model with two modes of locomotion: running and tumbling.

compare cooperation strategies.

II. SYSTEM MODEL

A. Motion model
During the running stage, the flagella rotate clockwise and

the bacterium is pushed forward in its pointed direction. The

moving direction is relatively fixed when the bacterium runs.

During the tumbling stage, the flagella rotate counterclockwise

and operate relatively independently of each other. As a result,

the bacterium tumbles and has little displacement; its pointing

direction would change randomly. A bacterium has limited

control over its moving direction. The major aspect of its

motion that it can control is whether to run in the current

direction or to tumble around. Another prominent feature of

bacteria motility is a Brownian motion effect, which is caused

by the random hitting from the surrounding molecules in the

medium. Even when the bacterium is in the running mode, its

direction will still change in a random manner due to these

collisions.
Based on these features, we model the motion of a bac-

terium k as follows:

wk,i = wk,i−1 + μ
u∗

k,i

‖uk,i‖ek(i) + bk,i, (1)

where wk,i ∈ R
2 denotes the position in the plane of the

kth bacterium at time i, uk,i is a row vector that defines

its pointing direction, μ is the size of the step it can move

during one time interval, and bk,i ∈ R
2 is an i.i.d Gaussian

random vector modeling the Brownian motion and tumbling

effect. The decision that the bacterium makes on whether to

run or tumble is modeled by the variable ek(i), which takes

the value of either 1 or 0 (depending on some assessment

decision described in Sec III). For example, as shown on

the left-side of Fig. 1, when ek(i) = 1, the bacterium is

running and aims to move from location A along the straight

line determined by the direction uk,i to location B. However,

the Brownian motion effect adds a disturbance of bk,i, and

the actual displacement ends up at C. On the other hand,

when ek(i) = 0, the bacterium is tumbling around and the

displacement is bk,i; moving from A to D as shown on the

right side of Fig. 1.
We assume the orientation of the bacterium is determined

by the displacement vector during the last step, i.e.,

u∗
k,i = wk,i−1 − wk,i−2. (2)

This means that, in the running mode, after moving from

wk,i−1 to wk,i, the bacterium would continue to move in the

direction of wk,i −wk,i−1 if there were no Brownian motion.

From (1) and (2), we obtain a recursion for uk,i:

u∗
k,i+1 = μ

u∗
k,i

‖uk,i‖ek(i) + bk,i (3)

In the running mode, ek(i) = 1. The self-propelled motion

of the bacterium is generally much greater than the Brownian

motion, i.e., μ � ‖bk,i‖. Therefore, the orientation of the

bacterium will only change by a small amount, and the running

directions in successive running steps are highly correlated.

On the other hand, if the bacterium is tumbling around, then

u∗
k,i+1 = bk,i, which is independent of uk,i, and the pointing

of the bacterium will change randomly.

B. Problem formulation

From (1) and (3), we see that the main feature that the

bacterium can control is the decision about whether to run

or tumble around, namely, ek(i). This decision will generally

be based on local stimuli (such as the nutritional gradient)

and on information from the neighboring bacteria (through

chemical signals). For the nutritional gradient, it is stated

in [8] that the bacterium compares the nutritional density

at location wk,i say Jn(wk,i), with the previous density at

location wk,i−1, and makes a decision based on the difference

Jn(wk,i) − Jn(wk,i−1). The objective of the bacterium is

therefore to design a sequence of decisions ek(i) ∈ {0, 1}
(i = 1, 2, . . .) to adjust wk,i so that the bacterium moves

towards the maximum of the nutrition density, Jn(·).
III. DIFFUSION ADAPTATION

A. Measurement model

Bacteria communicate with each other through chemical sig-

naling. If a bacterium wants to share information, it releases

a chemical, which will remain in the environment until it

decays. To characterize this effect, we assume the chemical

field evolves in the following manner:

Jc(w, i) = λcJc(w, i − 1) +
∑

�∈SD(i)

a(w,w�,i)s�(i) (4)

where Jc(w; i) is the value of the chemical field at position w
and time i, λc is the decay factor, a(w, wm,i) is the chemical

profile released by the mth bacterium, and SD(i) is the set
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of bacteria diffusing information at time i. Let s�(i) ∈ {0, 1}
indicate whether the �th bacterium diffuses information at time

i. Then the chemical intensity measured by the kth bacterium

at time i is

Jc(wk,i, i)=λcJc(wk,i, i−1)+
N∑

�=1

a(wk,i,w�,i)s�(i) (5)

In (5), we assume that the bacteria only have the simple ability

to decide whether to diffuse information or not by setting s�(i)
to 1 or 0. They are not powerful enough to use “modulation”

or “coding” schemes to broadcast messages with different

contents. Still, we will see that such simple diffusion strategy

works reasonably well.

It is shown in the literature that bacteria can sense different

types of chemicals and are “multilingual” [15], [17]. For

example, they can sense information from both the food

source and the other bacteria independently by measuring

nutrition and chemical densities, respectively. This mechanism

is called “quorum sensing”. Since we are denoting the density

of nutrition at position w by Jn(w), the observed nutrition

density by the kth bacterium at time i will be

yn
k (i) = Jn(wk,i) + vn

k (i) (6)

where vn
k (i) is the observation noise at the kth bacterium at

time i when measuring the nutrition concentration. Likewise,

the observed chemical intensity by bacterium k is

yc
k(i) = Jc(wk,i, i) + vc

k(i) (7)

where vc
k(i) is observation noise for measuring the chemical

signals. We assume that {vn
k (i)} and {vc

k(i)} are i.i.d Gaussian

random variables with mean zero and variance σ2 and σ2
c ,

respectively, and that they are independent of each other.

B. Decision model

The decision model characterizes how a bacterium processes

the received information and how it responds to the informa-

tion. The information available to a bacterium is yn
k (i) and

yc
k(i). The objective is to use the data to estimate the location

of the maximum of Jn(w) and to move in that direction. First,

we need to recover Jn and Jc from the noisy measurements

{yn
k (i), yc

k(i)}.

Since the densities Jn(wk,i) and Jc(wk,i, i) are nonnega-

tive, we can use this information to improve the estimation

quality. If we assume the probability density functions of

Jn(wk,i) and Jc(wk,i, i) are flat over the positive axis and

zero over the negative axis, i.e., we have no other information

besides them being nonnegative, then the maximum a posterori

estimates for these two variables are:

Ĵn,MAP (wk,i) = max{yn
k (i), 0} (8)

Ĵc,MAP (wk,i, i) = max{yc
k(i), 0} (9)

This step is equivalent to performing a detection on the

observation, and then truncating it to zero if it is negative.

Otherwise, we use the observation as the estimate.

For simplicity, we shall write Ĵn and Ĵc to represent the

estimated values in the sequel. Based on the estimates Ĵn

and Ĵc, the bacterium then makes a decision on two aspects:

whether to diffuse information, and whether to run.

For the diffusion decision, we assume the bacterium sets

s�(i) in (5) as follows:

sk(i) = I[en
k (i − 1)] =

{
1, en

k (i − 1) > 0
0, en

k (i − 1) ≤ 0

where

en
k (i − 1) = Ĵn(wk,i−1) − Ĵn(wk,i−2) (10)

This means that, if the bacterium senses that the estimated nu-

trition density has increased during the last step of movement,

then the bacterium diffuses the information out. In this way,

the bacteria moving in the right direction towards the food

will diffuse information to announce their likely discovery of

the path. Since the chemical will remain in the environment

for a while, the diffusion adds information about the nutrition

source to the chemical field, which serves as a “food map”

for the “unlucky” bacteria to find the food.

Another decision making for the bacterium is to determine

which motility mode to use in the next step: running or

tumbling. We assume the bacterium sets ek(i) by examining

the nutritional gradient en
k (i − 1) in (10) and the chemical

gradient defined by

ec
k(i − 1) = Ĵc(wk,i−1, i − 1) − Ĵc(wk,i−2, i − 2) (11)

Based on the two increments {en
k (i−1), ec

k(i−1)}, we consider

several strategies to select ek(i) for this decision step:

• Emphasis on nutrition and signaling:

ek(i) = λL · I[en
k (i − 1)] + (1 − λL) · I[ec

k(i − 1)]
(12)

where 0 < λL < 1. In this case, ek(i) is a convex

combination of the indicator functions of the two

increments.

• Emphasis more on nutrition:

ek(i) = I[en
k (i − 1)] + δ[en

k (i − 1)] · I[ec
k(i − 1)] (13)

where δ(·) is the Kronecker delta function. In this case,

if the bacteria is certain about the change of nutrition

density in the last step (either increase or decrease),

it will ignore all chemical signals. In the next section,

this strategy is combined with maximum a posterori

estimation for decision making.

• Emphasis only on nutrition (nocooperation):

ek(i) = I[en
k (i − 1)] (14)

In this case, the bacterium only relies on its measure-

ment of the increment of nutrition. All chemical signals

released by the other bacteria are ignored. This can be
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Fig. 2. The distribution of nutrition density.

(a) Initial stage(T = 1) (b) Final stage (T = 1000)

Fig. 3. Dynamic behavior based on model (14); emphasis is on nutrition
only.

considered as a special case of linear cooperation with

λL = 1.

In summary, ek(i), as a function of en
k (i) and ec

k(i), aims

to appropriately combine these two sources of information so

that the decision strategy can result in a biased random walk

towards the food.

IV. SIMULATION RESULTS

In this section, we simulate the bacterial foraging behavior

for the different cooperation strategies.

A. Simulation profile

Two identical nutrition sources are placed at locations

(−15,−12) and (15, 12), respectively. Each source generates

a nutrition field in the shape of a two-dimensional Gaussian

distribution. Accordingly, the density of nutrition at location

w = (x, y) is given by

Jn(x, y) =bmax exp
(
− (x − x1)2 + (y − y1)2

2σ2
b

)

+ bmax exp
(
− (x − x2)2 + (y − y2)2

2σ2
b

)
,

where (x1, y1) = (−15,−12), (x2, y2) = (15, 12), bmax =
10, and σb = 4. The nutrition field is shown in Fig. 2.

Although the bacteria consume food during the foraging

process, we assume that the density of nutrition is not affected

appreciably. This can be achieved by, for example, continually

replenishing the nutrition level.

At the beginning, bacteria are randomly and uniformly

distributed over a 40×40 rectangular region centered at (0, 0).

(a) Initial stage (T = 1) (b) Final stage (T = 1000)

Fig. 4. Dynamic behavior based on (12); emphasis is on both nutrition and
chemical signaling.

(a) Initial stage (T = 1) (b) Final stage (T = 1000)

Fig. 5. Dynamic behavior based on (13); more emphasis is given to nutrition.

Their Brownian motion is modeled as i.i.d. two-dimensional

Guassian random variable with zero mean and 0.1 standard

deviation. The step size is μ = 0.8. Moreover, vn
k (i) in (6)

is modeled as i.i.d. Guassian random variable with zero mean

and unit variance.

The density of the chemical signals emitted by the bacteria

is also modeled as a two-dimensional Guassian distribution.

The chemical signal generated by the k-th bacterium is mod-

eled as

a(w,wk) = amax exp
(
− (x − xk)2 + (y − yk)2

2σ2
a

)
, (15)

where w = (x, y), wk = (xk, yk) is the position of the

kth bacterium, amax = 5, and σa = 5. The chemical

signals generated by all bacteria are accumulated and decay

exponentially according to (5), with λc = 0.9. Similar to vn
k (i),

the noise vc
k(i) in (7) is also modeled as i.i.d. Guassian random

variable with zero mean and unit variance. Finally, λL in (12)

is set to 0.8.

B. Dynamic behavior of bacterial foraging

We simulate 200 bacteria and record the initial and final

stage of the bacterial colony, as shown in Fig. 3–5.

Fig. 3 shows the case of no cooperation. Obviously, this

mechanism does not work well–only a small fraction of the

bacteria can successfully forage while the others fail to locate

the nutrition source after 1000 iterations.

Figs. 4–5 correspond to the cases when the bacteria coop-

erate; we also plot the distribution of the chemical field. Fig.

4 is for the case that emphasizes both nutrition and chemicals.

The figure shows that cooperation improves the precision of
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Fig. 6. Convergence speed of different diffusion and decision strategies.

foraging, but the bacteria that are far away from the nutrition

sources still cannot find the target. Fig. 5 shows the case that

emphasizes more on nutrition. It has the best performance and

most bacteria converge to the nutrition sources.

C. Convergence speed of different strategies

We compare the convergence speed of different cooperation

strategies by plotting 1
N

∑N
k=1 J(wk,i) against i in Fig. 6.

Obviously, the best strategy is (13). After 200 iterations,

this strategy achieves a steady state where on average every

bacterium enjoys a rather high (> 6) nutrition density. The

strategy in (12) is inferior to the best case. It can achieve an

average nutrition density value between 5 and 6 after 1000
iterations. The scheme without communication does not work

well.

According to these results, we observe that communication

between bacteria plays a critical role in their foraging behavior.

By emitting and reacting to chemical signals, bacteria can

efficiently share information and enhance the sensing and

foraging ability of the group.

With inter-cell communication, it is important to choose the

right combination strategy for local stimuli and neighborhood

information. Our simulation shows that the one that empha-

sizes more on nutrition is effective, which can extract useful

information from the noisy communication environment more

efficiently.
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