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Abstract—Adaptive networks consist of a collection of nodes
with learning abilities that interact with each other locally in
order to solve distributed processing and distributed inference
problems in real-time. Various algorithms and performance
analyses have been put forward for such networks, such as
the adapt-then-combine (ATC) and combine-then-adapt (CTA)
diffusion algorithms, the probabilistic diffusion algorithm, and
diffusion with adaptive weights over the links. In this paper, we
add mobility as another dimension and study the behavior of the
network when the nodes move in pursuit/avoidance of a target.
Mobility leads naturally to an adaptive topology with changing
neighborhoods. Mobility also imposes physical constraints on the
proximity among the nodes and on the velocity and location of
the center of the network. We develop adaptation algorithms
that exhibit self-organization properties and apply them to the
modeling of collective behavior in biological systems, such as fish
schooling. The results help provide an explanation for the agile
adjustment of network patterns of fish schools in the presence
of predators.

Index Terms—Mobile adaptive networks, self-organization,
diffusion adaptation, tracking, fish schooling, predator avoidance.

I. INTRODUCTION

Self-organization is observed in many physical and bio-

logical systems [1][2]. In such systems, a global pattern of

behavior emerges from the limited and localized interactions

among the individual members of the system. One interesting

organized behavior in animal groups is their collective motion,

where animals move together in amazing synchrony such as

fish schools swimming together [3], bees swarming towards a

hive, or birds flying in V-formations [5].

In fish schools, the individual members tend to have similar

speeds and to move almost in parallel while keeping a safe

distance from their neighbors to avoid collisions. There are

several biological hypotheses to explain how fish take advan-

tage of schooling to avoid the presence of their predators.

Fish forming schools confuse predators more easily and the

individual member becomes harder to detect and track by

predators [6]. This effect is called the dilution effect [7][8].

Another advantage of schooling is the many-eyes effect [9].

Fish within a school collaboratively detect predators such that

the probability of detection increases appreciably. The school

as a group can react and take actions earlier than what would

be possible for a single fish.

In this paper, we apply the diffusion adaptation algorithms

of [10]-[13] to explain how fish cooperatively pursue a food
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source while at the same time avoiding attack from a predator.

It is observed in nature that fish schools spread out to escape

from predators and regroup to continue with their schooling.

We use the concept of adaptive networks, along with diffusion

adaptation mechanisms, to explain how the behavior of each

individual fish (or agent) contributes to this highly structured

schooling behavior in its avoidance of mobile predators.

II. MEASUREMENT MODEL

Let w◦ denote the location vector of a target that the network

wishes to track (e.g., the location of a food source). As Fig. 1

shows, the distance between the target and node k at location

xk,i at time i is given by the inner product

d◦k(i) = u◦
k,i(w

◦ − xk,i) (1)

where xk,i denotes the location vector relative to some global

coordinate system, and u◦
k,i denotes the unit direction vector

pointing to w◦ from xk,i; this vector is defined in terms of the

azimuth angle, θk(i), i.e.,

u◦
k,i =

[
cos θk(i) sin θk(i)

]
(2)

The superscript ◦ in (1)-(2) is used to indicate true values.

However, nodes observe noisy measurements of the direction

u◦
k,i and the distance d◦k(i) to the target, say,

uk,i = u◦
k,i + nu

k,i (3)

dk(i) = d◦k(i) + nd
k(i) (4)

where nu
k,i and nd

k(i) denote additive noise terms of sizes

M and 1, respectively. Rearranging the above equations, we

obtain a linear regression model, namely,

d̂k(i) � dk(i) + uk,ixk,i

= uk,iw
◦ + nk(i)

(5)

where the scalar noise term nk(i) is given by

nk(i) � −nu
k,i(w

◦ − xk,i) + nd
k(i)

In addition, the measured location of the target by node k
is denoted by qk,i and determined from {dk(i), uk,i, xk,i} as

follows:
qk,i = xk,i + dk(i)u

T
k,i

= w◦ + ηk,i
(6)

where the vector noise term is given by

ηk,i = nd
k(i)u

◦T
k,i + d◦k(i)n

uT
k,i + nd

k(i)n
uT
k,i (7)
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Fig. 1. Distance and direction of the target w◦ from node k at location xk .
The unit direction vector u◦

k points towards w◦.

We assume that ηk,i is a zero mean white random process with

covariance matrix Ck,i.

In the application we are studying in this paper, the nodes of

the network wish to track two separate targets: the location of

the food source and the location of a predator. The modeling

equations described above apply to either target. To distinguish

between them, we shall use superscripts f and p for food and

predator, respectively (thus, instead of w◦, we shall write wf

for the location of the food source and wp for the location

of the predator). Moreover, the superscript n will represent

values related to the adaptive network.

III. MOTION CONTROL MECHANISM

In a mobile network, every node k will update its location

vector over time according to the rule:

xk,i+1 = xk,i +�t · vk,i+1 (8)

where �t represents the time step and vk,i+1 is the velocity

vector of the node. Several factors influence the velocity vector

of node k such as (a) the desire to move away from a predator

at location wp, (b) the desire to move towards a food source

at wf , (c) the desire to move in coordination with the other

nodes, and (d) the desire to avoid collisions. We assume the

predator is moving as well, so that its actual location should

be denoted by wp
i . The nodes in the network are therefore

interested in estimating the fixed quantity wf and in tracking

the time-variant quantity wp
i . Since the nodes do not have

access to the actual locations of the food and the predator, we

will use wf
k,i and wp

k,i to denote the local estimates at node

k at time i. We now explain the mechanism by which vk,i+1

can be set by node k.

A. Pursuing Food and Avoiding Predators

To begin with, the nodes in the network would like to get

to the food source and avoid the predator. The action of each

node depends on the location of the predator. Figure 3 shows

four regions around the predator. There are two concentric

circles with their centers origin at the predator and with radii

rp and 2rp. The four regions represent the areas outside the

circle of radius 2rp, inside the circle of radius rp, and in front

Fig. 2. Four regions around the predator.

and behind the predator within the disc rp < r < 2rp. If the

predator is far away (i.e., if the distance from node k to the

predator is larger than 2rp, meaning dpk(i) > 2rp), the fish

stays in region I and focuses on exploring the food location.

In this case, the velocity vector is set along the direction of

the food, i.e.,

vak,i+1 =
wf

k,i − xk,i

‖wf
k,i − xk,i‖

(region I) (9)

On the other hand, if the predator is close, (i.e., if dpk(i) < rp
so that the node is in region IV), then the node focuses on

escaping the attack by the predator by moving away from it.

In this case, the velocity vector is chosen as

vak,i+1 =

(
rp

‖xk,i − wp
k,i‖

− 1

)
(xk,i − wp

k,i) (region IV)

(10)

In (10), the speed of the node depends on the distance to the

predator. The node will move faster if the predator is closer to

it. The final situation we need to consider is when the predator

is located at a distance between rp and 2rp from the node.

There are two possible regions in this case. If the predator is

moving towards the node (i.e., if the node lies in region II),

then the node should stop foraging and follow its neighbors

(see section III.C). The velocity vector in this case becomes

vak,i+1 = 0 (region II) (11)

Likewise, if the predator is moving away, the node (i.e., if

the node lies in region III), then the node should move in

the opposite direction of the predator maintain a safe distance

from the predator. The velocity vector would be set as:

vak,i+1 = − vpk,i
‖vpk,i‖

(region III) (12)

where vpk,i is the estimate by node k of the velocity of the

predator. Note that the two regions II and III can be distin-

guished by the value of the inner product (xk,i − wp
k,i)

T vpk,i.
The predator moves towards node k if the value is greater than

zero, and vice versa.
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Fig. 3. Two fragmental groups. Connections among the fish are indicated by
lines. One fish at the frontal edge (left group) and one fish on the left edge
(right group) are highlighted. They will move along the arrow directions to
cause regrouping.

B. Reunion

Following an attack by a predator, a network becomes

fragmented with some nodes lying at the outer edges of the

new smaller groups that resulted from the fragmentation. To

reunite, nodes on the outer boundaries have to estimate the

location of the other groups and move towards them. To do

so, a node first needs to detect whether it is on the edge of the

fragmented groups. We consider three kinds of edges - frontal

edge, left edge and right edge. The node computes the number

of its neighbors in each direction according to the coordinate

of node l with respect to node k:

x
(k)
l,i = W (vk,i)

T (xl,i − xk,i) (13)

where

W (v) =

[
v1/‖v‖ −v2/‖v‖
v2/‖v‖ v1/‖v‖

]
(14)

is an orthonormal matrix for a local coordinate system centered

at a node that is moving with velocity vector v = (v1, v2). If

the first coordinate of x
(k)
l,i is greater than zero, node l lies in

front of node k. Similarly, if the second coordinate of x
(k)
l,i is

greater than zero, node l lies to the left of node k; otherwise,

it lies to the right side of node k. We say node k belongs

to the frontal edge of the fragmented groups if the number of

neighbors in the front is less than one. Likewise for the left and

right edges. Nodes on the edge then search for other groups.

For example, nodes in the front edge will find the nearest

frontal node outside its neighborhood and move towards that

node. That is, node k would perform the following operation:

l̂ = argmin
l
{‖x(k)

l,i ‖|l ∈ NF
k \ Nk} (15)

vbk,i+1 =

{
0, if l̂ = φ
xl̂,i−xk,i

‖xl̂,i−xk,i‖ , otherwise
(16)

where NF
k is the set of indexes of nodes that lie in the front

of node k and φ denotes the empty set. Nodes in the left and

right edges conduct the same procedure.

C. Coherent motion

The nodes do not only want to approach to the food source

and avoid the predator, they also want to move in harmony

to confuse the predator and would like to avoid collisions by

maintaining a safe distance r from their neighbors. This can

be achieved if the node updates its velocity vector as follows

[4]:

vck,i+1 = vgk,i + γδk,i (17)

where γ is a nonnegative scalar and

δk,i =
1

|Nk| − 1

∑
l∈Nk\{k}

(
1− r

‖xl,i − xk,i‖
)
(xl,i − xk,i)

(18)

The term δk,i suggests that nodes should adjust their velocity

direction to be consistent with the average of displacement

vectors, {xl,i − xk,i}, in the neighborhood while maintaining

a distance r from their neighbors. Expression (17) also incor-

porates the term vgk,i, which refers to a local estimate for the

velocity of the center of gravity of the network, vg , which is

defined as

vg � 1

N

N∑
l=1

vl (19)

Based on the preceding criteria, we assume that nodes adjust

their velocity vectors as follows:

vk,i+1 = λ · Ik,i(αvak,i+1 + βvbk,i+1)

+ (1− λ · Ik,i)vgk,i + γδk,i
(20)

where {λ, α, β, γ} are non-negative weighting factors and Ik,i
is an indicator function, whose value is equal to 0 if both

vak,i+1 and vbk,i+1 are equal to zero (i.e., node k is in region

II and does not need to reunite); otherwise it is equal to 1.

In addition, we bound the maximum speed of nodes by vmax.

That is, the magnitude of vk,i+1 will be scaled to vmax if it

is larger than vmax.

Moving forward, we assume that every node in the network

is adjusting its velocity vector according to (20). We now

develop diffusion mechanisms that allow the nodes to obtain

the local estimates wp
k,i, v

p
k,i, w

f
k,i, and vgk,i in a distributed

manner and in real-time.

IV. ESTIMATION OF GLOBAL VARIABLES

A. Estimating wp, vp, and wf

The algorithms to estimate wp and wf are the same.

Here, we only show how to estimate wp. At every time

instant i, every node k has access to the local measurements

{d̂pk(i), up
k,i} in (5). The nodes would like to estimate in a

distributed manner the global parameter wp that minimizes

the following cost function:

Jp(wp) =

N∑
k=1

E|d̂p

k(i)− up
k,iw

p|2 (21)

Applying the Adapt-then-Combine (ATC) diffusion algorithm

[11], we have⎧⎪⎨
⎪⎩

ψp
k,i = wp

k,i−1 + μp
ku

pT
k,i[d̂

p
k(i)− up

k,iw
p
k,i−1] (22a)

wp
k,i =

∑
l∈Nk

apl,kψ
p
l,i (22b)
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where the coefficients {apl,k} satisfy

N∑
l=1

apl,k = 1 apl,k = 0 if l /∈ Nk (23)

Since our model (5) is geometry-bearing (see (1)), we can

exploit this fact to simplify (22a) under reasonable approxi-

mations:

wp
k,i−1 − xk,i ≈ ‖wp

k,i−1 − xk,i‖upT
k,i (24)

We then can rewrite (22) as

ψp
k,i = (1− μp

k)w
p
k,i−1 + μp

kq
p
k,i

wp
k,i =

∑
l∈Nk

apl,kψ
p
l,i

(25)

The update is simply a convex combination of the current

measurements {qpk,i} and the previous estimate of the target

location wp
k,i−1. The estimation for wf can be implemented in

the same way by replacing the superscript p by f . In addition,

we estimate the velocity of the predator as follows:

vpk,i =
1

�t
(wp

k,i − wp
k,i−1) (26)

B. Estimating vg

The velocity of the center of gravity, vg, should be also

estimated in a distributed manner. By definition, vg is the

average velocity of all nodes in the network as in (19).

Consider the global cost function for estimating vg:

Jv(vg) =
N∑

k=1

‖vk,i − vg‖2 (27)

Using the same diffusion structure (22), and the arguments in

[11], we can arrive at the following diffusion algorithm for

computing vgk,i:

ϕk,i = (1− μv
k)v

g
k,i−1 + μv

kvk,i

vgk,i =
∑
l∈Nk

avl,kϕl,i
(28)

where {avl,k} is a set of non-negative real coefficients satis-

fying (23) and the superscript v is used to indicate that these

coefficients are for the estimation problem involving vg.

V. BEHAVIOR OF THE PREDATOR

The predator tracks the location of one node at a time. We

assume that the predator keeps tracking the nearest node. At

each time instant i, the predator measures the distance, dn(i),
and direction, un

i , of the nearest node. These observations are

then used to compute the measured location of the node

qni = wp
i + dn(i)unT

i (29)

The predator then updates the location of the node according

to

wn
i = (1− ν)wn

i−1 + νqni (30)

After estimating the location, the predator moves towards the

node. That is, the velocity and location vectors of the predator

are updated as:

vpi+1 = c · vmax
wn

i − wp
i

‖wn
i − wp

i ‖
(31)

wp
i+1 = wp

i +�t · vpi+1 (32)

where c is a positive scalar to control the speed of the predator.

VI. SIMULATION RESULTS

In this section, we simulate the motion of mobile networks

with 50 nodes and illustrate the effectiveness of the algorithms.

We first specify the neighbors of a node. Let R represent the

maximum distance within which two nodes can communicate

successfully. All nodes within a radius R of one node are

candidate neighbors. However, to reduce computational and

communication overhead, the number of neighbors will be

constrained, say to NB . In this paper, a node chooses its

neighbors from the nearest ones.

The simulation parameters are set as follows. The unit

length is the body length of a node (e.g., body length of a fish).

All step sizes are set to 0.5. The combination coefficients are

set to apl,k = afl,k = avl,k = 1/|Nk,i| if l ∈ Nk,i. For velocity

control, the coefficients are λ = 0.5, α = 1, β = 2 and γ = 1.

Moreover, the time duration is �t = 0.5 sec. In addition,

we set R = 5, NB = 6, the optimal distance between two

neighbors is r = 3, and the the distance rp is equal to 10.

We illustrate the maneuver of a mobile network in R
2 over

time in Fig. 4. The symbol, “�”, denotes the target of interest.

In addition, “•” and “−” indicate the locations and moving

directions of the nodes, respectively. The ones with bigger

sizes represent the predator. We observe that the nodes in the

network move harmoniously and approach the food source.

When the predator tries to attack them, the nodes spread out

and regroup after the attack. The simulation results regenerate

the behavior of fish schools in nature.

VII. CONCLUDING REMARKS

In this paper, we proposed a diffusion adaptation model

to simulate the behavior of fish schools in the presence of a

predator. With the aid of diffusion adaptation, the algorithm

is implemented in a distributed manner and in real time. Each

node only communicates with its immediate neighbors. Simu-

lation results regenerate rather well the maneuver behavior of

fish in nature.
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