
Diffusion LMS with Communication Constraints

Øyvind Lunde Rørtveit
Dept. of Electrical Engineering and

Computer Science

University of Stavanger, Norway

Email: oyvind.l.rortveit@uis.no

John Håkon Husøy
Dept. of Electrical Engineering and

Computer Science

University of Stavanger, Norway

Email: john.h.husoy@uis.no

Ali H. Sayed
Electrical Engineering Department

University of California, Los Angeles

Email: sayed@ee.ucla.edu

Abstract—Diffusion LMS is a distributed algorithm that allows
a network of nodes to solve estimation problems in a fully
distributed manner by relying solely on local interactions. The
algorithm consists of two steps: a consultation step whereby
each node combines in a convex manner information collected
from its neighbors and an adaptation step where the node
updates its local estimate based on local data and on the
data exchanged with the neighbors. Various forms of diffusion
algorithms are possible such as combine-then-adapt (CTA) and
adapt-then-combine (ATC) forms, in addition to probabilistic
implementations where consultations are performed only with
a subset of the neighbors chosen at random. In this paper we
propose an alternative protocol to reduce the communications
cost during the consultation process. Each node is limited to
selecting only one of its neighbors for consultation, and we
propose a dynamic technique that enables the node to pick from
among its neighbors that neighbor that is likely to lead to the
best mean-square deviation (MSD) performance. In other words,
rather than picking nodes at random, the proposed algorithm
is meant to enable nodes to perform the selection in a more
informed manner. The paper describes the proposed method and
illustrates its behavior via simulations.

I. BACKGROUND

In a typical distributed estimation setup, a network of N
spatially distinct nodes observes time data, and from these

data wishes to estimate some vector-valued variable wo. If the

regression data at node k at time i is arranged into a row-

vector uk,i, and if the observed measurement is denoted by

dk(i), then the estimation problem can be stated as that of

solving:

min
w

E

N∑
k=1

‖dk(i) − uk,iw‖2 (1)

where E denotes the expectation operation. Note that we are

using boldface letters to denote random quantities.

The existing distributed adaptive solutions can be roughly

classified into incremental [1], [2], [3], [4], diffusion [5],

[6], [7], [8], [9] and hiearchical [10], [11] algorithms. Our

focus here is on the diffusion LMS algorithm of [5], [6], in

which, at each iteration, each node performs an LMS update

followed by a diffusion step. During diffusion, the current

weight estimate is updated through a linear combination of

the weight estimates of the node’s neighbors. The algorithm

This work was performed while O. L. Rortveit was a visitor at the UCLA
Adaptive Systems Laboratory. The work of A. H. Sayed was supported in
part by NSF grants CCF-0942936, ECS-0601266, and CCF-1011918.

exhibits excellent steady-state behavior, yet the discussion in

[1], and particularly the results of [12], suggest that similar

performance can be achieved with less communication. Our

approach to reducing the amount of resources spent on com-

munication is to introduce a constraint into the diffusion step,

namely that each node should receive weight estimates from

only one of its neighbors during the diffusion step. Moreover,

the neighboring node is selected dynamically according to a

procedure we develop further ahead. Some related literature

exists in the context of distributed averaging, in the form

of gossiping algorithms [13], [14]. These gossip algorithms

usually select which nodes to communicate with in a random

fashion and independent of the data. In contrast, we shall

select the neighboring node on the fly by examining the

real-time data and picking the node that is more likely to

lead to lower mean-square deviation (MSD) performance.

We pose an optimization problem, which requires additional

communications. This means that the total amount of com-

munication is generally not reduced as much as would have

been the case with random selection. However, a significant

reduction of communication is still achievable compared to

standard diffusion where all nodes in a neighborhood are

consulted. Simulations suggest that the proposed algorithm

achieves steady-state performance that is comparable to the

unconstrained algorithm, at the cost of a negligible penalty on

convergence speed.

II. PROBLEM FORMULATION

The diffusion LMS algorithm is fully decentralized; there-

fore a description of the processing at a single node is

sufficient to describe the algorithm. The following equations

summarize the algorithm in its adapt-then-combine (ATC)

version [6], from the perspective of node k:

ψk,i = wk,i−1 + μku∗
k,i(dk(i) − uk,iwk,i−1) (2)

wk,i =
∑
l∈Nk

al,k(i)ψl,i. (3)

In addition to the previously mentioned observations uk,i

and dk(i), expressions (2)-(3) include the step sizes μk, the

combination coefficients al,k(i), the weight vector wk,i which

is the current estimate of wo at node k, the vector ψk,i which

represents an intermediate estimate in computing wk,i, and

Nk which is the set of neighbors of node k (that is, the set

of nodes, including k, with which node k can exchange data

1645978-1-4244-9721-8/10/$26.00 ©2010 IEEE Asilomar 2010

directly). It is assumed that the combination coefficients satisfy

the constraint
∑

l∈Nk
al,k(i) = 1.

The choice of the combination coefficients al,k(i) is of some

importance for the performance of the algorithm. There are

offline schemes for choosing the weights, such as the uniform

[15], Laplacian [16], maximum degree [17], metropolis [18],

relative degree [9], and relative degree-variance [6] rules.

Different online schemes, where the coefficients are adapted

at runtime based on the incoming data, have been proposed in

[5] and [19].

Here, we study the problem of finding a set of coefficients

{al,k(i)} with the additional constraint that, for all i, all

al,k(i) equal zero except for two coefficients; ak,k(i) and

ask(i),k(i), for some node index sk(i) to be selected from

the neighborhood of node k.. This requirement leads to the

following specialized form of the combination step (3):

wk,i = λk(i)ψk,i + (1 − λk(i))ψsk(i),i, (4)

where λk(i) Δ= (1 − ask(i),k(i)).
Our problem is that of choosing, for each node k and time

i, the parameters sk(i) ∈ Nk\k and λk(i) ∈ R such that the

resulting algorithm has desirable mean square performance.

III. MINIMIZING THE NETWORK MSD

One useful performance measure for distributed adaptive

problems is the network mean-square deviation, or network

MSD, defined as:

MSDnw(i) Δ=
1
N

N∑
k=1

E‖w̃k,i‖2 (5)

where w̃k,i
Δ= wk,i − wo. Thus, consider the problem of

minimizing the MSD at time i. At time i, λk(j) and sk(j)
have already been computed for all k and all j < i, that is,

we are given a realization of the set

C(i) Δ= {λk(j), sk(j) : 0 < j < i, 0 < k ≤ N}, (6)

and we wish to find the λk(i) and sk(i) for all k that minimize

the network MSD given (6). From the optimization viewpoint,

λk(i) and sk(i) are considered deterministic variables. There-

fore, we can write the global cost function, using (5) and (4),

as

N∑
k=1

E
[‖w̃k,i‖2

∣∣C(i)
]

=
N∑

k=1

[λ2
k(i)νk,k(i) + (1 − λk(i))2νsk(i),sk(i)(i)]

+
N∑

k=1

2λk(i)(1 − λk(i))νk,sk(i)(i) (7)

where

νk,l(i)
Δ= E

[
Re(ψ̃

∗
k,iψ̃l,i)

∣∣C(i)
]
, (8)

and ψ̃k,i
Δ= ψk,i − wo. Since no term containing λk(i) and

sk(i) also conains λl(i) and/or sl(i) for any l �= k, expression

(7) can be minimized separately for each k, which means

that the optimization with respect to λk(i) and sk(i) can be

performed locally at node k. Thus, introduce the local cost

function:

Jk(l, λ) = λ2νk,k + (1 − λ)2νl,l + 2λ(1 − λ)νk,l. (9)

In the following, as in (9), we will drop the time index i to

avoid cluttered notation wherever this leads to no confusion.

The optimization problem at node k becomes

(so
k, λo

k) = arg min
(l∈Nk\k,λ∈R)

Jk(l, λ). (10)

The problem can be solved stepwise as:

λo
k,l

Δ= arg min
λ

Jk(l, λ) (11)

so
k = arg min

l∈Nk\k

Jk,l (12)

λo
k = λo

k,so
k
, (13)

where Jk,l
Δ= Jk(l, λo

k,l).
The minimization (11) is solved by differentiating Jk(l, λ)

with respect to λ, setting the result to zero, and solving for λ.

This yields

λo
k,l =

νl,l − νk,l

νk,k + νl,l − 2νk,l
. (14)

Reinserting this result into (9) yields

Jk,l =
νk,kνl,l − ν2

k,l

νk,k + νl,l − 2νk,l
. (15)

We can now find so
k by evaluating Jk,l for all l ∈ Nk\k, and

simply choosing the minimizer. This means (14) does not need

to be evaluated for other values than l = so
k, which gives λo

k

directly.

IV. PROPOSED ALGORITHM

Of course, the νk,l are not available for a given realization of

the algorithm, but need to be estimated. Given such estimates

ν̂k,l, the proposed algorithm is fully defined by (2), (4), and

the following equations, derived directly from the results of

the preceding section:

Ĵk,l
Δ=

ν̂k,kν̂l,l − ν̂2
k,l

ν̂k,k + ν̂l,l − 2ν̂k,l
, l ∈ Nk\k (16)

sk = arg min
l∈Nk\k

Ĵk,l, (17)

λk =
ν̂sk,sk

− ν̂k,sk

ν̂k,k + ν̂sk,sk
− 2ν̂k,sk

. (18)

Estimating νk,l is difficult because it would require knowl-

edge of the optimal weight vector wo. In [19], this problem

was avoided by assuming that ψk,i is unbiased for all k, i,
that is, that Eψk,i = wo. Although the assumption is true

only asymptotically, it produces good results even before the

algorithm reaches steady state.

1646

A. Estimating νk,k

In order to compute (16) through (18), each node k requires

knowledge of νl,l for all l ∈ Nk. We choose to achieve this

task by letting each node k compute an estimate of νk,k and

broadcast this estimate to all of its neighbors.

Using the unbiasedness assumption, we can estimate νk,k

using an exponential moving average scheme as follows:

ν̂k,k(i) = α1ν̂k,k(i − 1) + (1 − α1)‖ψk,i − ψ̄k,i−1‖2, (19)

where ψ̄k,i is an estimate of Eψk,i, which can be computed

as

ψ̄k,i = α2ψ̄k,i−1 + (1 − α2)ψk,i. (20)

Here 0 < α1, α2 < 1 are design parameters. A short discussion

on how to choose these parameters is given in Section IV-C.

B. Estimating νk,l for k �= l

Each node k also requires knowledge of νk,l for all l ∈
Nk\k to compute (16) through (18). The simplest approach

would be to assume that these cross terms are zero, but this

does not yield good results. Notice that, under the unbiased-

ness assumption, νk,l is a sum of cross covariances between

the elements of the vectors ψk and ψl. Hence, it is reasonable

to assume that νk,l decreases with time when nodes k and l do

not communicate, and increases whenever they do. Therefore,

the term in (9) containing νk,l is responsible for increasing

the probability that node k will communicate with a neighbor

that it has not communicated with in a long time. This in turn

increases the flow of information through the network, and

therefore leads to better cooperation and lower overall MSD.

We will now show how the values νk,l can be estimated using

only information present at node k, and therefore without

requiring additional communication.

If we assume the signal model

dk(i) = uk,iw
o + vk(i), (21)

where vk(i) is additive noise, and use the common temporal

and spatial independence assumptions

E[u∗
k,iul,j] = Rkδk−lδi−j (22)

E[u∗
k,ivl(j)] = 0, for all i, j, k, l, (23)

we can use (2) to evaluate νk,l(i) for k �= l as follows:

νk,l(i) = E[Re(w̃∗
k,i−1Qw̃l,i−1)

∣∣C(i)], (24)

where

Q = I − μkRk − μlRl + μkμlRkRl, (25)

and where we used the fact that, by the above independence

assumptions, uk,i is independent from C(i). If we assume

uk,i is white for all k, that is, Rk = σ2
u,kI , expression (24)

simplifies to

νk,l(i) = (1 − μkσ2
u,k − μlσ

2
u,l + μkμlσ

2
u,kσ2

u,l)ωk,l(i − 1),
(26)

where

ωk,l(i − 1) Δ= E[Re(w̃∗
k,i−1w̃l,i−1)

∣∣C(i)] (27)

Although we cannot expect whiteness in practice, it seems

reasonable to approximate the development of νk,l as

νk,l(i) ≈ βωk,l(i − 1), (28)

for some β smaller than but close to 1.

Thus far we have reduced the problem of estimating νk,l to

that of estimating ωk,l. Inserting (4) into (27), we find that the

latter is given by

ωk,l = λkλlν
′
k,l + λk(1 − λl)ν′

k,sl

+ (1 − λk)λlν
′
sk,l + (1 − λl)(1 − λk)ν′

sk,sl
, (29)

where

ν′
k,l(i)

Δ= E[Re(ψ̃
∗
k,iψ̃k,i)

∣∣C(i + 1)]. (30)

We may use the approximation ν′
k,l ≈ νk,l, but even so

(29) contains several quantities for which neither exact values

nor estimates are available at node k. However, we can

approximate (29) from available information only, by using the

reasonable assumption that communication between two nodes
m and n does not change ωk,l unless {m,n}={k,l}. Under this

assumption, we can ignore the communication between k and

sk if sk �= l and between l and sl if sl �= k. Looking back

at (4), we see that this is equivalent to assuming λk = 1 if

sk �= l and λl = 1 if sl �= k. Therefore, we have the following

approximation for ωk,l:

ωk,l ≈⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

νk,l, if sk �= l and sl �= k
λkνk,l + (1 − λk)νl,l, if sk = l and sl �= k
λlνk,l + (1 − λl)νk,k, if sk �= l and sl = k

2λk(1 − λk)νk,l + λ2
kνk,k

+(1 − λk)2νl,l, if sk = l and sl = k
(31)

Here we have assumed that, if sl = k and sk = l, then λl =
(1 − λk), which is true for the optimum λo

k and λo
l .

Comparing (31) to (9), it is clear that the last of the four

cases is equal to Jk,l. In fact, when λk equals the optimum

λo
k, the two middle cases are also equal to Jk,l, a result that

is found by inserting (14) into the respective equations.

Before using the preceding results to compute our estimates,

we will make one more simplification, namely, we disregard

the third case of (31), and instead use the first case if sl = k
but sk �= l (this modification, in fact, improves performance,

though space restrictions prevent us from discussing why).

Thus, the estimate ω̂k,l of ωk,l is computed as

ω̂k,sk(i)(i) = Ĵk,l(i), (32)

ω̂k,l(i) = ν̂k,l(i) for l �= sk(i), (33)

where we are now writing Jk,l(i) to highlight the dependence

of Jk,l on time. Based on (28), ν̂k,l(i) is computed as

ν̂k,l(i) = βω̂k,l(i − 1). (34)

Equations (33), (32) and (34) together define the estimation

of νk,l(i) for k �= l.

1647

C. Choice of parameters

The cost function Jk(l, λ) represents an energy quantity, and

should therefore be nonnegative. For the true expectations νk,k,

νl,l and νk,l, this is ensured by the Cauchy-Schwarz inequality:

νk,kνl,l ≥ ν2
k,l. The same inequality will in fact provably hold

for our estimates as long as we choose β ≤ α1, although

the proof is not included here due to space restrictions. The

inequality is sufficient for Ĵk(l, λ) to be convex with respect

to λ, and sufficient and necessary for it to be nonnegative.

Through simulations we have seen that the performance of

the algorithm improves as α1 decreases and as β increases,

thus it is natural to choose α1 = β. Our simulations show good

results in the range 0.85 ≤ β = α1 ≤ 0.95. The selection of

α2 is a tradeoff between high accuracy and fast convergence of

the mean estimate. We have seen best results with α2 ≥ 0.995.

V. ALGORITHM SUMMARY

The following pseudocode describes the processing running

at node k.

Initialize wk,0 = 0, ν̂k,k(0) = 0, ψ̄k,0 = 0 and, for all

l ∈ Nk\k, ω̂k,l(0) = 0.

for i = 1, 2, . . . do
ek(i) = dk(i) − uk,iwk,i−1

ψk,i = wk,i−1 + μku∗
k,iek(i)

ν̂k,k(i) = α1ν̂k,k(i − 1) + (1 − α1)‖ψk,i − ψ̄k,i−1‖2

Send ν̂k,k(i) to and receive ν̂l,l(i)
from all neighbors l ∈ Nk\k
ψ̄k,i = α2ψ̄k,i−1 + (1 − α2)ψk,i

ν̂k,l(i) = βω̂k,l(i − 1), l ∈ Nk\k
Ĵk,l(i) = ν̂k,k(i)ν̂l,l(i)−ν̂2

k,l(i)

ν̂k,k(i)+ν̂l,l(i)−2ν̂k,l(i)+ε , l ∈ Nk\k
sk(i) = arg minl∈Nk\k Ĵk,l(i)
Receive ψsk(i),i, and send ψk,i if requested

λk,i = ν̂sk,sk
(i)−ν̂k,sk

(i)

ν̂k,k(i)+ν̂sk,sk
(i)−2ν̂k,sk

(i)+ε

wk,i = λk,iψk,i + (1 − λk,i)ψsk,i

ω̂k,sk(i)(i) = Ĵk,l(i)
ω̂k,l(i) = ν̂k,l(i), for l ∈ Nk\{k, sk(i)}

end for
Note that we have added a small positive constant ε to the

denominators where there is danger of division by zero.

VI. FURTHER REDUCTION OF COMMUNICATION

While the number of values communicated between neigh-

bors is greatly reduced in the proposed algorithm compared to

the traditional diffusion LMS, the number of communication

sessions is actually increased because we require communi-

cation of the estimates ν̂k,k in addition to ψk. One strategy

that reduces this number is to have the nodes communicate

ν̂k,k more rarely, e.g., every L samples, and let each node k
assume that νl,l(i), l ∈ Nk\k develops as νk,k(i) otherwise,

that is, at node k, replace ν̂l,l(i) by

ν̂
(k)
l,l (i) =

{
ν̂l,l(i) if L divides i

ν̂k,k(i)
ν̂k,k(i−1) ν̂

(k)
l,l (i − 1) otherwise. (35)

Fig. 1. Network topology in simulations

However, with this variation we can no longer guarantee that

the property ν̂2
k,l ≤ ν̂k,kν̂l,l holds. Therefore, whenever L

divides i, we need to check whether ν̂2
k,l ≤ ν̂k,kν̂l,l, and let

ν̂k,l ←
√

ν̂k,kν̂l,l otherwise.

In the special case where L = ∞, λk stays constant at 0.5,

while sk visits all neighbors in a round robin fashion.

VII. SIMULATION RESULTS

Simulations were performed to illustrate the performance

of the proposed algorithm. In the simulated example we used

N = 20 sensors, each running an adaptive filter with M = 30
taps. The input signals uk,i were generated as sample vectors

uk,i = [uk(i) uk(i−1) . . . uk(i−M +1)] of an AR-1

process of the form uk(i) = xk(i) + ρkuk(i − 1), where ρk

is a correlation coefficient and xk(i) is a white noise process

with variance scaled such that the variance of uk(i) becomes

σ2
u,k. The desired signal was modeled as dk(i) = uk,iw

o +
vk(i), where vk(i) is white noise with variance σ2

v,k. We used

α1 = β = 0.9 and α2 = 0.999. The plots were produced by

averaging the results over 50 runs.

Figure 1 shows the topology of the network used in simula-

tions. Figure 3 shows the parameters σ2
u,k, σ2

v,k and ρk, as well

as the SNR for each node. Figure 2 shows the network EMSE

of the proposed algorithm compared to other algorithms,

namely the full diffusion LMS with adaptive combiners (AC-

DLMS, [19]) and the probabilistic diffusion LMS (P-DLMS,

[5]). The first is unconstrained and thus it communicates

significantly more than the proposed algorithm. We used a step

size of 0.0005 for the adaption of the combiners. For the latter,

we chose the probabilities of communication such that the

expected number of weight vector exchanges per iteration is

one per node, the same as for the proposed algorithm. We used

simple averaging for the combiners. It is seen that the proposed

algorithm outperforms the P-DLMS. It also compares well

with the AC-DLMS at steady state, while using significantly

less communication.

Figure 4 shows EMSE of the proposed algorithm at steady

state with various values of L, as discussed in section VI.

Even as L → ∞, the proposed algorithm still outperforms the

P-DLMS.

VIII. CONCLUSIONS

A diffusion LMS algorithm with constraints on communi-

cation is presented. Through simulations, we studied the mean

1648

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 104

−40

−35

−30

−25

−20

−15

−10

−5

0

5

Time

N
et

w
or

k
E

M
S

E
 (d

B
)

Probabilistic diffusion
AC−Diffusion
Proposed

Fig. 2. Network EMSE of the proposed algorithm compared to full diffusion with adaptive combiners [19] and probabilistic diffusion LMS [5].

0 5 10 15 20
0

1

2

3

k

σ2 u,
k

0 5 10 15 20
0

0.05

0.1

k

σ2 v,
k

0 5 10 15 20
0

0.5

1

k

ρ k

0 5 10 15 20
0

10

20

30

k

S
N

R
k (d

B
)

Fig. 3. Network settings; input signal variance σ2
uk

, noise variance σ2
v,k ,

correlation coefficients ρk and node-specific SNR.

−38

−37

−36

−35

−34

−33

−32

L

S
te

ad
y

st
at

e
ne

tw
or

k
E

M
S

E
 (d

B
)

1 2 4 8 16 32 64 128 256 512

Probabilistic diffusion
AC−Diffusion
Proposed
Proposed, L=∞

Fig. 4. Network EMSE of the proposed algorithm with various values of L,
compared to probabilistic diffusion LMS.

square performance of the algorithm, and showed that EMSE

remains unaffected by the reduced communication.

REFERENCES

[1] C. G. Lopes and A. H. Sayed, “Incremental adaptive strategies over
distributed networks,” IEEE Transactions on Signal Processing, vol. 55,
no. 8, pp. 4064 –4077, Aug 2007.

[2] A. H. Sayed and C. G. Lopes, “Distributed recursive least-squares
strategies over adaptive networks,” in Proc. Asilomar Conference on
Signals, Systems and Computers, Nov 2006, pp. 233 –237.

[3] L. Li, J. A. Chambers, C. G. Lopes, and A. H. Sayed, “Distributed
estimation over an adaptive incremental network based on the affine
projection algorithm,” IEEE Transactions on Signal Processing, vol. 58,
no. 1, pp. 151 –164, Jan 2010.

[4] S. S. Ram, A. Nedic, and V. V. Veeravalli, “Stochastic incremental
gradient descent for estimation in sensor networks,” in Proc. Asilomar
Conference on Signals, Systems and Computers, Nov 2007, pp. 582 –
586.

[5] C. G. Lopes and A. H. Sayed, “Diffusion least-mean squares over
adaptive networks: Formulation and performance analysis,” IEEE Trans-
actions on Signal Processing, vol. 56, no. 7, pp. 3122–3136, July 2008.

[6] F. S. Cattivelli and A. H. Sayed, “Diffusion LMS strategies for dis-
tributed estimation,” IEEE Transactions on Signal Processing, vol. 58,
no. 3, pp. 1035 –1048, March 2010.

[7] S. S. Stankovic, M. S. Stankovic, and D. M. Stipanovic, “Decentralized
parameter estimation by consensus based stochastic approximation,” in
Proc. IEEE Conference on Decision and Control, New Orleans, Dec
2007, pp. 1535 –1540.

[8] L. Li and J. A. Chambers, “Distributed adaptive estimation based on
the APA algorithm over diffusion networks with changing topology,”
in Proc. IEEE/SP Workshop on Statistical Signal Processing, Cardiff,
Wales, UK, 31 2009-sept. 3 2009, pp. 757 –760.

[9] F. S. Cattivelli, C. G. Lopes, and A. H. Sayed, “Diffusion recursive
least-squares for distributed estimation over adaptive networks,” IEEE
Transactions on Signal Processing, vol. 56, no. 5, pp. 1865 –1877, may
2008.

[10] I. D. Schizas, G. Mateos, and G. B. Giannakis, “Distributed LMS for
consensus-based in-network adaptive processing,” IEEE Transactions on
Signal Processing, vol. 57, no. 6, pp. 2365–2382, June 2009.

[11] F. S. Cattivelli and A. H. Sayed, “Multi-level diffusion adaptive net-
works,” in Proc. IEEE International Conference on Acoustics, Speech
and Signal Processing, Taipei, Taiwan, April 2009, pp. 2789 –2792.

[12] C. G. Lopes and A. H. Sayed, “Diffusion adaptive networks with chang-
ing topologies,” in Proc. IEEE International Conference on Acoustics,
Speech and Signal Processing, Las Vegas, USA, April 2008, pp. 3285
–3288.

[13] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip
algorithms,” IEEE Transactions on Information Theory, vol. 52, no. 6,
pp. 2508 – 2530, June 2006.

[14] T. C. Aysal, M. E. Yildiz, A. D. Sarwate, and A. Scaglione, “Broadcast
gossip algorithms for consensus,” IEEE Transactions on Signal Process-
ing, vol. 57, no. 7, pp. 2748 –2761, July 2009.

[15] V. D. Blondel, J. M. Hendrickx, A. Olshevsky, and J. N. Tsitsiklis,
“Convergence in multiagent coordination, consensus, and flocking,” in
Proc. IEEE Conference on Decision and Control, Seville, Spain, Dec.
2005, pp. 2996–3000.

[16] D. S. Scherber and H. C. Papadopoulos, “Locally constructed algorithms
for distributed computations in ad-hoc networks,” in Proc. International
Symposium on Information Processing in Sensor Networks, Berkeley,
USA, April 2004, pp. 11–19.

[17] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,”
Systems and Control Letters, vol. 53, pp. 65–78, 2003.

[18] L. Xiao, S. Boyd, and S. Lall, “A scheme for robust distributed sensor
fusion based on average consensus,” in Proc. 4th Int. Symp. Information
Processing in Sensor Networks, Los Angeles, USA, Apr. 2005, pp. 63–
70.

[19] N. Takahashi, I. Yamada, and A. H. Sayed, “Diffusion least-mean
squares with adaptive combiners: Formulation and performance anal-
ysis,” IEEE Transactions on Signal Processing, vol. 58, no. 9, pp. 4795
–4810, Sep. 2010.

1649

