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Abstract— We study the problem of distributed Kalman filter-
ing, where a set of nodes are required to collectively estimate the
state of a linear dynamic system from their measurements. In
diffusion Kalman filtering strategies, neighboring state estimates
are linearly combined using a set of scalar weights. In this work
we show how to optimally select the weights, and propose an
adaptive algorithm to adapt them using local information at
every node. The algorithm is fully distributed and runs in real
time, with low processing complexity. Our simulation results show
performance improvement in comparison to the case where fixed,
non-adaptive weights are used.

I. INTRODUCTION

We study the problem of distributed Kalman filtering, where
a set of nodes are required to collectively estimate the state
of a linear dynamic system from their individual measure-
ments. The performance of the state estimation procedure will
depend heavily on the collaboration strategy employed. In
a centralized solution, all nodes send their measurements to
a fusion center, which uses a conventional Kalman filtering
algorithm to obtain the optimal state estimate, and then sends
the resulting estimate back to every node. This strategy may
require large amounts of energy for communications and has
the potential for a critical failure point at the central node.

Distributed strategies are an attractive alternative, since they
are in general more robust than centralized solutions, may
require fewer communications, and allow parallel processing.
Distributed Kalman filtering was proposed before in the con-
text of diffusion estimation in [1], [2], and in the context of
average consensus in [3], [4], [5]. Our focus is on diffusion
Kalman filtering , where nodes communicate only with their
neighbors, and no fusion center is present. Diffusion strategies
are robust to node and link failure and are flexible for ad-hoc
deployment and topology changes.

In diffusion strategies, the estimates available within the
neighborhood of a certain node are linearly combined using
a set of scalar weights. In this work we propose an adaptive
algorithm to adapt these weights, based on the data statistics.
The algorithm is fully distributed and runs in real time, with
low processing complexity. The algorithm is based on previous
work on diffusion LMS [6]. We extend the methodology of [6]
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Fig. 1. At time i, every node k in the network obtains a measurement yk,i.

to the Kalman filtering case, and apply the weight adaptation
strategy to our diffusion Kalman filtering algorithm proposed
in [1].

II. BACKGROUND

A. Data model and Problem Formulation

Consider a state-space model of the form:

xi+1 = Fixi + Gini

yi = Hixi + vi
(1)

where xi ∈ CM and yi ∈ CpN denote the state and
measurement vectors of the system, respectively, at time i,
and M , N and p are positive integers. The signals ni and
vi denote state and measurement noises, respectively, and
are assumed to be zero-mean, uncorrelated and white, with
covariance matrices denoted by

E

[
ni

vi

] [
nj

vj

]∗

=

[
Qi 0
0 Ri

]
δij (2)

where the operator ∗ denotes complex conjugate transposition
and δij is the Kronecker delta. The initial state x0 is assumed
to be zero-mean, with covariance matrix Π0 > 0, and is
uncorrelated with ni and vi, for all i. We further assume
that Ri > 0. The case where E niv

∗
i �= 0 can always be

transformed into an equivalent problem of the form (2) as
explained in [7]. The cases where E x0 �= 0 or when (1) has
a deterministic can be handled similarly.

B. Diffusion Kalman Filtering

Consider the case where we have N nodes spatially dis-
tributed over some region. We say two nodes are connected if
they can communicate directly to each other. A node is always
connected to itself. The set of nodes connected to node k is the
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neighborhood of node k, and is denoted by Nk. It is assumed
that at time i, every node k collects a measurement yk,i ∈ Cp

according to model (1) as follows:

yk,i = Hk,ixi + vk,i k = 1, ..., N (3)

The process is shown schematically in Fig. 1. Model (1) is
related to (3) by stacking the N measurements across all nodes
at time i as follows:

yi = col{y1,i, . . . ,yN,i}
Hi = col{H1,i, . . . , HN,i}
vi = col{v1,i, . . . ,vN,i}

(4)

We further assume that the measurement noises vk,i are
spatially uncorrelated, i.e.,

E vk,iv
∗
l,j = Rk,iδi,jδk,l

where Rk,i > 0 for all k, i.
The objective in distributed Kalman filtering implementa-

tions is for every node k in the network to compute an estimate
of the unknown state xi, while sharing data only with its
neighbors {l ∈ Nk}. We will denote the estimates of xi

obtained by node k and based on local observations up to
time j as x̂k,i|j .

An algorithm for distributed Kalman filtering, where all
nodes communicate only with their neighbors was proposed in
[1], and is known as diffusion Kalman filter. The diffusion KF
algorithm and its variants require the introduction of a N ×N
matrix C with real, non-negative entries cl,k satisfying:

1
∗C = 1

∗ cl,k = 0 if l �∈ Nk cl,k ≥ 0 (5)

where 1 is a column vector with unit entries of size N . We call
C the diffusion matrix, since it governs the diffusion process,
and plays an important role in the steady-state performance
of the network. The diffusion Kalman filtering is obtained by
adding a diffusion step consisting of a convex combination
of neighboring estimates after a conventional Kalman filtering
measurement update (see [1] for details). The algorithm is
shown below for convenience.

Algorithm 1: Diffusion Kalman filter
Consider a state-space model as in (1) and a diffusion matrix
as in (5). Start with x̂k,0|−1 = 0 and Pk,0|−1 = Π0 for all
k, and at every time instant i, compute at every node k:

Step 1: Incremental Update:
ψk,i ← x̂k,i|i−1

Pk,i ← Pk,i|i−1

for every neighboring node l ∈ Nk, repeat:
Re ← Rl,i + Hl,iPk,iH

∗
l,i

ψk,i ← ψk,i + Pk,iH
∗
l,iR

−1
e [yl,i − Hl,iψk,i]

Pk,i ← Pk,i − Pk,iH
∗
l,iR

−1
e Hl,iPk,i

end

Step 2: Diffusion Update:
x̂k,i|i ←

∑
l∈Nk

cl,kψl,i

Pk,i|i ← Pk,i

x̂k,i+1|i = Fix̂k,i|i

Pk,i+1|i = FiPk,i|iF
∗
i + GiQiG

∗
i

Algorithm 1 requires that at every instant i, nodes com-
municate to their neighbors their measurement matrices Hk,i,
the covariance matrices Rk,i, and the measurements yk,i for
the incremental update, and their intermediate estimates ψk,i

for the diffusion update. It is important to note that the
matrices Pk,i|i and Pk,i|i−1 do not represent the covariance
of the state estimation errors x̃k,i|i and x̃k,i|i−1 as in the
conventional Kalman filter, since the diffusion update is not
taken into account in the recursions for these matrices. Exact
expressions for the new covariances of the state error estimates
are provided in [1].

III. ADAPTIVE WEIGHTS

The aim of this work is to design the weighting coefficients
cl,k in the diffusion update of Algorithm 1. The objective
is to compute a set of weights that adapt to changes in the
data statistics. Moreover, we seek solutions that achieve this
adaptation by using information locally available at every
node. In this way, the algorithm is fully distributed in the
sense that it does not require access to global information.

A. Problem Formulation

Let ψk,i denote the intermediate estimate available at node
k and time i at the end of the incremental update (see
Algorithm 1), and let Ψi denote the M × N matrix obtained
by stacking these intermediate estimates row-wise, i.e.,

Ψi = [ψ1,i ψ2,i . . . ψN,i]

Let A denote an N ×N matrix with individual entries {cl,k},
and let ck denote the k-th column of A. The objective is for
every node k to obtain a set of coefficients {cl,k}l=1,...,N that
solve the following optimization problem:

minimize
ck

E ‖xi − Ψick‖2

subject to cl,k = 0 if l �∈ Nk and 1T ck = 1
(6)

Problem (6) minimizes the norm of the error between the
desired state at time i, and a linear combination of the
intermediate estimates ψk,i. The restriction that cl,k = 0 if l �∈
Nk ensures that node k will only need to access the estimates
from its neighbors l ∈ Nk. Thus, access to information outside
of the neighborhood is not required. We also ensure that the
coefficients add up to one through the constraint 1T ck = 1.

We now remove the constraint cl,k = 0 if l �∈ Nk from (6).
Let nk denote the degree of node k (i.e., the number of nodes
connected to node k including itself), and let {k1, . . . , knk

}
denote the indexes of the neighbors of node k. We define a
matrix Sk as follows

Sk = [ek1
. . . eknk

] (N × nk)

where el denotes the l-th column of an N×N identity matrix.
Thus, we can rewrite (6) as follows

minimize
bk

E ‖xi − Ψk,ibk‖
2

subject to 1T bk = 1
(7)

where bk ∈ Rnk is a vector containing the non-zero entries of
ck, i.e., ck = Skbk, and Ψk,i = ΨiSk.
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B. Lagrange minimization

The cost in (7) can be minimized by forming the Lagrangian

L(bk, λk) = Ex∗
i xi − 2Re{E x∗

i Ψk,i}bk +

bT
k Re{EΨ

∗
k,iΨk,i}bk + 2λk(1T bk − 1)

Let

qk,i � Re{EΨ
∗
k,ixi} Qk,i � Re{EΨ

∗
k,iΨk,i}

Differentiating the above expression and setting the gradient
to zero, we obtain:

−2qT
k,i + 2bT

k Qk,i + 2λk1
T = 0

Assuming EΨ
∗
k,iΨk,i > 0, we have

bopt
k = Q−1

k,i [qk,i − λopt
k 1] (8)

and using the constraint 1T bk = 1, we obtain

λopt
k =

1T Q−1
k,iqk,i − 1

1T Q−1
k,i1

(9)

C. Gradient-Descent Solution

Equations (8) and (9) provide a way of computing the
optimal set of weights at every iteration, provided that the
correlations EΨ

∗
k,ixi and EΨ

∗
k,iΨk,i are known. These quan-

tities can be computed provided the observation model at every
node in the network is known [1] and at the expense of several
computations. However, in distributed implementations, these
quantities are not known globally, and computations need
to be minimized. Thus, in this section we seek an adaptive
implementation where the nodes adapt their weights relying
solely on local data available within their neighborhoods,
while at the same time attempting to keep the computational
complexity low. Again, our procedure is inspired on [6]. We
first derive a gradient-descent solution to problem (6) and then
modify the iteration to introduce adaptivity.

Let PVk
denote the projection from Rnk onto Vk = {x ∈

Rnk : 1T x = 1}, which is given by [6]:

PVk
(a) =

(
Ink

−
1

nk

11
T

)
a +

1

nk

1 for all a ∈ R
nk

and let

Ak � Ink
−

1

nk

11
T

Then we can rewrite (7) as:

minimize
bk

E ‖xi − Ψk,iPVk
(bk)‖2 (10)

The gradient of the cost in (10) is given by:

∇∗(bk) = −2Akqk,i + 2AkQk,iPVk
(bk) (11)

Gradient-descent techniques minimize convex functions of the
form (10) through a set of iterations of the form [8], [9]:

bk,i+1 = bk,i −
μk,i

2
∇∗(bk,i)

Thus, we propose minimizing (10) using a gradient-descent
algorithm as follows:

bk,i+1 = bk,i + μk,iAk[qk,i − Qk,iPVk
(bk,i)] (12)

Notice that if bk,i satisfies 1T bk,i = 1, we have PVk
(bk,i) =

bk,i and therefore our iteration becomes

bk,i+1 = bk,i + μk,iAk[qk,i − Qk,ibk,i] (13)

Recall that the desired weights can be recovered through
ck,i+1 = Skbk,i+1.

D. Adaptive Solution

In order make iteration (13), we introduce the following
approximations:

qk,i = Re{EΨ
∗
k,ixi} ≈ Re{Ψ∗

k,i−1x̂k,i−1|i}

Qk,i = Re{EΨ
∗
k,iΨk,i} ≈ Re{Ψ∗

k,i−1Ψk,i−1}

where

Ψk,i = ΨiSk and Ψi = [ψ1,i ψ2,i . . . ψN,i]

Recall that ψk,i is the intermediate estimate available at
node k after the incremental update, and this estimate is
communicated to all neighbors of node k. Using the above
approximations into (13), we obtain the adaptive weights
algorithm provided below:

Adaptive Weights for Diffusion Kalman Filtering
Start with bk,−1 ∈ Rnk for every node k such that
1T bk,−1 = 1. Then, for i ≥ 0, repeat:⎧⎪⎨
⎪⎩

bk,i+1 = bk,i + μk,iAk×

Re
{

Ψ∗
k,i−1(x̂k,i−1|i − Ψk,i−1bk,i)

}
ck,i+1 = Skbk,i+1

(14)

One possible choice for the step-size μk,i that will guarantee
ck,i will have non-negative entries for all k and i is

ηk,i+1 = max {0, bk,i+1}
ck,i+1 = 1

1T ηk,i+1
Skηk,i+1

where the above maximum is entry-wise.

Algorithm 2: Diffusion Kalman filter with Adaptive
Weights
Consider a state-space model as in (1) and a diffusion matrix
as in (5). Start with x̂k,0|−1 = 0 and Pk,0|−1 = Π0 for all
k, and at every time instant i, compute at every node k:

Step 1: Incremental Update: same as in Algorithm 1

Step 2: Diffusion Update:
x̂k,i|i ←

∑
l∈Nk

cl,k,iψl,i

Pk,i|i ← Pk,i

x̂k,i+1|i = Fix̂k,i|i

Pk,i+1|i = FiPk,i|iF
∗
i + GiQiG

∗
i

Step 3: Adapt the weights {cl,k,i} using (14)
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IV. SIMULATIONS

In order to illustrate the performance of Algorithms 2, we
present a simulation example in Figs. 2-4. We consider the
problem of estimating and tracking the position of a projectile.
We assume that the projectile is in proximity of an adaptive
network, where the sensors obtain noisy measurements of the
position of the projectile.

The state x of the system is a vector of dimension 6, formed
by stacking the 3-D velocity and 3-D position of the object,
which evolves as follows:

[
v̇

ḋ

]
︸ ︷︷ ︸

ẋ

=

[
0 0
I3 0

]
︸ ︷︷ ︸

Φ

[
v

d

]
︸ ︷︷ ︸

x

+

⎡
⎢⎢⎣

⎡
⎣ 0

0
−g

⎤
⎦

0

⎤
⎥⎥⎦

︸ ︷︷ ︸
c

where g is the gravity constant (we use g = 10). The above
model is discretized (see [2] for details) by denoting wi =
x(iδ), to obtain:

wi+1 = Fwi + Gini + u
zk,i = Hk,iwi + vk,i

(15)

where

F � I + δΦ and u � [δI + δ2Φ/2]c

and zk,i are the individual measurements obtained by node
k at time i, ni accounts for modeling errors, and vk,i is the
measurement noise at node k. Model (15) can be formulated
in the same form as 1 by defining the zero-mean quantities
xi = wi − Ewi and yk,i = zk,i − E zk,i.

We assume that every node measures the position of the
unknown object in either the two horizontal dimensions, or
a combination of one horizontal dimension and the verti-
cal dimension. Thus, individual nodes do not have direct
measurements of the position in the three dimensions. The
assignment of which pair is observable by every node is done
at random, but taking care that for every neighborhood, there
is at least one node of each type. Therefore, we have, Hk,i =
[0 diag([1 1 0])] for the case where only the horizontal
dimensions are observed, or Hk,i = [0 diag([1 0 1])] for
the case where one horizontal dimension and the vertical
dimension are observed.

In our experiment we use a network with N = 10 nodes,
with topology shown in Fig. 2. The values of the parameters
are δ = 0.1, Gi = I ,Qi = (0.001)I and Rk,i = PR0P

T

with R0 = 0.5 × diag[1 4 7] and P being a permutation
matrix, chosen at random for every node. The expected value
of the initial state is Ex0 = [20 4 16 0.1 0.1 0.1]T and
its covariance P0 = I . The results were averaged over 100
independent experiments over the same network topology.

We consider two simulation scenarios with different noise
profiles. In the first scenario, the measurement noise covari-
ance Rk,i is the same for every node k. We also assume
that this covariance matrix does not change with time. This
situation is depicted in the bottom left plot of Fig. 2. In the
second scenario, we have very dissimilar noise conditions
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Fig. 2. Network topology (top), and trace of observation noise covariances
for scenario 1 (bottom, left) and scenario 2 (bottom, right).

at different nodes. For instance, the trace of the covariance
matrices at nodes 2, 3 and and 6 are 1000 times higher (30dB
lower SNR) than the rest of the nodes. Again we assume these
covariance matrices do not change with time. This scenario is
depicted in the bottom right plot of Fig. 2.

For Alg. 1, we used the relative-degree rule to select matrix
C, where

clk =

{
αk|Nl| if l ∈ Nk

0 otherwise

and nk denotes the degree of node k (i.e., the number of
neighbors including itself), and αk is a normalization parame-
ter chosen such that 1∗C = 1∗. For Alg. 2, the initial weights
were chosen uniform, i.e., equal for every neighbor, and the
step-size was μk,i = 0.01 .

Fig. 3 shows the transient and steady-state performance for
Scenario 1. The performance is measured in therms of the
network Mean-Square Deviation (MSD), defined for node k
at time i as:

MSDk,i = E||xi − x̂k,i|i||
2

The network MSD is defined as the average over all nodes.

MSDnetwork
i =

1

N

N∑
k=1

MSDk,i|i

The top plot of Fig. 3 shows the network MSD as a function
of time, for different algorithms, while the bottom plot shows
the steady-state MSD at every node. The algorithm denoted
“Local” allows nodes to exchange only measurements with
their neighbors, but there is no diffusion process (i.e., C = I).
Once a node has all the measurements from its neighborhood,
it can run a conventional Kalman filtering update with this
data. We also show the diffusion KF (Alg. 1), and the proposed
diffusion KF with adaptive weights (Alg. 2). Also shown for
comparison is the centralized case, where it is assumed that a
fusion center has access to all measurements across the nodes,
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Fig. 3. Transient network MSD as a function of time (top) and steady-state
MSD as a function of node number (bottom) for Scenario 1, where all nodes
have similar measurement noise profiles.

and uses them to produce the optimal Kalman filter estimate.
It can be observed from Fig. 3 that both the Diffusion KF
(Alg. 1) and the proposed variant with adaptive weights (Alg.
2) have a very similar performance, which is also close to the
global performance in this case.

We now resort to Scenario 2, where the measurement noise
profiles are very different at different nodes. Again, in Fig.
3 we show the transient performance as a function of time
(top) and the steady-state performance for each node (bottom).
We now observe that the proposed diffusion KF with adaptive
weights (Alg. 2) considerably outperforms the non-adaptive
diffusion KF (Alg. 1), and obtains a performance close to the
centralized solution. This behavior can be explained intuitively
as follows. Recall that in Scenario 2, nodes 2, 3 and 6 have
a 30dB lower SNR than the rest of the nodes. Thus, the
local estimates produced by these nodes will be very noisy,
as depicted by the green curve in the bottom plot of Fig. 3.
The reason is that local estimates rely on local measurements,
which are noisy in this case. Thus, in the diffusion step
of Alg. 1, where these local estimates are combined in a
convex manner, less weight should be given to these noisy
local estimates, which is what our proposed Alg. 2 does. This
behavior allows Alg. 2 to achieve increased performance.
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Fig. 4. Transient network MSD as a function of time (top) and steady-state
MSD as a function of node number (bottom) for Scenario 2, where all nodes
have very dissimilar measurement noise profiles.

V. CONCLUSIONS

We discussed optimal choices for the combination weights
in diffusion Kalman filtering, and proposed an adaptive variant
that can be computed in real time and in a distributed manner.
The proposed algorithm has been observed to outperform
existing techniques for the case of dissimilar noise profiles
across nodes.
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