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Abstract— We consider the problem of distributed detection, where a
set of nodes are required to decide between two hypotheses based on
their measurements. In diffusion implementations, nodes communicate
with their neighbors and no fusion center is needed. In previous work
we proposed a distributed detection scheme which was based on diffusion
least-squares techniques. In this work we consider the case where
nodes utilize diffusion LMS techniques instead. The proposed detector
is capable of tracking changes in the active hypothesis. We analyze the
performance of the detector, and provide simulation results comparing
with other cooperation schemes.

I. INTRODUCTION

We study the problem of distributed detection, where a set of
nodes are required to decide between two hypotheses based on their
measurements of some physical process. We seek a fully distributed
implementation, where all nodes make individual decisions by com-
municating with their immediate neighbors only, and no fusion center
is necessary. This scheme provides the network with more flexibility
in comparison to a centralized solution, and can be more efficient
in terms of communication power and networking resources [1].
Every node in the network will reach a decision. Moreover, our
proposed detection algorithm is adaptive, in the sense that at every
time instant, every node obtains a new measurement, and uses it
to obtain a new decision based on the measurements up to that
time instant. This makes our algorithm attractive for distributed real-
time implementations, since there is no need to wait until a number
of measurements are obtained, and more importantly, the algorithm
allows tracking of changes in the active hypothesis.

Distributed detection schemes have been proposed before in the
literature. The so-called “decentralized” detection schemes require
communicating the measurements to a fusion center for processing
[2]-[4]. More recently, detection schemes based on average consensus
have been proposed, which avoid the use of a fusion center, and
where every node in the network makes an individual decision [5]-
[8]. Consensus-based schemes assume that all the nodes take a set of
measurements, and subsequently run an iterative algorithm to reach
consensus. Thus, these algorithms employ two time-scales: one to
take the measurements and another to run the consensus algorithm,
making them different from our proposed approach.

The proposed distributed detection algorithm is based on our prior
work on distributed estimation. Diffusion-based estimation solutions,
where nodes communicate with their neighbors in an isotropic
manner have been proposed in the context of distributed adaptive
filtering, including diffusion LMS [9], [10], [11] and diffusion RLS
[12]. In [13] we proposed a distributed detection scheme based on
diffusion RLS, which takes advantage of the connection between
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Fig. 1. Distributed detection scheme.

Neyman-Pearson detection and minimum-variance estimation for
linear systems in Gaussian noise in order to formulate the detection
problem in terms of an estimation problem. In this work, we propose
a detector based on diffusion LMS instead. Thus, the solution has
lower computational complexity than its RLS counterpart. Moreover,
the solution inherits the tracking abilities of the LMS algorithm
as we shall see. We provide performance analysis in terms of
probabilities of detection and false alarm, and provide simulation
results comparing with other techniques, such as the centralized
solution and the case where nodes do not cooperate.

II. THE DETECTION PROBLEM

A. Data model

Consider a set of N nodes distributed over some region. We say
that two nodes are connected if they can communicate directly with
each other. Every node is always connected to itself. The set of nodes
connected to node k is called the neighborhood of node k, and is
denoted by Nk. The number of neighbors of node k including itself
is called the degree of node k and is denoted by nk. At every time
instant i, every node k takes a scalar measurement dk(i) of some
random process dk(i), which is related to an unknown vector wo of
size M as follows:

dk(i) = uk,iw
o + vk(i) (1)

where uk,i is a known deterministic row vector of size M , and
vk(i) is a scalar zero-mean WSS complex circular Gaussian random
process, uncorrelated in time and space, i.e.,

E vk(i)vl(j) = δklδijσ
2
vk

The operator E denotes expectation, and δkl is the Kronecker delta.
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The objective is for every node in the network to distinguish
between two hypotheses H0 and H1, where:

wo =

{
0 under H0

w1 under H1

Thus, under H0, the observations only contain noise, whereas under
H1, the observations contain a signal component.

We collect the data for all nodes k = 1, . . . , N and for all time
instants j = 0, . . . , i up to time i as follows:

di = col{d1(i), . . . , dN (i), d1(i − 1), . . . , dN (i − 1),

. . . , d1(0), . . . , dN (0)} ((i + 1)N × 1)

Ui = col{u1,i, . . . , uN,i, u1,i−1, . . . , uN,i−1,

. . . , u1,0, . . . , uN,0} ((i + 1)N × M)

vi = col{v1(i), . . . , vN (i), v1(i − 1), . . . , vN (i − 1),

. . . , v1(0), . . . , vN (0)} ((i + 1)N × 1)

where the col operator stacks its arguments column-wise. Thus,
model (1) can be rewritten as

di = Uiw
o + vi (2)

Notice that vi ∼ CN (0, Rv,i), where Rv,i = Eviv
∗
i is a diagonal

matrix, and ∗ denotes complex conjugate transposition. Thus, under
H0, di ∼ CN (0, Rv,i), whereas under H1, di ∼ CN (Uiw1, Rv,i).

B. Neyman-Pearson detection

According to the Neyman-Pearson (NP) criterion, the detector that
maximizes the probability of detection Pd (i.e., the probability of
selecting H1 when H1 is true) given a probability of false alarm Pf

(i.e., the probability of selecting H1 when H0 is true) is [14]:

T i(di)
H0

≶
H1

γi

where
T i(di) � αiRe{w∗1U∗i R−1

v,idi} (3)

and αi is any real, positive constant (the value of γi will typically
depend on the choice of αi). Then we have (see [13] for details):

T i(di) ∼

{
N (0, σ2

i ) under H0

N (μi, σ
2
i ) under H1

where

μi = αiw
∗
1U∗i R−1

v,i Uiw1 σ2
i = sα2

i w
∗
1U∗i R−1

v,i Uiw1

and s = 1 if the vector di is real, and s = 1/2 if it is complex.
The probabilities of false alarm and detection at time i are given,
respectively, by

Pf = Q
(

γi

σi

)
Pd = Q

(
γi−μi

σi

)
= Q

(
Q−1(Pf ) − μi

σi

) (4)

Note that given Pf , we can determine γi = σiQ
−1(Pf ), and also,

that Pd does not depend on the choice of αi, and therefore we are
free to choose this constant to our convenience.

Under the linear model assumption (2), and the statistical as-
sumptions on the observation noise vi, we have that the minimum-
variance-unbiased (MVU) estimator of wo given di is given by [15]:

ŵ
mvu
i = (U∗i R−1

v,iUi)
−1U∗i R−1

v,idi (5)

Then, the optimal test statistic (3) can be rewritten in terms of (5) as
follows

T i(di) = αiRe{w∗1U∗i R−1

v,i Uiŵ
mvu
i } (6)

III. DISTRIBUTED DETECTION

A. Detection with incomplete data

Equation (6) is key for our development, since it indicates how we
can calculate the optimal NP test statistic T i from the MVU estimator
ŵmvu

i . Notice that in order to calculate (3) or (6), we need knowledge
of the data {dk(j), uk,j} for all nodes k and for all instants j up to
time i. Thus, a fusion center would collect all these measurements
coming from the different nodes, and compute the optimal NP test
statistic. This is the global solution to the problem.

In practice, it may be the case that a certain node only has access
to an estimate ŵk,i of wo which is not necessarily the optimal MVU
estimate. The question is how to define a test statistic based on
this new estimator, and what will be the resulting probabilities of
detection and false alarm. In this work we consider linear estimates
ŵk,i obtained through the diffusion LMS algorithm.

B. The diffusion LMS algorithm

The diffusion LMS algorithm [9], [11] allows every node in the
network to obtain a linear estimate of the unknown parameter wo

from a linear observation model as in (1).
Consider N ×N matrices A and C with non-negative real entries

al,k and cl,k, respectively, satisfying

al,k = cl,k = 0 if l �∈ Nk 1
T A = 1

T
1

T C = 1
T

The diffusion LMS algorithm obtains for every node k, and for every
instant i, an estimate ŵk,i of wo. The Adapt-Then-Combine (ATC)
version of the algorithm is shown below for convenience. Notice that
nodes only need to communicate with their neighbors, at every time
i, their data {dk(i), uk,i} and vectors ψk,i of size M .

ATC Diffusion LMS Algorithm [10]
Start with ŵk,−1 = 0 for every node k. For every time instant
i ≥ 0, repeat

Incremental update: for every node k, repeat

ψk,i = ŵk,i−1 + μk

∑
l∈Nk

cl,ku∗l,i[dl(i) − ul,iŵk,i−1]

Diffusion update: for every node k, repeat

ŵk,i =
∑

l∈Nk

al,kψl,i

(7)

C. Diffusion LMS-based detection algorithm

Based on (6), we can formulate a distributed detection algorithm
that uses the diffusion LMS algorithm (7) to compute ŵk,i. We will
be interested in test statistics of the form:

T k,i(ŵk,i) = αiRe{w∗1Qk,iŵk,i} (8)

Notice that (6) is a special case of (8) when ŵk,i is the MVU
estimator, and we choose Qk,i = U∗i R−1

v,iUi. We will now consider
linear estimators of the form:

ŵk,i = Kk,idi

where Kk,i is a M×(i+1)N matrix assumed full rank. The following
proposition establishes the optimal choice of Qk,i in (8).

Proposition 1: Consider the observation model (2), and assume
that every node k, at time i, obtains a linear estimator of wo, denoted
by ŵk,i = Kk,idi, where Kk,i is an M × (i+1)N full rank matrix.
Then, the optimal test statistic for NP detection is given by (8) with:

Qk,i = Qopt
k,i � U∗i K∗

k,i(Kk,iRv,iK
∗
k,i)

−1 (9)
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Proof: The result is obtained by considering now the linear
observation model:

ŵk,i = (Kk,iUi)w
o + Kk,ivi

and applying the NP detection theorem for linear models as discussed
in Section II-B.

Equation (9) gives us an expression for the optimal value of
Qk,i for a given linear estimation scheme with estimation matrix
Kk,i. Even though this optimal value of Qk,i will give us the
best performance, it may be inefficient in practice to compute the
quantities Kk,iUi and (Kk,iRv,iK

∗
k,i)

−1 in a distributed manner.
Though possible, this will require exchanging matrices between
neighboring nodes at every iteration. Thus, we now propose a simpler
choice of Qk,i that yields good results as shown in Sec. V.

In order to derive Qk,i, and in order to avoid further communi-
cations, we will assume for the moment that there is no diffusion
process, i.e., A = I . In this case, we have:

ŵk,i = ŵk,i−1 + μk

∑
l∈Nk

cl,ku∗l,i[dl(i) − ul,iŵk,i−1]

Assuming ŵk,−1 = 0, the above estimator is of the form ŵk,i =
Kk,idi. As shown in Appendix , a good and simple approximation
for Qk,i (up to a constant) when the step-size μk is small is given
by

Qk,i ≈ I. (10)

Combining (8) and (10), we obtain the proposed algorithm shown
in (11). It uses the diffusion LMS algorithm (7) to compute ŵk,i,
and then uses this estimate to compute the test statistic Tk,i.

Diffusion LMS Detection Algorithm
Start ŵk,−1 = 0 for all k. For every node k, and for every time
instant i > i0, repeat:

Incremental update: for every node k, repeat
ψk,i = ŵk,i−1 + μk

∑
l∈Nk

cl,ku∗l,i[dl(i) − ul,iŵk,i−1]

Diffusion update: for every node k, repeat
ŵk,i =

∑
l∈Nk

al,kψl,i

Decision: for every node k, repeat
Tk,i = αiRe{w∗1ŵk,i}

Tk,i

H0

≶
H1

γk,i

(11)
Alg. (11) can be specialized to different cooperation schemes of

interest. In this work we consider three different cooperation schemes
based on the available data at every node: global, no-cooperation
and diffusion. The global solution corresponds to the case where
all nodes have access to all the data from the network, as in a a
fully connected or centralized solution. The no-cooperation solution
corresponds to the case where nodes do not communicate with each
other, and are isolated. In a diffusion solution (our proposed scheme),
nodes exchange measurements and estimates with their neighbors.
Alg. (11) can be specialized to each of these cases by appropriately
selecting the matrix A and the neighborhood of node k. The choices
are summarized in Table I.

IV. PERFORMANCE ANALYSIS

In this section we study the performance of the diffusion LMS-
based detector (11). We will now consider the estimates ŵk,i and

Scheme Choice of Nk in (11) Choice of A in (11)
Global {1, . . . , N} I

No cooperation {k} I

Diffusion Nk A

TABLE I
CHOICES OF A AND Nk FOR DIFFERENT COOPERATION SCHEMES.

ψk,i to be random quantities. We define the error quantities:

ψ̃k,i = ψk,i − wo
w̃k,i = ŵk,i − wo

We also introduce the following extended vectors, obtained by
stacking the vectors of every node:

ψ̃i = col{ψ̃1,i, . . . , ψ̃N,i} w̃i = col{w̃1,i, . . . , w̃N,i}

From the incremental update of Alg. (11), we have:

ψk,i = ŵk,i−1 + μk

∑
l∈Nk

cl,ku∗l,i[dl(i) − ul,iŵk,i−1]

and from model (1) we obtain:

ψ̃k,i = w̃k,i−1 + μk

∑
l∈Nk

cl,ku∗l,i[vl(i) − ul,iw̃k,i−1] (12)

We define the block-diagonal matrices

Di = diag

⎧⎨
⎩

∑
l∈N1

cl,ku∗l,iul,i, . . . ,
∑

l∈NN

cl,ku∗l,iul,i

⎫⎬
⎭ (13)

Ei = diag

⎧⎨
⎩

∑
l∈N1

bl,ku∗l,iul,i, . . . ,
∑

l∈NN

bl,ku∗l,iul,i

⎫⎬
⎭ (14)

and the diagonal matrix

M = diag {μ1IM , . . . , μNIM} (15)

and the extended weighting matrices

A = A ⊗ IM C = C ⊗ IM

where ⊗ denotes the Kronecker product. Then we can rewrite (12)
as:

ψ̃i = [I −MDi]w̃i−1 + MCTU∗i vi

where

Ui = col{u1,i, . . . , uN,i}

and

vi = col{v1,i, . . . , vN,i} E viv
∗
i = Rv,i

From the diffusion update of (11), we have:

w̃i = AT
ψ̃i

and therefore

w̃i = AT [I −MDi]w̃i−1 + ATMCTU∗i vi (16)
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A. Mean performance

Taking expectation of (16) we get

E w̃i = AT [I −MDi] E w̃i−1 (17)

At time i = −1, the initial condition is E w̃−1 = −1⊗ wo.
Notice that if we start at some time i0 from an unbiased initial

condition (i.e., E wk,i0 = wo for all k), then Alg. (11) will be
unbiased for i ≥ i0. Asymptotic unbiased can be obtained in
some cases for any initial condition. For instance, Alg. (11) will be
asymptotically unbiased if we can find a sub-multiplicative matrix
norm ‖ ·‖ and a time instant i0 such that the matrices AT [I−MDi]
satisfy ‖AT [I −MDi]‖ ≤ β < 1 for all i > i0.

B. Mean-square performance

From (16), and noticing that vk(i) is uncorrelated with ŵl,i−1 for
all l, we find that the covariance matrix of the error vector w̃i is
given by:

Rw̃i
= AT [I −MDi]Rw̃i−1

[I −D∗i M]A
+ATMCTU∗i Rv,iUiCMA

(18)

Note that Rw̃k,i
, the covariance matrix of w̃k,i, is given by the k-th

M ×M diagonal block of Rw̃i
. At time i = −1, the initial condition

for (18) is Rw̃
−1

= (1⊗ wo)(1⊗ wo)∗.

C. Detection performance

From model (1), we have that the test statistic (8) with Qk,i = I
is Gaussian, and distributed according to:

T k,i(ŵk,i) ∼ N (μk,i, σ
2
k,i) (19)

with mean and variance given, respectively, by:

μk,i = αiRe{w∗1 E ŵk,i} (20)

σ2
k,i = sα2

i w
∗
1Rw̃k,i

w1) (21)

where the parameter s is given by s = 1 if the vector di is real, and
s = 1/2 if it is complex.

Since E ŵk,i = Kk,iUiw
o, it clearly depends on the active

hypothesis. For the case wo = 0, we also have E ŵk,i = 0.
Therefore, the probability of detection at node k and time i is given
by

Pd = Q

(
γk,i − αiRe{w∗1 E[ŵk,i|H1]}

σk,i

)
(22)

The probability of false alarm is given by:

Pf = Q

(
γk,i

σk,i

)
(23)

and the threshold can be computed from γk,i = σk,iQ
−1(Pf ).

V. SIMULATIONS

We now provide simulation results for Alg. (11) and compare with
other cooperation schemes. We use a network with N = 20 nodes
and unknown complex vector of size M = 5. The regressors were
drawn according to a complex Gaussian distribution, independent in
time and space. The network topology, noise variances and trace of
regressor covariances are shown in Fig. 2. For the diffusion algorithm,
we used relative-degree weights for A [12] and for C we used weights
of the form cl,k = βk/σ2

vl
, where βk is a normalizing constant such

that
∑

l cl,k = 1. The step-size is μk = 0.05 in all cases and for all
k.

Fig. 3 shows the probability of mis-detection Pe = 1 − Pd for
different cooperation schemes, where for every node the threshold
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γk,i is determined in such a way that its probability of false alarm
is Pf = 10−9. The probability Pe was computed using the provided
theoretical expressions, and taking the maximum over all nodes
at each time instant. We observe that the diffusion-based solution
considerably outperforms the case where there is no cooperation.
As expected, the global LMS scheme has better performance than
diffusion. Also, the proposed algorithm (11) with Qk,i = I has a
performance which is very close to the optimal choice of Qopt

k,i in
(9). The algorithm also outperforms the diffusion RLS algorithm [13]
during the initial stages, though as more measurements are taken into
account, the converse is true.

The tracking performance of the proposed algorithm is illustrated
in Fig. 4. We show the probability of mis-detection for Pf = 10−9,
for the case where the active hypothesis changes from H1 to H0 at
time i = 15. We observe that the proposed LMS algorithm has better
tracking capabilities than the diffusion RLS detection algorithm [13],
and also outperforms it when we set a forgetting factor λ = 0.95.

VI. CONCLUSIONS

We proposed a distributed detection algorithm for a binary hypoth-
esis testing problem in Gaussian noise. Our algorithm exploits the
connection between detection and estimation and uses the diffusion
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LMS distributed estimation algorithm. We provided performance
analysis and simulations showing that the diffusion algorithm out-
performs the case where there is no cooperation and has enhanced
tracking capabilities.

APPENDIX

We proceed to show that for small step-size, we have Qk,i ≈ I .
For the diffusion LMS algorithm with A = I and ŵk,−1 = 0, we
have ŵk,i = Kk,idi, where

Kk,i = μk[U∗i Wk HiU
∗
i−1Wk HiHi−1U

∗
i−2Wk . . .

HiHi−1 . . . H1U
∗
0 Wk]

and we defined

Ui = col{u1,i, . . . , uN,i}

Hi = I − μkU
∗
i WkUi

Wk = diag(Cek)

For the choice cl,k = βk/σ2
vl

we have Wk = βkR−1
v and

Kk,iUi = μk

i∑
j=0

(Hi . . . Hj+1)U
∗
j WkUj

Kk,iRv,iKk,i = βkμ2
k

i∑
j=0

(Hi . . . Hj+1)U
∗
j WkUj(Hi . . . Hj+1)

∗

For small step-size, we can approximate Hi . . . Hj+1 ≈ I −
μk

∑i

m=j+1
U∗mWkUm and

Kk,iRv,iKk,i =βkμ2
k

[
Kk,iUi−

μk

i∑
j=0

(Hi . . . Hj+1)U
∗
j WkUj(

i∑
m=j+1

U∗mWkUm)

]

≈ βkμ2
kKk,iUi

Finally,

Qk,i = (Kk,iUi)
∗(Kk,iRv,iK

∗
k,i)

−1 ≈ β−1

k μ−2

k I
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