
Diffusion LMS Algorithms with Information Exchange

Federico S. Cattivelli and Ali H. Sayed

Department of Electrical Engineering
University of California, Los Angeles, CA 90095

Emails: {fcattiv, sayed}@ee.ucla.edu

Abstract— We consider the problem of distributed estimation, where
a set of nodes are required to collectively estimate some parameter
of interest. We motivate and propose new versions of the diffusion
LMS algorithm, including a version that outperforms previous solutions
without increasing the complexity or communications, and others that
obtain even better performance by allowing additional communications.
We analyze their performance and compare with simulation results.

I. INTRODUCTION

We consider the problem of distributed estimation, where a set
of nodes are required to collectively estimate some parameter of
interest. Consider a set of N nodes distributed over some region
(see Fig. 1). At every time instant i, every node k takes a scalar
measurement dk(i) of some random process dk(i) and a 1 × M
regression vector, uk,i, corresponding to a realization of a random
process uk,i, which is correlated with dk(i). The objective is for
every node in the network to use the data {dk(i), uk,i} to estimate
some parameter vector w.

In the centralized solution to the problem, every node in the
network transmits its data {dk(i), uk,i} to a central fusion center
for processing. This approach has the disadvantage of requiring large
amounts of energy and communication resources.

In distributed implementations, every node in the network com-
municates with a subset of the nodes. The set of nodes that are
connected to node k, including k itself, is denoted by Nk and is
called the neighborhood of node k.

Distributed estimation algorithms have been proposed in the con-
text of distributed adaptive filtering [1], [2]. These include incre-
mental LMS [2]-[3], incremental RLS [2], diffusion LMS [4] and
diffusion RLS [5]. Diffusion Kalman filtering [6] and smoothing [7]
have also been proposed. Distributed estimation algorithms based on
consensus strategies have been proposed in [8], [9].

II. PROBLEM FORMULATION

A. Global optimization

We seek the optimal linear estimator wo that minimizes the
following global cost function:

Jglob(w) �

N∑
k=1

E |dk(i)− uk,iw|
2 (1)

where E denotes the expectation operator. Assuming the processes
dk(i) and uk,i are jointly wide sense stationary (WSS), the optimal
solution is given by [10], [11]:

wo =

(
N∑

k=1

Ru,k

)−1(N∑
k=1

Rdu,k

)
(2)

where Ru,k = E u∗k,iuk,i and Rdu,k = E dk(i)u∗k,i, and where the
operator ∗ denotes complex conjugate-transposition.

This material was based on work supported in part by the National Science
Foundation under awards ECS-0601266 and ECS-0725441.

k

{dk(i), uk,i}

Nk

Fig. 1. Node k takes a measurement at time i.

B. Local optimization

Now consider an N × N matrix C with individual non-negative
real entries {cl,k} such that

cl,k = 0 if l �∈ Nk C1 = 1 1
∗C = 1

∗ (3)

where 1 denotes the N × 1 vector with unit entries. When node k
has access only to the data from its neighbors {l ∈ Nk}, it can then
seek to minimize the following local cost function:

J loc
k (w) =

∑
l∈Nk

cl,k E |dl(i)− ul,iw|
2 (4)

where the coefficients cl,k give different weights to the data from the
neighbors. The local optimal solution is therefore:

wloc
k = Γ−1

k

⎛
⎝∑

l∈Nk

cl,kRdu,l

⎞
⎠ where Γk �

∑
l∈Nk

cl,kRu,l

(5)
A completion-of-squares argument shows that (4) can be rewritten in
terms of wloc

k as:

J loc
k (w) = ‖w − wloc

k ‖2Γk
+ mmse (6)

where mmse is a constant that does not depend on w and ‖a‖2Σ =
a∗Σa represents a weighted vector norm for any Hermitian Σ > 0.

An interesting question is how do the local solutions (5) at all
nodes relate to the global solution (2)? Because of (3), note that we
can write the global cost (1) as

Jglob(w) =

N∑
l=1

J loc
l (w) = J loc

k (w) +

N∑
l�=k

J loc
l (w) (7)

Thus, using (4), (6) and (7), we find that minimizing the global cost
(1) is equivalent to minimizing the following cost function, for any
k ∈ {1, ..., N}:

Jglob′

(w) =
∑

l∈Nk

cl,k E |dl(i)− ul,iw|
2 +

N∑
l�=k

‖w − wloc
l ‖2Γl

(8)

In the following sections we will show that Equation (8) suggests
distributed implementations of the diffusion type, and will be instru-
mental in the derivation of different diffusion estimation algorithms.

251978-1-4244-2941-7/08/$25.00 ©2008 IEEE Asilomar 2008

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on June 06,2010 at 18:00:06 UTC from IEEE Xplore. Restrictions apply.

III. STEEPEST-DESCENT GLOBAL SOLUTION

To begin with, consider minimizing the cost function (1) using the
traditional iterative steepest-descent solution [10]:

wi = wi−1 − μ
[
∇wJglob(wi−1)

]∗
(9)

where μ > 0 is a step-size parameter and wi is an estimate for wo

at iteration i. Moreover, ∇wJglob denotes the complex gradient of
Jglob(w) with respect to w, which is given by

[
∇wJglob(w)

]∗
=

N∑
k=1

(Ru,kw −Rdu,k) (10)

Substituting into (9) leads to the steepest descent iteration:

wi = wi−1 + μ

N∑
k=1

(Rdu,k −Ru,kwi−1) (11)

Now note that (11) requires knowledge of the second-order mo-
ments {Ru,k, Rdu,k}. An adaptive implementation of (11) can be
obtained by replacing these second-order moments by local instanta-
neous approximations, say of the LMS type, as follows:

Ru,k ≈ u∗k,iuk,i Rdu,k ≈ dk(i)u∗k,i (12)

Then a global (centralized) LMS recursion is obtained, namely:

wi = wi−1 + μ
N∑

k=1

u∗k,i(dk(i)− uk,iwi−1) (13)

In the next section we will consider distributed strategies.

IV. DIFFUSION ADAPTIVE SOLUTIONS

The steepest-descent solution (13) is not distributed, since every
node in the network needs to have access to global information
(namely, the measurements and regressors of every other node) in
order to compute the new estimate. A fully distributed solution based
on diffusion strategies was proposed in [2], [4] and is known as
diffusion LMS.

We now propose more general variants that can accommodate
higher levels of interaction and information exchange among the
nodes. The formulation that follows includes the diffusion LMS
algorithm of [2], [4] as a special case.

A. MSE minimization

Thus, refer to the equivalent global cost (8). Minimizing this cost
at every node requires the nodes to have access to global information,
namely the local estimates, wloc

l , and the matrices Γl, of the nodes
in the network. In order to facilitate distributed implementations, we
shall instead use the cost (8) to motivate alternative formulations that
lead to useful distributed algorithms. To begin with, we replace Γl

in (8) with weighting matrices of the form Γl = γkbl,kIM , where
γk is some constant and bl,k is a set of non-negative real coefficients
that give different weights to different neighbors. In particular, we
are interested in choices of coefficients such that

bl,k = 0 if l �∈ Nk 1
∗B = 1

∗ (14)

where B is the N ×N matrix with individual entries bl,k. Further-
more, we replace the optimal local estimate wloc

l in (8) with the best
estimate that is available at node l, and denote it by ψl. In this way,
each node k can proceed to minimize a cost of the form:

Jdist
k (w) =

∑
l∈Nk

cl,k E |dl(i)−ul,iw|
2 +γk

∑
l∈Nk/{k}

bl,k‖w−ψl‖
2

(15)

Taking the gradient of (15) we obtain:[
∇wJdist

k (w)
]∗

=
∑

l∈Nk

cl,k(Ru,lw−Rdu,l)+γk

∑
l∈Nk/{k}

bl,k(w−ψl)

(16)
Thus, we can use (15) to obtain a recursion for the estimate of node
k, denoted by wk,i, as we did in the steepest-descent case. However,
note that the above gradient is a sum of two terms, namely∑

l∈Nk

cl,k(Ru,lw −Rdu,l) and γk

∑
l∈Nk/{k}

bl,k(w − ψl)

Incremental solutions are useful for minimizing sums of convex
functions [12], and are based on the principle of iterating sequentially
over each sub-gradient, in some pre-defined order. An incremental
LMS algorithm was proposed in [3] based on these ideas. Here we
propose iterating incrementally between the two above sub-gradients,
as follows:⎧⎪⎪⎨
⎪⎪⎩

ψk,i = wk,i−1 + μk

∑
l∈Nk

cl,k (Rdu,l −Ru,lwk,i−1)

wk,i = ψk,i + νkγk

∑
l∈Nk/{k}

bl,k(ψl,i − ψk,i)

(17)
where we have replaced ψl with the best estimate that is available at
node l at time i, namely, ψl,i. Note that

wk,i = (1− νkγk + νkγkbk,k)ψk,i + νkγk

∑
l∈Nk/{k}

bl,kψl,i (18)

so that if we define ak,k = (1−νkγk+νkγkbk,k) and al,k = νkγkbl,k

for l �= k, and use the instantaneous approximations (12), we obtain
the Adapt-then-Combine (ATC) diffusion LMS algorithm.

ATC Diffusion LMS: Start with {wl,−1 = 0} for all l. For each time
i ≥ 0 and for each node k, repeat:⎧⎪⎪⎨
⎪⎪⎩

ψk,i = wk,i−1 + μk

∑
l∈Nk

cl,ku∗l,i(dl(i)− ul,iwk,i−1)

wk,i =
∑

l∈Nk

al,kψl,i

(19)

Note that the coefficients al,k are real, non-negative and also satisfy

al,k = 0 if l �∈ Nk 1
∗A = 1

∗ (20)

where A is the N × N matrix with individual entries al,k. If we
reverse the order by which we perform the incremental update, we
obtain the Combine-then-Adapt (CTA) diffusion LMS algorithm.

CTA Diffusion LMS: Start with {ψl,−1 = 0} for all l. For each time
i ≥ 0 and for each node k, repeat:⎧⎪⎪⎨
⎪⎪⎩

ψk,i−1 =
∑

l∈Nk

al,kwl,i−1

wk,i = ψk,i−1 + μk

∑
l∈Nk

cl,ku∗l,i(dl(i)− ul,iψk,i−1)
(21)

Recall that A and C denote N ×N matrices with individual entries
{al,k} and {cl,k}, respectively. For each algorithm, we distinguish
between two cases: the case when measurements and regressors are
not exchanged between the nodes (or, equivalently, C = I), and the
case when measurements and regressors are exchanged (C �= I).

252

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on June 06,2010 at 18:00:06 UTC from IEEE Xplore. Restrictions apply.

Exchange

CombineAdapt

k

Node k Node k

CombineAF
ψk,i {ψl,i}wk,i−1 wk,i

{dk(i), uk,i} {al,k}

ψk,iψ2,i

ψ3,i
ψ4,i

Fig. 2. ATC diffusion strategy, where measurements are not shared (C = I).

Exchange

Combine

Adapt
k

Node k

Node k

Combine

AF

{wl,i−1} ψk,i−1

ψk,i−1
wk,i

{dk(i), uk,i}

{al,k}

wk,i−1w2,i−1

w3,i−1
w4,i−1

Fig. 3. CTA diffusion strategy, where measurements are not shared (C = I).

Note that in the former case, the CTA diffusion LMS algorithm (21)
reduces to the original diffusion LMS algorithm [4]:⎧⎨

⎩
ψk,i−1 =

∑
l∈Nk

al,kwl,i−1

wk,i = ψk,i−1 + μku∗k,i(dk(i)− uk,iψk,i−1)

At each iteration i, every node k performs a procedure consisting
of up to four steps, as shown in Table 1. For example, the ATC
algorithm without measurement exchange (C = I), consists of three
steps. First, every node adapts its current estimate using its individual
measurements available at time i, namely {dk(i), uk,i}, to obtain
ψk,i. Second, all nodes exchange their pre-estimates ψk,i with their
neighbors. Finally, every node combines the pre-estimates to obtain
the new estimate wk,i. Figures 2 and 3 show schematically the
cooperation strategies for the ATC and CTA algorithms, respectively,
for the case where measurements are not shared (C = I).

When C = I , the ATC algorithm has the same processing and
communication complexity as the CTA algorithm. In the next section
we will see that the ATC version outperforms the CTA version in
general, and therefore also outperforms diffusion LMS [4], without
penalty. When C �= I , both the ATC and CTA algorithms will
require two exchanges per iteration, and therefore require more
communications than diffusion LMS [4].

V. PERFORMANCE ANALYSIS

In this section we analyze the diffusion LMS algorithms in their
ATC (19) and CTA (21) forms. In what follows we will consider
the estimates wk,i to be random processes, and will analyze their
performance in terms of their expected behavior. Instead of analyzing
each algorithm separately, we formulate a general form that includes
the ATC and CTA algorithms as special cases. Subsequently, we

TABLE I
STEPS FOR ATC AND CTA ALGORITHMS WITH AND WITHOUT

MEASUREMENT SHARING.

Step ATC ATC (C=I) CTA CTA (C=I)
1 Exchange Adapt Exchange Exchange

{dk(i), uk,i} wk,i−1 wk,i−1

2 Adapt Exchange Combine Combine
ψk,i

3 Exchange Combine Exchange Adapt
ψk,i {dk(i), uk,i}

4 Combine - Adapt -

derive expressions for the mean-square deviation (MSD) and excess
mean-square error (EMSE) of the general form, and specialize the
results to the ATC and CTA cases. Thus, consider a general LMS
diffusion filter of the form:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

φk,i =
∑

l∈Nk

bl,kwl,i−1

ψk,i = φk,i + μk

∑
l∈Nk

cl,ku
∗
l,i[dl(i)− ul,iφk,i]

wk,i =
∑

l∈Nk

al,kψl,i

(22)

where the coefficients al,k and bl,k satisfy (14) and (20), respectively,
and cl,k satisfies (3). Let A, B and C denote the matrices with {l, k}
entries given by al,k, bl,k and cl,k, respectively. Equation (22) can
be specialized to the ATC diffusion LMS algorithm (19) by choosing
B = I , to the CTA diffusion LMS algorithm (21) by choosing A = I
and B as the combination matrix (i.e., bl,k in (22) would correspond
to al,k in (21)), and to the diffusion LMS algorithm from [4] by
choosing A = C = I and B as the combination matrix. The form
in (22) allows us to analyze all these variants uniformly, and in the
end we specialize the results to the different algorithms.

To proceed with the analysis, we assume a linear measurement
model as follows:

dk(i) = uk,iw
o + vk(i) (23)

where vk(i) is a zero-mean random variable with variance σ2
v,k,

independent of uk,i for all k and i, and independent of vl(j) for
l �= k or i �= j. Linear models as in (23) are customary in the
adaptive filtering literature [10] since they are able to capture many
cases of interest. Note that wo in the above equation is the same as
the optimal solution in (2), since in this case Rdu,k = Ru,kwo.

Using (22), we define the error quantities w̃k,i = wo − wk,i,
ψ̃k,i = wo − ψk,i and φ̃k,i = wo − φk,i, and the global vectors:

w̃i =

⎡
⎢⎣

w̃1,i

...
w̃N,i

⎤
⎥⎦ , ψ̃i =

⎡
⎢⎣

ψ̃1,i

...
ψ̃N,i

⎤
⎥⎦ , φ̃i =

⎡
⎢⎣

φ̃1,i

...
φ̃N,i

⎤
⎥⎦

We also introduce the matrix:

M = diag {μ1IM , . . . , μNIM} (24)

and the extended weighting matrices:

A = A⊗ IM B = B ⊗ IM C = C ⊗ IM (25)

We also introduce the following matrices:

Di = diag

{
N∑

l=1

cl,1u
∗
l,iul,i , . . . ,

N∑
l=1

cl,Nu
∗
l,iul,i

}

253

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on June 06,2010 at 18:00:06 UTC from IEEE Xplore. Restrictions apply.

Gi = CT col
{
u
∗
1,iv1(i) , . . . , u

∗
N,ivN (i)

}
Then we have

φ̃i = BT
w̃i−1

ψ̃i = φ̃i −M[Diφ̃i + Gi]

w̃i = AT
ψ̃i

or, equivalently,

w̃i = AT [I −MDi]B
T
w̃i−1 −A

TMGi (26)

Moreover, let

D � E Di = diag

{
N∑

l=1

cl,1Ru,l , . . . ,
N∑

l=1

cl,NRu,l

}
(27)

and

G � E[GiG
∗
i] = CT × diag

{
σ2

v,1Ru,1 , . . . , σ2
v,NRu,N

}
× C

(28)

A. Mean-square analysis

We follow the energy conservation analysis of [10]-[11]. Evaluat-
ing the weighted norm of w̃i in (26) we obtain:

E ||w̃i||
2
Σ = E ||w̃i−1||

2
B(I−DiM)AΣAT (I−MDi)BT +

E[G∗
iMAΣATMGi] (29)

where Σ is any Hermitian positive-definite matrix. We now introduce
the independence assumption:

Assumption 1 (Independence): All regressors uk,i are spatially and
temporally independent.

This allows us to consider Di independent of w̃i−1, which
depends on the regressors up to time i − 1. Then we can rewrite
(29) as a variance relation as:

E ||w̃i||
2
Σ = E ||w̃i−1||

2
Σ′ + Tr[ΣATMGMA]

Σ′ = BAΣATBT − BDMAΣATBT − (30)

BAΣATMDBT + E(BDiMAΣATMDiB
T)

We also assume that the step-sizes are small enough and ignore
the last term in Σ′ because of its dependence on μ2. The general
case is omitted due to space considerations, and will be considered
in a future publication.

Assumption 2 (Small step-size): The step-sizes {μk}, k =
1, . . . , N , are sufficiently small such that the rightmost term of (30)
can be neglected.

From Assumption 2 we get:

Σ′ = B
(
AΣAT −DMAΣAT −AΣATMD

)
BT

Let
σ = vec(Σ) Σ = vec−1(σ)

where the vec(·) notation stacks the columns of the matrix argument
on top of each other. We will also use the notation ‖w̃‖2σ to denote
‖w̃‖2Σ. Using the Kronecker product property

vec(PΣQ) = (QT ⊗ P)vec(Σ)

we arrive at
σ′ � vec(Σ′) = Fσ

1 5 10 15
0

0.05

0.1

0.15

0.2

1 5 10 15
2

4

6

8

10

σ
2 v

,
k

T
r(

R
u

,
k
)

Node number kNode number k

Fig. 4. Network topology (top), noise variances σ2
v,k (bottom, left) and trace

of regressor covariances Tr(Ru,k) (bottom, right) for N = 15 nodes.

where

F = (B ⊗ B)
{
A⊗A−A⊗ (DMA)− (DTMA)⊗A

}
(31)

Then, using the result that Tr(ΣX) = vec(XT)T σ we arrive at

E ||w̃∞||
2
(I−F)σ = [vec(ATMGTMA)]T σ (32)

The MSD at node k can be obtained by weighting E ||w̃∞||
2 with

a block matrix that has an identity matrix at block {k, k} and zeros
elsewhere. Let us denote the vectorized version of this matrix by qk,
that is:

qk = vec(diag(ek)⊗ IM)

Then the MSD becomes:

MSDk = E ||w̃∞||
2
qk

= [vec(ATMGTMA)]T (I − F)−1qk

(33)
The EMSE at node k is obtained by weighting E ||w̃∞||

2 with a
block matrix that has Ruk

at block {k, k} and zeros elsewhere, that
is, by selecting

(I − F)σ = rk = vec(diag(ek)⊗Ruk
)

Then the EMSE becomes:

EMSEk = E ||w̃∞||
2
rk

= [vec(ATMGTMA)]T (I − F)−1rk

(34)
The network MSD and EMSE are defined as the average MSD and

EMSE, respectively, across all nodes in the network:

MSDnetwork
�

1

N

N∑
k=1

MSDk =
1

N
E ||w̃∞||

2

EMSEnetwork
�

1

N

N∑
k=1

EMSEk =
1

N
E ||w̃∞||

2
diag{Ru,1,...,Ru,N}

VI. SIMULATIONS

In order to illustrate the adaptive network performance, we present
a simulation example in Figs. 4-6. Fig. 4 depicts the network topology
with N = 15 nodes, together with the network statistical profile. The
regressors have size M = 3, are zero-mean Gaussian, independent in
time and space and have covariance matrices Ru,k. The background
noise power is denoted by σ2

v,k.

254

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on June 06,2010 at 18:00:06 UTC from IEEE Xplore. Restrictions apply.

0 20 40 60 80 100 120
−30

−25

−20

−15

−10

−5

0

5

Time, i

T
ra

ns
ie

nt
ne

tw
or

k
E

M
SE

(d
B

) No cooperation
CTA diff. LMS, C = I , [4]
ATC diff. LMS, C = I , (19)
ATC diff. LMS, C = C

met, (19)
Global LMS (13)

0 20 40 60 80 100 120
−35

−30

−25

−20

−15

−10

−5

0

5

Time, i

T
ra

ns
ie

nt
ne

tw
or

k
M

SD
(d

B
)

Fig. 5. Transient network EMSE (top) and MSD (bottom) for LMS without
cooperation, CTA and ATC diffusion LMS, and global LMS.

Fig. 5 shows the learning curves for different diffusion LMS
algorithms in terms of EMSE and MSD. The simulations use a value
of μ = 0.08, and the results are averaged over 200 experiments. For
the diffusion algorithms, relative-degree weights [5] are used for the
adaptation matrix. Relative-degree weights are defined as:

al,k =

{
nl/

∑
l∈Nk

nl l ∈ Nk

0 otherwise

where nk is the degree of node k, defined as the number of neighbors
of node k including itself. For the combination matrix C, we present
two cases: one where the measurements are not shared (C = I), and
a second where the measurements are shared. In the latter case, we
use metropolis weights [8] as the combination matrix, and denote it
as Cmet. This choice of relative-degree weights for the adaptation
matrix and metropolis weights for the combination matrix is based
on our previous work [5], though other choices are possible. We can
observe that in the case where measurements are not shared (C = I),
the ATC version of the diffusion LMS algorithm outperforms the CTA
version. Note also that there is no penalty in using ATC over CTA,
since both require one exchange per iteration. Further improvement
can be obtained if measurements are shared between the nodes, at
the expense of requiring twice as many communications.

Fig. 6 shows the steady-state EMSE and MSD for a set of diffusion
LMS algorithms, and compares with the theoretical results from
expressions (33) and (34). The steady-state values are obtained by
averaging over 200 experiments and over 50 time samples after
convergence. It can be observed that the simulation results match
well the theoretical values.

1 3 5 7 9 11 13 15
−35

−30

−25

−20

−15

Node number, k

St
ea

dy
St

at
e

E
M

SE
(d

B
)

CTA diff. LMS, C = I , [4]

ATC diff. LMS, C = I , (19)

ATC diff. LMS, C = C
met, (19)

CTA diff. LMS, C = I , theory

ATC diff. LMS, C = I , theory

ATC diff. LMS, C = C
met, theory

1 3 5 7 9 11 13 15
−35

−30

−25

−20

−15

Node number, k

St
ea

dy
St

at
e

M
SD

(d
B

)

Fig. 6. Steady-state performance of different diffusion LMS algorithms,
comparing simulation vs. theory, using expressions (33) and (34).

VII. CONCLUSIONS

We presented a general form of diffusion LMS algorithms, and for-
mulated the Adapt-then-Combine and Combine-then-Adapt versions
of diffusion LMS, which allow information exchange. Steady-state
analysis was presented and matched well with simulation results. It
is observed that ATC outperforms the original diffusion LMS from
[4] and better performance can be obtained if measurements are also
shared.

REFERENCES

[1] A. H. Sayed and F. Cattivelli, “Distributed adaptive learning mecha-
nisms,” Handbook on Array Processing and Sensor Networks, S. Haykin
and K. J. Ray Liu, editors, Wiley, NJ, 2009.

[2] A. H. Sayed and C. G. Lopes, “Adaptive processing over distributed
networks,” IEICE Trans. on Fund. of Electronics, Communications and
Computer Sciences, vol. E90-A, no. 8, pp. 1504–1510, August 2007.

[3] C. G. Lopes and A. H. Sayed, “Incremental adaptive strategies over
distributed networks,” IEEE Trans. on Signal Processing, vol. 55, no.
8, pp. 4064–4077, August 2007.

[4] C. G. Lopes and A. H. Sayed, “Diffusion least-mean squares over
adaptive networks: Formulation and performance analysis,” IEEE Trans.
on Signal Processing, vol. 56, no. 7, pp. 3122–3136, July 2008.

[5] F. S. Cattivelli, C. G. Lopes, and A. H. Sayed, “Diffusion recursive
least-squares for distributed estimation over adaptive networks,” IEEE
Trans. on Signal Processing, vol. 56, no. 5, pp. 1865–1877, May 2008.

[6] F. S. Cattivelli, C. G. Lopes, and A. H. Sayed, “Diffusion strategies for
distributed Kalman filtering: Formulation and performance analysis,” in
Proc. Cognitive Information Processing, Santorini, Greece, June 2008.

[7] F. S. Cattivelli and A. H. Sayed, “Diffusion mechanisms for fixed-
point distributed Kalman smoothing,” in Proc. EUSIPCO, Lausanne,
Switzerland, August 2008.

[8] L. Xiao, S. Boyd, and S. Lall, “A space-time diffusion scheme for peer-
to-peer least-squares estimation,” in Proc IPSN, Nashville, TN, April
2006, pp. 168–176.

[9] I. D. Schizas, G. Mateos, and G. B. Giannakis, “Stability analysis of
the consensus-based distributed LMS algorithm,” in Proc. ICASSP, Las
Vegas, NV, March 2008, pp. 3289–3292.

[10] A. H. Sayed, Fundamentals of Adaptive Filtering, Wiley, NJ, 2003.
[11] A. H. Sayed, Adaptive Filters, Wiley, NJ, 2008.
[12] A. Nedic and D. Bertsekas, “Incremental subgradient methods for

nondifferentiable optimization,” SIAM J. Optim., vol. 12, no. 1, pp.
109–138, 2001.

255

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on June 06,2010 at 18:00:06 UTC from IEEE Xplore. Restrictions apply.

