
ADAPTIVE CARRIER TRACKING FOR DIRECT-TO-EARTH MARS COMMUNICATIONS

C. G. Lopes, E. Satorius, and A. H. Sayed

ABSTRACT

We propose a robust and low complexity scheme to estimate and
track carrier frequency from signals traveling under low SNR con-
ditions in highly non-stationary channels. These scenarios arise
in planetary exploration missions subject to high dynamics, such
as the Mars exploration rover missions. The method comprises
a bank of adaptive linear predictors supervised by a convex com-
biner that dynamically aggregates the individual predictors. The
adaptive combination is able to outperform the best individual es-
timator in the set, leading to a universal scheme for frequency es-
timation and tracking.

1. INTRODUCTION

In January 2004 the Mars Exploration Rovers (MER) Spirit and
Opportunity successfully landed in Martian soil. Both missions
were launched by NASA/JPL to reveal the water historical profile
at lower latitudes in the red planet, along with other geophysical
data. As part of theMars continuous exploration effort, missions to
come will encounter more severe conditions for communications,
rendering tougher scenarios to send data back to Earth.

In the formidable logistic effort towards Mars, the entry, de-
scent and landing (EDL) phase was the most crucial period of the
mission [1, 2]. During this phase, a complex sequence of events
take place, and health and status signals are sent back in real time
through the direct-to-earth (DTE) channel. This information is
fundamental to flag the mission status and consequently improve
future designs in case of mission failure (en passant: during the
Mars Pathfinder mission, the signal was temporarily lost).

In order to support spacecraft-to-earth communications during
the EDL phase, we develop a robust and low complexity carrier
frequency estimation and tracking technique that is able to operate
under low SNR and highly non-stationary conditions, common to
the adverse EDL scenario. The method combines the natural track-
ing abilities of adaptive filters with linear prediction techniques
and universal prediction concepts, leading to encouraging results
that can be applied to other standard frequency estimation prob-
lems as well.

2. DIRECT-TO-EARTH COMMUNICATIONS

Due to the EDL events, the signals travel through the DTE channel
experiencing a combination of severe Doppler shift, time-varying
gain and noise. These effects make the recovery of the data from
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the received signal a challenging task. At the spacecraft end, every
10 seconds, mission signals are sent to Earth, as the EDL events
take place. Due to the critical channel conditions, phase-coherent
communication is not viable. A modified MFSK modulation tech-
nique has been adopted by JPL [1], with a nominal carrier fre-
quency of f0

c = 8.4 GHz (X-band) and employing a constellation
of 256 possible symbols.

Doppler
&

Gain
MFSK Rx

DTE Channel

fd(t) d̂f (t)
+

v(t)
s(t) x(t)

(Mars) (Earth)

(Open Space)

r(t)

Fig. 1. Direct-to-Earth communications.

At the Earth end, the received signal x(t) is comprised of a
distorted signal component r(t) disturbed by noise v(t), as illus-
trated in Fig. 1. A detailed description of the DTE channel and
signal generation can be found in [2]. In order to recover the
MFSK-data, we need a reliable carrier frequency estimate. The
spacecraft high dynamics caused by the EDL procedures leads to
severe Doppler shifts in the nominal carrier frequency [1]:

fc(t) = f0
c + f(t) (1)

Due to the large Doppler component f(t), it is assumed in
this work that there is no embedded data and that the signal is
down-converted and sampled upon reception, such that the only
frequency content in the remaining signal is the Doppler compo-
nent, i.e., fc(t) = f(t). In other words, the signal that we will be
dealing with at the Earth end is of the form

x(i) = ejωi + v(i) (2)

where ω is the discrete time-varying Doppler component and v(i)
arises from an ergodic white process with variance σ2

v . Our objec-
tive is to estimate and track ω from measurements {x(i)}.

3. THE ESTIMATION AND TRACKING SCHEME

3.1. Linear prediction

One approach for estimation and frequency tracking is to formu-
late a linear prediction problem. In linear prediction, the current
value of x(i) is predicted by linearly combining its observed past
values:

x̂(i) =
M�

k=1

c(k)x(i − k) (3)
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The predictor’s goal is to minimize the estimation error

e(i) = x(i) − x̂(i) (4)

in some sense. With the signal model (2), when the predictor coef-
ficients c(k) are optimally designed in the minimum mean-square
error sense, the corresponding error predictor filter Q(z), defined
by

Q(z) = 1 −
M�

k=1

c(k)z−k (5)

presents a particular root configuration that enables a simple fre-
quency estimation procedure.

The optimum predictor vector co is obtained by solving

wo = arg min
c

E|x(i) − x̂(i)|2 (6)

where
x̂(i) = xi−1c (7)

and
xi−1 =

�
x(i − 1) x(i − 2) · · · x(i − M)

�
(8)

is the row observation vector. Using model (2), the optimal pre-
dictor can be shown to be [5]:

co =
1

σ2
v + M

�
����

ejω

ej2ω

...
ejMω

�
���� . (9)

As equation (9) reveals, the optimal prediction vector co contains
information about the desired unknown frequency ω. Figure 2
depicts the root locus of the corresponding optimal error predic-
tor filter Qo(z) as a function of signal-to-noise ratio (SNR), for
M = 10 and ω = π/3 . One of the M roots, which we define
as ro = ρoe

jθo , lies closer to the unit circle exactly at θo = ω =
π/3. Note that as the SNR decreases, it becomes harder to find
ro, which is the root that ultimately delivers the desired frequency
estimate.

3.2. Adaptive Linear Prediction (ALP)

Since the parameter of interest ω is non-stationary, we may employ
an adaptive filter to equip the predictor with tracking abilities and
perform the design in (6) automatically.

Among many possible adaptive algorithms [5], we have tested
the LMS, the normalized LMS (ε-NLMS), affine projection and
RLS variants, namely, the exponentially weighted RLS and the
sliding windowRLS. Among them, the ε-NLMS presents low com-
plexity and has reported the best performance; its update equation
is given by

ci = ci−1 + μ
x∗

i−1

‖xi−1‖2 + ε

	
x(i) − xi−1ci−1



(10)

Figure 3 presents the ALP scheme. At each time i, the adaptive
predictor presents the corresponding error prediction filter Qi(z)
to a root solver, which finds the closest root to the unit circle, ro =
ρoe

jθo . An estimate of the unknown frequency f at time i is then
found from

f̂(i) =
θo

2π
· Fs (Hz) (11)

where Fs is the sampling frequency.
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Fig. 2. Roots of the optimal error prediction polynomialQo(z) for
M = 10 and ω = π/3.

4. A MODEL MIXTURE PREDICTION SCHEME

In general, choosing good predictor parameters (such as M and
μ), is a difficult task. Not to mention that in a non-stationary envi-
ronment the optimal parameter set may dynamically change over
time. One can see the impact of slightly different designs in Figure
4. Two different - but similar - ε-NLMS predictors were designed
in an environment with SNR = 10 dB (σ2

v = 0.1). The first pre-
dictor withM1 = 7 and μ1 = 0.7, and the second predictor with
M2 = 10 and μ2 = 0.5. Observe how a slight change in the de-
sign leads to dramatically different performances. To get around
the sensitivity issue, we pursue a combination approach. The goal
is to employ a mixture of multiple individual predictors spanning a
reasonable range of the unknown parameters. The individual pre-
dictors outputs are efficiently combined by a supervisor such that
the global system is able to perform as well as the best individual
predictor [3], [4].

4.1. Convex Combiners

Specifically, we extend the ideas presented in [3]. Before present-
ing the error prediction filter to the root solver (refer to Fig. 3), we
improve the quality of the predictor by dynamically combining a
span of L normalized LMS predictors with different orders. The
individual predictors are independent and are combined according
to their individual performance (see Fig. 5):

x̂(i) =

L�
k=1

λkx̂k(i) ,

L�
k=1

λk = 1 (12)

which is equivalent to using the prediction vector

ci−1 =

L�
k=1

λkck,i−1 (13)

The kth predictor has orderMk and step-size μk:

x̂k(i) = xi−1ck,i−1 (14)

The regressor xi−1 has the orderML of the largest predictor and is
presented to all individual predictors ck, which are filled out with
zeros to match the vector dimensions when necessary.
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Fig. 3. An adaptive linear prediction implementation.
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Fig. 4. Sensitivity of the ALP solution.

The key step is to design the combiners efficiently. To provide
convexity to the predictors’ aggregation we use combiners of the
form:

λk =
yk

�L
�=1 y�

, yk = f(ak) (15)

where yk is a generic real activation function of a complex argu-
ment ak. It is a function at our choice and the complex coefficient
ak is what is truly adapted, say as [3]

ak(i) = ak(i − 1) − μa

�∇ak |e(i)|2
�∗
ak=ak(i−1)

(16)

It can be shown that for a generic function yk = f(ak) one gets

∇ak |e(i)|2 = −e∗(i)xi−1

�
ck − c

�∂yk

∂ak
· 1�

� y�

= −e∗(i)
�
x̂k(i) − x̂(i)

�∂yk

∂ak
· 1�

� y�
(17)

Some possible choices for yk that have been tested are

yk =
�
�e−

ak
2
�
�2 (18)

yk = e−|ak|2 (19)
yk = |ak|2 (20)

Overall Predictor

+-+

Fig. 5. A bank of combination filters.

leading to the following adaptive combiners:

λk(i) =

�
�e−

ak
2
�
�2

�L
�=1

�
�e−

a�
2
�
�2

(21)

λk(i) =
e−|ak|2

�L
�=1 e−|a�|2

(22)

λk(i) =
|ak|2

�L
�=1 |a�|2

(23)

Using (16) and (18) we obtain the following adaptation rule for the
first combiner (21):

ak(i) = ak(i − 1) − μae(i)
�
x̂k(i) − x̂(i)

�∗
λk(i) (24)

where x̂(i) and x̂k(i) are defined as in (12) and (14), respectively.
Likewise, the two last combiners (22) and (23) lead to the adaption
rule:

ak(i) = ak(i−1)−μaak(i−1)e(i)
�
x̂k(i)− x̂(i)

�∗
λk(i) (25)

When complexity is an issue, we may limit the number of fil-
ters to L = 2, using, for instance, a low-order filter and a high
order filter to capture signals with richer dynamics. With this as-
sumption it is possible to derive a convex combination rule with
only one adaptive coefficient a, by using λ1 = λ, λ2 = 1−λ, and
choosing λ as

λ(i) =
1

1 +
�
�e − a(i−1)

2
�
�2

(26)

In this case, the adaptive rule for a(i) becomes

a(i) = a(i − 1) + μae(i)
�
x̂1(i) − x̂2(i)

�∗
λ(i)

�
1 − λ(i)

�
(27)

5. ENHANCEMENT TECHNIQUES

Note that the noise effect already mentioned in Fig. 2 can be
boosted by the stochastic gradient disturbances introduced by the
predictors (10) as well as the adaptive combiners rule (16). This
may cause spikes in the estimated frequency that are not correlated
with the underlying true frequency ω, as Fig. 4 shows.
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Fig. 6. The combination scheme with smoothing and derivative
control.

In order to enhance the quality of the estimation we may use
a smoothing procedure along with derivative control. The smooth-
ing is basically an average performed over the last Ns global pre-
dictor vectors c in (13). The derivative control is a bit more com-
plex, with a special buffer to smooth the spikes that may take place
in noisy scenarios. The derivative buffer keeps track of the average
δf(i) of the last Nd “good” derivative samples. Let

δf̂(i)
Δ
= f̂(i) − f̂(i − 1) (28)

and for a given threshold THR define a good derivative sample
Db as:

Db =

�
δf̂(i) , if |δf̂(i)| ≤ THR

γ · sign
�
δf̂(i)

�
, if |δf̂(i)| > THR

(29)

where γ � THR. The derivative buffer is always fed with Db.
Whenever the derivative is bigger than THR, the sign information
is kept but the magnitude is clamped, improving the smoothing
process.

Finally, the enhanced estimated frequency f̄(i) is given by

f̄(i) =

�
f̂(i), if |δf̂(i)| ≤ THR

f̂(i − 1) + δf(i), if |δf̂(i)| > THR
(30)

6. SIMULATION RESULTS

Besides direct graphical comparison, we also use as figure of merit
the total root mean-square error (RMS):

RMS Δ
=

���� 1

N

N�
i=1

��f(i) − f(i)
��2 (31)
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Fig. 7. Example 1: convex ALP (left) and ALP (right).

We present simulations corresponding to tough scenarios, going
even further (i.e., worse) than the nominal SNR scenarios encoun-
tered by Spirit and Opportunity [1, 2]. Two curves are shown. The
first curve compares our proposed convex ALP scheme (left plots)
with the best individual ALP estimator (right plots), indicating the
RMS error attained in each case. The second curve shows the time
evolution of the convex combiners λk (left plots) and a comparison
of the RMS error of the individual predictors as a function of filter
order with our convex ALP scheme (fixed order ML). In all sim-
ulations the convex combination attained universality with respect
to the class of ε-NLMS predictors spanning orders up ML, for a
given step-size μk = μ0. Note that in all cases we are confronting
our convex scheme with the best individual predictor. The same
sample frequency Fs = 100 Hz is used in all examples, and the
Doppler profile is of the same nature as employed in [1].

In the first example we use the combiner (23) in a scenario
with SNR = 17 dB/Hz (σ2

v = 2) and filter ordersM = [7 : 2 : 13].
The ε-NLMS predictors are tuned to μ0 = 0.1 and the adaptive
combining rule (25) is tuned with μa = 0.7. Note in Fig. 7
that the convex ALP scheme attained better performance (RMS =
0.78 Hz) than the best individual ALP (RMS = 0.80 Hz).

In the second example we increase the noise level such that
SNR = 14 dB/Hz (σ2

v = 4) with predictors spanning orders
M = [8 : 3 : 17] and tuned at μ0 = 0.15. The adaptive rule (24)
was tuned with μa = 0.1 using the activation function (21). In Fig.
8 we observe a dramatic improvement in performance when ap-
plying the proposed convex combination together with the simple
enhancement techniques. Figure 9 attests the universality attained
by the convex scheme.

In the third example we explore the two filters case, using
(26) and (27) and decreasing the SNR even further, to SNR =
12 dB/Hz (σ2

v = 6). The two predictors have orders M1 = 7
and M2 = 16 with step-size μ0 = 0.1. The adaptation rule (27)
employed μa = 0.1. Figures 10 and 11 depict the results, imply-
ing that there is no need for complexity to improve considerably
the performance when the combination of predictors is performed
efficiently.

Finally, in the last example we compare our convex scheme
with the original maximum likelihood scheme presented in [1]. As
Fig.12 suggests, our scheme can be quite competitive, leading to
similar performance albeit with much less computations than the
maximum likelihood approach.
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Fig. 8. Example 2: convex ALP (left) and ALP (right).
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Fig. 9. Example 2: the combiners and the RMS error.
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Fig. 10. Example 3: convex ALP (left) and ALP (right).

7. CONCLUSION

We proposed a simple yet robust scheme - a critical feature in deep
space communications - for frequency estimation and tracking. It
presents good performance for a wide range of SNR, although we
focused in this work on low SNR, which is common in the Martian
EDL scenario. The investigated convex combination of individual
adaptive predictors is able to outperform the best individual pre-
dictor, achieving universality in the class of ε-NLMS predictors up
to orderML, operating with fixed and small step-sizes due to low
SNR conditions.
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Fig. 12. Example 4: Performance comparison of the convex
ALP (left plot) with the maximum likelihood method proposed in
[1](right plot).
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