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ABSTRACT

A distributed least-squares estimation strategy is developed by ap-
pealing to collaboration techniques that exploit the space-time struc-
ture of the data, achieving an exact recursive solution that is fully
distributed. Each node is allowed to communicate with its im-
mediate neighbor in order to exploit the spatial dimension, while it
evolves locally to account for the time dimension as well. In appli-
cations where communication and energy resources are scarce, an
approximate RLS scheme that is also fully distributed is proposed
in order to decrease the communication burden necessary to imple-
ment distributed collaborative solution. The performance of the re-
sulting algorithm tends to its exact counterpart in the mean-square
sense as the forgetting factor λ tends to unity. A spatial-temporal
energy conservation argument is used to evaluate the steady-state
performance of the individual nodes across the adaptive distrib-
uted network for the low communications RLS implementation.
Computer simulations illustrate the results.

1. INTRODUCTION

In recent work, distributed adaptive algorithms have been proposed
to address the issue of estimation over distributed networks [1],
[2]. The algorithms recognize the importance of collaborative and
adaptive processing, and particularly the use of simple process-
ing and cooperative strategies in order to attend to applications
with limited resources [3], [4]. For example, the use of LMS-type
algorithms eliminates the need to embed powerful processors at
the nodes in such applications [1]. However, available processors
continuously decrease in cost and increase in computational ca-
pability. In order to equip the network with more sophisticated
adaptation rules, we derive in this paper an exact and distributed
RLS implementation that delivers to every node the global least-
squares solution considering all data collected by the network.
Some related work has been recently proposed, where a global
least-squares solution is achieved only approximately at each node,
and the algorithm demands large communication and energy re-
sources [5].

In the scheme proposed in this paper, every node will resort
to a collaboration strategy that requires limited local node interac-
tion, thus decreasing the communication requirement to solve the
problem distributively. We also modify the proposed scheme to
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Fig. 1. A distributed network with N nodes and the collaboration
path.

decrease further the communication burden, while keeping the per-
formance relatively close to that of the exact solution in the mean-
square sense. Using a spatial-temporal energy conservation argu-
ment [1, 6], the steady-state performance of the individual nodes
across the adaptive distributed network is evaluated for the low-
communications scheme. The results are illustrated via computer
simulations.

2. PROBLEM FORMULATION

We are interested in estimating an unknown vector wo from multi-
ple measurements collected at N nodes in a network (see Fig. 1).
Each node k has access to regressor and measurement data uk,i and
dk(i), k = 1, . . . , N , where dk(i) is a scalar and uk,i is 1 × M .
At each time instant i, the network has access to space-time data

yi =

�
����

d1(i)
d2(i)
...

dN (i)

�
���� and Hi =

�
����

u1,i

u2,i

...
uN,i

�
���� . (1)

Here yi and Hi are snapshot matrices revealing the network data
status at time i. We collect all the data available up to time i into
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global matrices Yi andHi

Yi =

�
����
y0
y1
...
yi

�
���� and Hi =

�
����
H0

H1

...
Hi

�
���� . (2)

and pose the problem of seeking an estimate for wo that takes into
account time and space-node relevance by solving a regularized
weighted least-squares (LS) problem of the form:

min
w

�
λi+1w∗Πw +

��Yi −Hiw
��2

Wi

	
(3)

where a weighted norm notation is employed. For a vector x and
a Hermitian matrix A > 0, ‖x‖2

A = x∗Ax. The weighting matrix
in (3) is chosen as

Wi
Δ
= diag{λiD, λi−1D, · · · , λD, D} (4)

with a spatial weighting factor D = diag{γ1, γ2, · · · , γN}, γi ≥
0 and (time) forgetting factor 0 � λ ≤ 1. Moreover, Π > 0. The
solution of problem (3) is given by [6]:

wi = PiH∗
i WiYi (5)

where

Pi =


λi+1Π + H∗

i WiHi

�−1

(6)

3. EXACT DISTRIBUTED LEAST-SQUARES
IMPLEMENTATION

We are interested in a distributed recursion to update wi−1 to wi.
We proceed by first deriving a distributed recursion for Pi. Rela-
tion (6) can be written as

P−1
i = λi+1Π + H∗

i WiHi

= λ


λiΠ + H∗

i−1Wi−1Hi−1

�
+ H∗

i DHi

= λP−1
i−1 + H∗

i DHi (7)

which can be rewritten as a sequence of rank-1 updates:

P0,i ← λ−1Pi−1

P1,i =
�
P−1

0,i + γ1u
∗
1,iu1,i

−1

P2,i =
�
P−1

1,i + γ2u
∗
2,iu2,i

−1

...
PN,i =

�
P−1

N−1,i + γNu∗
N,iuN,i

−1

Pi ← PN,i

By using the matrix inversion lemma for node k, a distributed re-
cursion for Pi is obtained:�������

������

P0,i ← λ−1Pi−1

for k = 1 : N

Pk,i = Pk−1,i − Pk−1,iu∗k,iuk,iPk−1,i

γ−1
k

+uk,iPk−1,iu∗k,i

end
Pi ← PN,i .

(8)

Fig. 2. The cooperation strategy of the exact distributed RLS al-
gorithm (dRLS).

Now assume an incremental path is defined across the network
cycling from node 1, to node 2, and so forth, until node N . Define
the intermediate global matrices Yk

i−1 and Hk
i−1 that collect the

data blocks {Yi−1,Hi−1} in addition to the data collected along
the network at time i up to node k:

Yk
i =

�
������

Yi−1

d1(i)
d2(i)
...

dk(i)

�
������ and Hk

i =

�
������

Hi−1

u1,i

u2,i

...
uk,i

�
������ (9)

Let ψ(i)
k be the solution to the following LS problem:

min
ψ

�
λi+1ψ∗Πψ +

��Yk
i −Hk

i ψ
��2

Wk
i

	
⇒ ψ

(i)
k (10)

where

Wk
i =

�
λWi−1 0

0 Dk

	
, Dk

Δ
= diag{γ1, · · · , γk}. (11)

Note that

Wk
i =

� Wk−1
i 0
0 γk

	
(12)

Therefore, by using (9) and (12), a recursion to update ψ
(i)
k in a

distributed fashion over the network can be found as follows:

ψ
(i)
k = Pk,iHk∗

i Wk
i Yk

i

= Pk,i ·


Hk−1∗

i Wk−1
i Hk−1

i + γku∗k,idk(i)
�

= Pk−1,iHk−1∗
i Wk−1

i Yk−1
i� �� �

= ψ
(i)
k−1

+ γkPk−1,iu∗k,i



1 − uk,iPk−1,iu∗k,i

γ−1
k + uk,iPk−1,iu∗k,i

�
dk(i)

− Pk−1,iu∗k,iuk,i

γ−1
k + uk,iPk−1,iu∗k,i

Pk−1,iHk−1∗
i Wk−1

i Yk−1
i� �� �

= ψ
(i)
k−1

which leads to

ψ
(i)
k = ψ

(i)
k−1

+
Pk−1,i

γ−1
k + uk,iPk−1,iu∗k,i

u∗k,i



dk(i) − uk,iψ

(i)
k−1

�
. (13)
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Grouping recursions (8) and (13) leads to an incrementally dis-
tributed and exact RLS (dRLS) solution to problem (3). Figure 2
illustrates the operation of algorithm, where each node shares with
its successor node in the ring the quantities {ψ(i)

k , Pk,i}:
�������������
������������

ψ
(i)
0 ← wi−1; P0,i ← λ−1Pi−1

for k = 1 : N

ek(i) = dk(i) − uk,iψ
(i)
k−1

ψ
(i)
k = ψ

(i)
k−1 +

Pk−1,i

γ−1
k

+uk,iPk−1,iu∗k,i

u∗k,iek(i)

Pk,i = Pk−1,i − Pk−1,iu∗k,iuk,iPk−1,i

γ−1
k

+uk,iPk−1,iu∗k,i

end

wi ← ψ
(i)
N ; Pi ← PN,i .

(14)

4. LOW-COMMUNICATION DISTRIBUTED RLS
ADAPTATION

The algorithm proposed in the previous section implements exact
RLS distributively and it requires O(M2) transmission complex-
ity. However, this cost can be prohibitive in some applications [3],
which motivates the pursuit of an alternative implementation that
requires less communications while keeping the performance close
to the exact implementation. One proposition is to allow collabo-
ration for the estimates while keeping the matrices Pk,i evolving
locally and independent from the neighbor nodes. This would lead
to the following approximate algorithm:

��������������
�������������

ψ
(i)
0 ← wi−1;

for k = 1 : N

ek(i) = dk(i) − uk,iψ
(i)
k−1

ψ
(i)
k = ψ

(i)
k−1 +

λ−1Pk,i−1

γ−1
k

+λ−1uk,iPk,i−1u∗k,i

u∗k,iek(i)

Pk,i = λ−1

�
Pk,i−1 − λ−1Pk,i−1u∗k,iuk,iPk,i−1

γ−1
k

+λ−1uk,iPk,i−1u∗k,i

�
end

wi ← ψ
(i)
N .

(15)

Algorithm (15) requires transmission complexity O(M) only, as
in [1]. Figure 3 describes the algorithm’s collaboration strategy, in
which estimates are shared along the path and matrices Pk,i evolve
locally. Therefore, the time forgetting factor λ is assigned locally
at the nodes, as matrices Pk,i evolve independently. Obviously,
decreasing the required information among the nodes no longer
leads to an exact RLS implementation, and not surprisingly leads
to some performance degradation.

5. MEAN-SQUARE PERFORMANCE ANALYSIS

We now study the mean-square performance of the low commu-
nications distributed RLS (LC-dRLS) algorithm (15). In order to
proceed, we extend the space-time energy conservation approach
of [1, 6] to treat the case. Due to space constraints, only the main
steps are presented.

We assume that the data along the network are zero-mean and
with known second-order moments. More specifically, we regard
the data captured at node k and time i as the random variables
{dk(i), uk,i}.

Fig. 3. The cooperation strategy of the low communications dis-
tributed RLS algorithm (LC-dRLS).

5.1. Data Model and Assumptions

The challenge implied by the spatial dimension requires us to rely
on some data assumptions for the random variables {dk(i), uk,i}.
The assumptions lead to a good match between analysis and sim-
ulations, as shown in the next sections. The data assumptions
adopted are the following:

1. The unknown vector wo relates the data {dk(i), uk,i} as

dk(i) = uk,iw
o + vk(i) (16)

where vk(i) is some temporally and spatially white noise
sequence with variance σ2

v,k and independent of {dl(j), ul,j}
for all l, j.

2. uk,i is independent of ul,i for k �= l (spatial independence).

3. For every k, the sequence {uk,i} is independent over time
(time independence).

5.2. Weighted Energy Conservation Relation

For the algorithm (15), we define the error signals:

�ψ(i)

k−1 = wo − ψ
(i)
k−1,

�ψ(i)

k = wo − ψ
(i)
k (17)

ea,k(i) = uk,i
�ψ(i)

k−1, ep,k(i) = uk,i
�ψ(i)

k (18)

ek(i) = dk(i) − uk,iψ
(i)
k−1 (19)

where (17) are the weight-error vectors, (18) defines the a priori
and a posteriori local errors, and (19) is the output error. Note that

ek(i) = ea,k(i) + vk(i) (20)

We are interested in evaluating for each node k in steady-state,
the mean-square deviation (MSD), the excess mean-square error
(EMSE), and the mean-square error (MSE). These quantities are
defined as:

ηk = E‖�ψ(∞)

k−1‖2 = E‖�ψ(∞)

k−1‖2
I (MSD) (21)

ζk = E|ea,k(∞)|2 = E‖�ψ(∞)

k−1‖2
Ru,k

(EMSE) (22)

ξk = E|ek(∞)|2 = ζk + σ2
v,k (MSE) (23)
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where a weighted norm notation is employed in (21) and (22). Fur-
thermore, we introduce the weighted a priori and a posteriori local
error signals for node k:

eΓΣ
a,k(i) = uk,iΓΣ�ψ(i)

k−1 and eΓΣ
p,k(i) = uk,iΓΣ�ψ(i)

k (24)

for Hermitian positive-definite matrices Σ (at our choice) and Γ =
Γ[ul,i; l ∈ Nk(i)] (data-dependent), where Nk is the set of neigh-
bor nodes of node k, including itself. In this work we analyze the
partial information implementation, in which by inspecting (15)
one chooses Γ to be

Γ =
λ−1Pk,i−1

γ−1
k + λ−1uk,iPk,i−1u∗k,i

. (25)

A space-time energy relation that relates the local error quan-
tities ��ψ(i)

k−1,
�ψ(i)

k , eΓΣ
a,k(i), eΓΣ

p,k(i)

�
(26)

can be found to be

‖�ψk‖2
Σ +

|eΓΣ
a,k|2

‖uk‖2
ΓΣΓ

= ‖�ψk−1‖2
Σ +

|eΓΣ
p,k|2

‖uk‖2
ΓΣΓ

(27)

Equation (27) is a space-time version of the weighted energy con-
servation relation in [6] in the context of matrix-valued data-norma-

lized filters. The time index i has been dropped for compact-
ness.

5.3. Steady-State Behavior

Unlike the standard case [6], here the weight error vectors con-
verge to a spatial error profile, stabilizing at individual error energy
levels, i.e.,

E‖�ψ(i)

k ‖2 → εk , as i → ∞
with a value εk that is possibly different for each node k. More-
over, due to cooperation, the nodes are interconnected. This fact
makes the analysis more challenging. For simplicity, in this work
we assume that the {uk,i} arise from circular Gaussian distribu-
tions with covariance matrices Ru,k. Now, introduce the eigen-
decomposition Ru,k = UkΛkU∗

k , where Uk is unitary and Λk is a
diagonal matrix with the eigenvalues of Ru,k, and let pk = �ψ(∞)

k

and pk = Uk
�ψ(∞)

k be the a posteriori1 weight-error vector in
steady-state and its transformed version, respectively. Further-
more, define pk−1 = �ψ(∞)

k−1 as the a priori weight-error vector in

steady-state and let pk−1 = Uk
�ψ(∞)

k−1 be its transformed version.
In steady-state, relations (27) lead to a set of N coupled variance
relations [6], which can be decoupled and solved for each individ-
ual node by introducing and exploiting local weighting matrices
Σk and Σk = UkΣkU∗

k . It can be shown that the solution to that
set of equations is given by

E‖pk−1‖2

(I−Πk,1)σk−1
= akσk−1 (28)

1Here a priori and a posteriori have spatial connotations.
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Fig. 4. Regressor statistics profile per node - power
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Fig. 5. Regressor statistics profile per node - correlation

for each node k in the network, in terms of a compact weighting
vector σk which we are free to choose 2 [1, 6]. In (28), Πk,1 is a
transition matrix along the collaboration ring for node k

Πk,�
Δ
= F k+�−1F k+� · · ·F NF 1 · · ·F k−1 , 
 = 1, . . . , N (29)

in terms of matrices F k that capture the local regressor statistics

F k = (1 − 2βk + δβ2
k)I + β2

kbkcT
k (30)

with δ = 1 for complex signals and δ = 2 for real signals, bk =
diag{Λk}, ck = diag{Λ−1

k }, and βk given by

βk =

���
��

1−λ

γ−1
k

, for λ → 1

1−λ

γ−1
k

λ + (1−λ)M
, for smaller λ .

The row vector ak is given by

ak
Δ
= gkΠk,2 + gk+1Πk,3 + · · · + gk−2Πk,N + gk−1 (31)

with gk = σ2
v,kβ2

kcT
k and σ2

v,k is the background noise power.
Now we resort to the weighting vectors σk−1 in (28) to calcu-

late the MSD, EMSE and MSE for each node. For the MSD, we

2Note that Σk = UkΣkU∗
k is diagonal if we choose Σk properly.

Thus, we employ a compact notation in terms of the diagonal entries of
Σk , collected in the weighting vector σk , i.e., Σk = diag{σk} → σk–
see [1].
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Fig. 6. MSE versus Node k for λ = 0.97 and λ = 0.999.

select ση,k−1 = (I − Πk,1)
−1 q, where q = col{1, 1, · · · , 1}.

Then

ηk = E‖pk−1‖2
q = ak (I − Πk,1)

−1 q (32)

Likewise, we choose σζ,k−1 = (I − Πk,1)
−1 bk to determine the

EMSE for node k, so that

ζk = E‖pk−1‖2
bk

= ak (I − Πk,1)
−1 bk (33)

The MSE follows from (23) and the result above. Summarizing
the results, the network mean-square performance in steady-state
for every node k is given by

ηk = ak (I − Πk,1)
−1 q (MSD)

ζk = ak (I − Πk,1)
−1 bk (EMSE)

ξk = ζk + σ2
v,k (MSE)

with Πk,1 and ak given in (29) and (31).

6. SIMULATIONS

We consider a network with N = 15 nodes where each local
filter has M = 10 taps. The system evolves for 10000 itera-
tions and the results are averaged over 100 independent experi-
ments. The steady-state values are obtained by averaging the last
500 time samples. Each node accesses time-correlated spatially
independent Gaussian regressors uk,i with correlation functions
rk(i) = σ2

u,k · (αk)|i|, i = 0, . . . , M − 1, with {αk} and {σ2
u,k}

randomly chosen in [0, 1) and depicted in Figs. 4 and 5. The back-
ground noise vk(i) has variance σ2

v,k = 10−3 across the network.
Figures 6-8 illustrate the effect of decreasing λ on the network
performance. As the forgetting factor gets closer to unity, both
algorithms (13) and (15) lead the network to similar performance.

7. CONCLUSIONS AND FUTUREWORK

We proposed a distributed RLS implementation that delivers at
every node the exact least-squares solution at lowered communi-
cation costs, if compared to existing schemes in the literature. We
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Fig. 7. MSE versus λ for node 7.
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Fig. 8. MSE versus λ for node 12.

also proposed a simplified distributed RLS implementation that re-
duces communication among the nodes implementing collabora-
tion of estimates only; and it tends to the performance of the exact
implementation in the mean-square sense as the forgetting factor
λ approaches unity.
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