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Abstract—
This paper uses averaging analysis to study the

mean-square performance of adaptive filters, not only
in terms of stability conditions but also in terms of
expressions for the mean-square error and the mean-
square deviation of the filters, as well as in terms of the
transient performance of the corresponding partially
averaged systems. The treatment relies on energy con-
servation arguments. Simulation results illustrate the
analysis and the derived performance expressions.

I. Introduction

There are several ingenious approaches that study the per-
formance of adaptive filters without relying on the indepen-
dence assumptions such as averaging analysis and the ODE
method (e.g., [1]–[4]). Studies based on these methods assume
small step-sizes and they are primarily concerned with sta-
bility statements as opposed to performance statements. For
example, in the ODE method, one would replace a difference
equation characterizing the update equation of an adaptive fil-
ter by a differential equation. Subsequently, one would infer
conditions for the stability of the adaptive filter from the sta-
bility of the corresponding ODE. In such studies, one seldom
progresses beyond stability studies to derive expressions for the
mean-square performance of an adaptive filter (e.g., in terms
of its excess mean-square error (EMSE) or its mean-square de-
viation (MSD)) or to discuss the filter transient response and
its learning curve behavior. The contribution of this work is
to use averaging analysis to characterize the mean-square per-
formance of adaptive filters in terms of their EMSE and MSD
and in terms of a state-space characterization for their transient
behavior. The results provide further support to the conclu-
sion that results obtained by an independence analysis tend
to agree with adaptive filter performance when the step-size is
sufficiently small [5], [6].

In the sequel, small boldface letters are used to denote vec-
tors and capital letters are used to denote matrices, e.g., c
and C. All vectors are column vectors except for regression
vector denoted by ui, which is taken to be a row vector for
convenience of notation.

II. Data Model

Consider reference data {d(i)} that arise from the linear
model

d(i) = uiw
◦ + v(i) (1)

where w◦ is an unknown column vector that we wish to esti-
mate, v(i) is measurement noise, and ui denotes 1 × M row
input (regressor) vectors with a positive-definite covariance ma-
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trix, Ru = E
[
u∗

i ui

]
. Consider further adaptive filter weight-

error vector updates of the form

w̃i = w̃i−1 + µf(i, w̃i−1) (2)

for some stochastic vector function f(·, ·) and where w̃i = w◦−
wi. For example, for LMS we have

w̃i = w̃i−1 − µu∗
i (uiw̃i−1 + v(i)) (3)

for which f(i, w̃i−1) = −u∗
i (uiw̃i−1 + v(i)). Introduce the

averaged function fav(i, w̃i−1) = Ef(i, w̃i−1), where w̃i−1 is
considered constant for the computation of the expected value,
and define the averaged system

w̃av
i = w̃av

i−1 + µfav(i, w̃av
i−1), w̃av

−1 = w̃−1 (4)

where the stochastic function f(·, ·) in (2) is replaced by its av-
eraged value and, accordingly, the corresponding weight-error
vectors are denoted by w̃av

i . Define also the partially averaged
system:

w̃pav
i = [I + µ∇w̃fav(0)]w̃pav

i−1 + µ[f(i, 0) − fav(i, 0)] (5)

where ∇w̃fav(0) denotes the gradient vector of fav(i, w̃) with
respect to w̃ evaluated at the origin. Again, for LMS, we have
fav,LMS(i, w̃i−1) = −Ruw̃i−1, so that

w̃av,LMS
i = (I − µRu)w̃av,LMS

i−1 (6)

w̃pav,LMS
i = (I − µRu)w̃pav,LMS

i−1 − µu∗
i v(i) (7)

Comparing (7) with (3), we see that the random matrix u∗
i ui

is replaced by its ensemble average Ru. Averaging analysis [1],
[2] usually justifies substituting such random matrices by their
ensemble averages when the step-sizes are sufficiently small.

The next result is from [2]. Its proof requires that the re-
gressor sequence {ui} be bounded and that it satisfy a certain
mixing condition (in loose terms, the correlation between ui

and uj should “die out” as the time difference |i−j| increases).

Theorem 1 [Averaging result] Assume that the following
conditions hold:
1. w̃av = 0 is an exponentially-stable equilibrium point of

the averaged system (4) with decay rate O(µ).
2. ∇w̃fav(i, w̃) exists and is continuous at the origin.
3. The gradient vector satisfies the Lipschitz condition

‖∇w̃fav(i,a) −∇w̃fav(i,b)‖ ≤ c‖a − b‖, for some c > 0.
Under these conditions, w̃i obtained from (2) satisfies

lim
µ→0

sup
i≥0

E‖w̃i − w̃pav
i ‖ = 0, lim

µ→0
lim

i→∞
E‖w̃i − w̃pav

i ‖2 = 0

lim
µ→0

lim
i→∞

(
1

µ
Ew̃iw̃

∗
i

)
= lim

µ→0
lim

i→∞

(
1

µ
Ew̃pav

i w̃pav,∗
i

)
�

The above result indicates that if the step-size µ is suf-
ficiently small, and for fairly general adaptive schemes, the
weight-error vector w̃i of (2) remains close to the partially av-
eraged weight-error vector w̃pav

i of (5). Consequently, for small
step-sizes, we may evaluate the performance of an adaptive
filter by examining the performance of its partially averaged
recursion (5), as we shall proceed to do.
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III. Mean-Square Performance

Our first objective is to evaluate the steady-state mean-
square error of an adaptive filter, i.e., to compute MSE =
E|e(i)|2 as i → ∞, where e(i) = d(i) − uiwi−1 is the out-
put estimation error at time i. To do so, we shall rely on the
energy-conservation approach of [7][Ch. 6] and on the partially
averaged system (5). Table I lists f(i, w̃i−1), ∇w̃fav(0), and
(f(i, 0) − fav(i, 0)) for several adaptive filters,1 with f�(i, 0)
defined by

f(i, 0) − fav(i, 0) = u∗
i f�(i, 0)

so that (5) becomes

w̃pav
i = (I + µ∇w̃fav(0))w̃pav

i−1 + µu∗
i f�(i, 0) (8)

A. Energy Conservation Relation

Let Σ denote any M × M positive-definite matrix (which
we are free to choose), and define the weighted a-priori and
a-posteriori error signals

eΣ
a (i)

∆
= uiΣ(I + µ∇w̃fav(0))w̃pav

i−1, eΣ
p (i)

∆
= uiΣw̃pav

i

(9)
If we multiply both sides of (8) by uiΣ from the left we find that
the a-priori and a-posteriori estimation errors {eΣ

p (i), eΣ
a (i)}

are related via:

eΣ
p (i) = eΣ

a (i) + µuiΣu∗
i f�(i, 0) (10)

We can use (10) to solve for f�(i, 0),

f�(i, 0) = − eΣ
a (i) − eΣ

p (i)

µ‖ui‖2
Σ

(11)

where the notation ‖ui‖2
Σ stands for uiΣu∗

i . Substituting into
(8) we get

w̃pav
i = (I + µ∇w̃fav(0))w̃pav

i−1 − u∗
i (eΣ

a (i) − eΣ
p (i))

‖ui‖2
Σ

(12)

which can be rearranged as

w̃pav
i +

u∗
i

‖ui‖2
Σ

eΣ
a (i) = (I + µ∇w̃fav(0))w̃pav

i−1 +
u∗

i

‖ui‖2
Σ

eΣ
p (i)

(13)
By equating the weighted energies of both sides of this equa-
tion, we find that the following energy equality should hold:

‖w̃pav
i ‖2

Σ +
|eΣ

a (i)|2
‖ui‖2

Σ
=

‖w̃pav
i−1‖2

(I+µ∇w̃fav(0))∗Σ(I+µ∇w̃fav(0))
+

|eΣ
p (i)|2

‖ui‖2
Σ

(14)

The important fact to emphasize is that no approximations
are used to establish the energy relation (14); it is an exact re-
lation that shows how the energies of the weight-error vectors
at two successive iterations are related to the weighted ener-
gies of the a priori and a posteriori estimation error vectors.
Relation (14) is the extension to partially averaged systems of
the energy-conservation relation described in [7].

1For the sign algorithm (SA), we assume that e(i) and v(i)
are jointly Gaussian and use Price’s theorem [20]. See [21] for
details. Also, for the complex case, terms of the form a3 should
be replaced by a|a|2.

B. Weighted Variance Relation

The relevance of (14) to mean-square analysis can be seen
as follows. Replacing eΣ

p (i) by its equivalent expression (10) in

terms of eΣ
a (i) and f�(i, 0) we get

‖ui‖2
Σ · ‖w̃pav

i ‖2
Σ + |eΣ

a (i)|2 =

‖ui‖2
Σ · ‖w̃pav

i−1‖2
Σ′ + |eΣ

a (i) + µ‖ui‖2
Σf�(i, 0)|2

(15)

where Σ′ = [I + µ∇w̃fav(0)]∗Σ[I + µ∇w̃fav(0)]. After expand-
ing the rightmost term of (15), the right-hand side (RHS) be-
comes:

RHS = ‖ui‖2
Σ · ‖w̃pav

i−1‖2
Σ′ + |eΣ

a (i)|2

+µ‖ui‖2
ΣeΣ∗

a (i)f�(i, 0) + µ‖ui‖2
Σf∗�(i, 0)eΣ

a (i)

+µ2|f�(i, 0)|2(‖ui‖2
Σ)2 (16)

Normally, the event ‖ui‖2
Σ = 0 occurs with probability zero.

We can eliminate ‖ui‖2
Σ from both sides of (15) and take ex-

pectations to find that

E‖w̃pav
i ‖2

Σ = E‖w̃pav
i−1‖2

Σ′

+µE[eΣ∗
a (i)f�(i, 0)] + µE[f∗�(i, 0)eΣ

a (i)]

+µ2E[|f�(i, 0)|2‖ui‖2
Σ] (17)

Under the often realistic assumption that

A.1 The noise {v(i)} is i.i.d. and statistically independent of
uj for all j,

and using E[f�(i, 0)] = 0 for the algorithms in Table I, we find
that, except for NLMS, the variance relation (17) reduces to

E‖w̃pav
i ‖2

Σ = E‖w̃pav
i−1‖2

Σ′ + µ2E[|f�(i, 0)|2]E‖ui‖2
Σ (18)

For NLMS, we shall use the approximation

E[|f�(i, 0)|2‖ui‖2
Σ] = σ2

vE

(
‖ui‖2

Σ

‖ui‖4

)
≈ σ2

v

[Tr(Ru)]2
· E‖ui‖2

Σ

so that (18) can be also used for NLMS with E[|f�(i, 0)|2]

replaced by σ2
v/[Tr(Ru)]2.

The subsequent analysis is simplified if we introduce a
convenient change of coordinates by appealing to the eigen-
decomposition Ru = QΛQ∗, where Λ is a diagonal matrix with
the eigenvalues of Ru and Q is a unitary matrix (i.e., it satisfies
QQ∗ = Q∗Q = I). Define the transformed quantities:

w̄pav
i

∆
= Q∗w̃pav

i ∇w̃ f̄av(0)
∆
= Q∗∇w̃fav(0)Q

ūi
∆
= uiQ Σ̄

∆
= Q∗ΣQ

Under this change of variables the variance relation (18) retains
a similar form:

E‖w̄pav
i ‖2

Σ̄
= E‖w̄pav

i−1‖2
Σ̄′ + µ2E[|f�(i, 0)|2]E‖ūi‖2

Σ̄
(19)

where

Σ̄′ = Σ̄ + 2µΣ̄∇w̃ f̄av(0) + µ2∇w̃ f̄av(0)Σ̄∇w̃ f̄av(0) (20)

Table II lists ∇w̃ f̄av(0) and E[|f�(i, 0)|2] for the adaptive

filters of Table I. Note that ∇w̃ f̄av(0) is a diagonal matrix.
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TABLE I

Examples of {f(i, w̃i−1),∇w̃fav(0), f(i, 0) − fav(i, 0)} for various adaptive filters.

Algorithm f(i, w̃i−1) ∇w̃fav(0) f(i, 0) − fav(i, 0) f�(i, 0)

LMS −u∗
i (uiw̃i−1 + v(i)) −Ru −u∗

i v(i) −v(i)

NLMS
−u∗

i (uiw̃i−1 + v(i))

‖ui‖2
−E

[
u∗

i ui

‖ui‖2

]
≈ − Ru

Tr(Ru)
−u∗

i v(i)

‖ui‖2
− v(i)

‖ui‖2

LMF −u∗
i (uiw̃i−1 + v(i))3 −3Ruσ2

v(real) −u∗
i v3(i) −v3(i)

−2Ruσ2
v(complex)

LMMN −δu∗
i (uiw̃i−1 + v(i)) −δRu − 3(1 − δ)Ruσ2

v(real) −δu∗
i v(i) −δv(i)

−(1 − δ)u∗
i (uiw̃i−1 + v(i))3 −δRu − 2(1 − δ)Ruσ2

v(complex) −(1 − δ)u∗
i v3(i) −(1 − δ)v3(i)

SA −u∗
i sgn(uiw̃i−1 + v(i)) −

√
2

π

Ru

σv
−u∗

i sgn(v(i)) −sgn(v(i))

TABLE II

EMSE and Examples of {∇w̃ f̄av(0), E[|f�(i, 0)|2} for various adaptive filters.

Algorithms ∇w̃ f̄av(0) E[|f�(i, 0)|2] EMSE EMSE

(small µ) (with I. A.)

LMS −Λ σ2
v

µσ2
vTr(Ru)

2

µσ2
vTr(Ru)

2

NLMS − Λ

Tr(Ru)

σ2
v

[Tr(Ru)]2
µσ2

v

2

µσ2
v

2 − µ

LMF −3Λσ2
v(real) ξ6

v = E[v6(i)]
µ

2

(
ξ6
v

3σ2
v

)
Tr(Ru)

µ

2

(
ξ6
v

3σ2
v

)
Tr(Ru)

−2Λσ2
v(complex)

LMMN −δΛ − 3(1 − δ)Λσ2
v(real) δσ2

v + (1 − δ)2ξ6
v

µa

2b
Tr(Ru)

µa

2b
Tr(Ru)

−δΛ − 2(1 − δ)Λσ2
v(complex) +2δ(1 − δ)ξ4

v

SA −
√

2

π

Λ

σv
1

α

2

√
4σ2

v

α

2
(α +

√
α2 + 4σ2

v)

C. Steady-State Mean-Square Performance

Relation (19) can now be used to deduce an approximate ex-
pression for the filter excess mean-square error (EMSE), which
is defined as

EMSE = lim
i→∞

E|uiw̃i−1|2

Using uiw̃i−1 ≈ uiw̃
pav
i−1, we set

EMSE ≈ limi→∞ E|uiw̃
pav
i−1|2 (21)

To evaluate this EMSE we note from (8) that the dyanmics of
the weight-error vector w̃pav

i is determined by the eigenvalues
of the coefficient matrix

I + µ∇w̃fav(0) (22)

where, from Table I, the matrix ∇w̃fav(0) is negative-definite.
For very small step-sizes, the eigenvalues of the matrix (22) are
inside the unit circle but close to unity so that the variations
in w̃pav

i occur slowly. Moreover, from (8), we also have that

w̃pav
i−1 = [I + µ∇w̃fav(0)]i w̃pav

−1 +

µ

i−2∑
j=0

[I + µ∇w̃fav(0)]ju∗
i−1−jf�(i − 1 − j, 0)

where the first term on the right-hand side is independent of ui,
while the second term is a function of the regressors {ui−1−j}.
Since we are assuming sufficiently small step-sizes (µ → 0), we
may ignore the dependence between ui and this second term.

It follows that we may assume that ui and w̃pav
i−1 are essentially

independent of each other for small step-sizes. Then (21) gives

EMSE ≈ lim
i→∞

E‖w̃pav
i−1‖2

Ru
= lim

i→∞
E‖w̄pav

i−1‖2
Λ

Taking the limit of (19) as i → ∞, and using the steady-state
condition E‖w̄pav

i ‖2
Σ̄

= E‖w̄pav
i−1‖2

Σ̄
, we obtain

E‖w̄pav
i−1‖2

−2Σ̄∇w̃ f̄av(0)−µ∇w̃ f̄av(0)Σ̄∇w̃ f̄av(0)
=

µE[|f�(i, 0)|2]Tr(ΛΣ̄)

(23)

In order to evaluate the EMSE, we need to select Σ̄ such that
the weighting matrix on the left-hand side is equal to Λ, i.e.,

−2Σ̄∇w̃ f̄av(0) − µ∇w̃ f̄av(0)Σ̄∇w̃ f̄av(0) = Λ (24)

We illustrate this procedure for several algorithms.

1. LMS. We substitute ∇w̃ f̄av(0) and E|f�(i, 0)|2 by −Λ and

σ2
v, respectively. Then (24) becomes 2Σ̄Λ − µΛΣ̄Λ = Λ, i.e.,

Σ̄ should be selected as the diagonal matrix Σ̄ = (2I − µΛ)−1.
Then the LHS of (23) becomes the filter EMSE and (23) gives

EMSE = µσ2
vTr[Λ(2I − µΛ)−1] = µσ2

v

M−1∑
i=0

λi

2 − µλi
(25)

When µλi � 2, the EMSE expression reduces to

EMSE =
µσ2

vTr(Ru)

2
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2. NLMS For NLMS, by substituting ∇w̃ f̄av(0) and

E|f�(i, 0)|2 by − Λ
Tr(Ru)

and
σ2

v
Tr2(Ru)

, respectively, relation

(23) becomes

E‖w̄pav
i−1‖2

2Σ̄ Λ
Tr(Ru)−µ ΛΣ̄Λ

Tr2(Ru)

= µ
σ2

v

Tr2(Ru)
Tr(ΛΣ̄) (26)

Then we choose Σ̄ so that

2Σ̄
Λ

Tr(Ru)
− µ

ΛΣ̄Λ

Tr2(Ru)
= Λ

i.e.,
Σ̄ = (2Tr(Ru)I − µΛ)−1Tr2(Ru)

and the LHS of (26) becomes the filter EMSE:

EMSE = µσ2
vTr[Λ(2Tr(Ru)I − µΛ)−1]

= µσ2
v

M−1∑
i=0

λi

2Tr(Ru) − µλi
(27)

When µλi � 2Tr(Ru), this EMSE expression reduces to

EMSE =
µσ2

v

2

3. LMF. To obtain the EMSE for LMF with real-valued data,
we substitute ∇w̃ f̄av(0) and E|f�(i, 0)|2 by −3σ2

vΛ and ξ6
v =

E[v6(i)], respectively. Then relation (24) becomes

6σ2
vΣ̄Λ − 9µξ6

vΛΣ̄Λ = Λ

so that
Σ̄ = (6σ2

vI − 9µξ6
vΛ)−1

Then the LHS of (23) becomes the filter EMSE and it leads to

EMSE = µξ6
vTr[Λ(6σ2

vI − 9µξ6
vΛ)−1]

= µξ6
v

M−1∑
i=0

λi

6σ2
v − 9µξ6

vλi
(28)

When 9µξ6
vλi � 6σ2

v, this EMSE expression reduces to

EMSE =
µ

2

(
ξ6
v

3σ2
v

)
Tr(Ru)

4. LMMN. For LMMN with real-valued data, we have

∇w̃ f̄av(0) = δΛ − 3δ̄σ2
vΛ

and
E|f�(i, 0)|2 = δσ2

v + δ̄2ξ6
v + δδ̄ξ4

v

where δ̄ = 1− δ and ξ4
v = E[v4(i)]. After substitution, relation

(24) becomes

2(δ + 3δ̄σ2
v)Σ̄Λ − µ(δ + 3δ̄σ2

v)2ΛΣ̄Λ = Λ

so that

Σ̄ = (2(δ + 3δ̄σ2
v)I − µ(δ + 3δ̄σ2

v)2Λ)−1

Then the LHS of (23) becomes the EMSE and it leads to

EMSE = µa

M−1∑
i=0

λi

2b − µcλi
(29)

where we introduced the constants

a = δσ2
v + 2δδ̄ξ4

v + δ̄2ξ6
v

b = δ + 3δ̄σ2
v

c = δ2 + 6δδ̄σ2
v + 9δ̄2ξ4

v

When µcλi � 2b, this EMSE expression reduces to

EMSE =
µa

2b
Tr(Ru)

For complex valued data, we replace e3(i) by e(i)|e(i)|2 and
assume the noise is circular, i.e., Ev2(i) = 0. Then repeating
the above arguments we find that expression (29) is still valid
but with b and c replaced by

b′ = δ + 2δ̄σ2
v , c′ = δ2 + 4δδ̄σ2

v + 4δ̄2ξ4
v

5. Sign Algorithm. We substitute ∇w̃ f̄av(0) and E|f�(i, 0)|2

by −
√

2

π

Λ

σv
and 1, respectively. Then relation (24) becomes

√
2

π
Σ̄

Λ

σv
− µ

2

π

1

σ2
v

ΛΣ̄Λ = Λ

so that

Σ̄ =

(√
2

π

1

σv
I − µ

2

π

Λ

σ2
v

)−1

Then the LHS of (23) becomes the EMSE and it leads to

EMSE = µTr

⎛
⎝Λ

(√
2

π

1

σv
I − µ

2

π

Λ

σ2
v

)−1
⎞
⎠

= µ

M−1∑
i=0

πσ2
vλi√

2πσv − 2µλi

(30)

When 2µλi � √
2πσv , this EMSE expression reduces to

EMSE = µ

√
π

2
σvTr(Ru) or

α

2

√
4σ2

v

where α =
√

π
8
µTr(Ru).

Table II summarizes the derived EMSE for various adap-
tive filters for sufficiently small µ. These expressions, which
have been derived here using averaging theory, are essentially
identical to the ones derived in the literature by means of the
independence assumptions.

In Figs. 1– 2 we illustrate the theoretical results presented in
this paper for LMS and NLMS by carrying out computer simu-
lations in a channel estimation scenario. Similar results apply
to LMMN and SA. In the simulations, the unknown channel
has 10 taps and the input is Gaussian of unit variance. The
noise is chosen to be white Gaussian of variance σ2

v = 10−3.
Each simulation result is obtained by averaging the last 1000
instantaneous squared error over 100 independent trials. The
simulation results show good agreement with the theoretical
results for small step-sizes, but deviate from the theoretical
ones for larger step-sizes. This is because the partially aver-
aged system is valid only for small step-sizes.

IV. Transient Analysis

We now study the transient performance of the partially
averaged system (8) in terms of its stability and learning curve
behavior.

Our analysis starts from the weighted variance relation (19).
In addition, taking expectations of both sides of (8) and chang-
ing variables into transformed quantities, we obtain the follow-
ing result for the evolution of the mean of the weight-error
vector:

E[w̃pav
i ] = (I + µ∇w̃ f̄av(0))E[w̃pav

i−1] (31)

since E[u∗
i f∆(i, 0)] = 0. Relations (19) and (31) can be used to

derive conditions for mean-square stability and to characterize
the learning curve of the system.

Following the approach described in [7][Ch. 9] and [9], we
observe the interesting fact that Σ̄′ will be diagonal if Σ̄ is. In
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this way, rather than propagate the weighting matrices them-
selves, it is more convenient to rewrite the recursion for Σ̄′
in terms of its diagonal entries. For this purpose, we let the
vectors σ̄ = diag{Σ̄} and λ = diag{Λ} denote M × 1 columns
with the diagonal entries of the corresponding matrices. Actu-
ally, we shall use the notation diag{·} in two directions, both
of which will be obvious from the context. Writing diag{σ̄}
for a column vector σ̄, results in a diagonal matrix whose di-
agonal entries are obtained from σ̄. Therefore we also write
Σ̄ = diag{σ̄} and Λ = diag{λ}. In terms of the vectors {σ̄, σ̄′},
the matrix relation (20) for Σ̄′ can be replaced by the vector
relation:

σ̄′ = F̄ σ̄ (32)

in terms of the M×M coefficient matrix F̄ = (I+µ∇w̃ f̄av(0))2.
We can rewrite the recursion for E‖w̄pav

i ‖2
Σ̄

in (19) by using

the vectors {σ̄, σ̄′} instead of the matrices {Σ̄, Σ̄′}, say as

E
[
‖w̄pav

i ‖2
diag{σ̄}

]
= E

[
‖w̄pav

i−1‖2
diag{σ̄′}

]
+µ2E|f∆(i, 0)|2λT σ̄

where, for the last term, we used the fact that E‖ūi‖2
Σ̄

=

Tr(E[ū∗
i ūi]Σ̄) = λT σ̄. For compactness of notation, we drop

the diag{·} notation from the subscripts and keep the vectors,
so that the above is simply rewritten as

E
[‖w̄pav

i ‖2
σ̄

]
= E

[
‖w̄pav

i−1‖2
σ̄′

]
+ µ2E|f∆(i, 0)|2λT σ̄ (33)

Recursion (33) shows that in order to evaluate E‖w̄pav
i ‖2

σ̄ we

need to know E‖w̄pav
i−1‖2

F̄ σ̄
, with a weighting matrix whose di-

agonal entries are F̄ σ̄. Now the quantity E‖w̄pav
i ‖2

F̄ σ̄
can be

inferred from (33) by writing the recursion for F̄ σ̄, i.e.,

E‖w̄pav
i ‖2

F̄ σ̄
= E‖w̄pav

i−1‖2
F̄2σ̄

+ µ2E|f∆(i, 0)|2(λT F̄ σ̄)

We again find that in order to evaluate E‖w̄pav
i ‖2

F̄ σ̄
we need

to know E‖w̄pav
i−1‖2

F̄2σ̄
. The natural question is whether this

procedure terminates. Fortunately, the procedure terminates.
This is because once we write (33) by substituting σ̄ by F̄ M−1σ̄
we get

E‖wpav
i ‖2

F̄ M−1σ̄
= E‖wpav

i−1‖2
F̄ M σ̄

+µ2E|f∆(i, 0)|2(λT F̄ M−1σ̄)

where the weighting matrix on the RHS is F̄ M σ̄. This term
can be deduced from the prior weighting factors. Indeed, let
p(x) denote the characteristic polynomial of F̄ , i.e., p(x) =
det(xI − F̄ ). It is a polynomial of order M in x,

p(x) = xM + pM−1xM−1 + · · · + p1x + p0

with coefficients {pk}. Now the Cayley-Hamilton Theorem
guarantees that p(F ) = 0 so that

E‖w̄pav
i ‖2

F̄ M−1σ̄
= −

M−1∑
m=0

pmE|w̄pav
i ‖2

F̄ mσ̄
(34)

Theorem 2 [Transient performance] Under assumption
A.1, the transient performance of the partially averaged sys-
tem (8) for sufficiently small step-sizes can be approximated
by the M−dimensional state recursion

Wi = FWi−1 + µ2E|f∆(i, 0)|2Y (35)

where

F =

⎡
⎢⎢⎢⎢⎢⎣

0 1 . . . . . . 0
0 0 1 . . . 0
..
.

..

.
..
.

. . .
..
.

0 0 0 . . . 1
−p0 −p1 −p2 . . . −pM−1

⎤
⎥⎥⎥⎥⎥⎦

Wi =

⎡
⎢⎢⎢⎢⎢⎢⎣

E‖w̄pav
i ‖2

σ̄
E‖w̄pav

i ‖2
F̄ σ̄

.

..
E‖w̄pav

i ‖2
F̄ M−2σ̄

E‖w̄pav
i ‖2

F̄ M−1σ̄

⎤
⎥⎥⎥⎥⎥⎥⎦

, Y =

⎡
⎢⎢⎢⎢⎢⎣

λT σ̄
λT F̄ σ̄

.

..
λT F̄ M−2σ̄
λT F̄ M−1σ̄

⎤
⎥⎥⎥⎥⎥⎦

�

Observe that the eigenvalues of F coincide with those of F̄ .

A. Learning Curve

The learning curve of the partially averaged system (8) de-
scribes the time evolution of E|uiw̃

pav
i−1|2. Now, for very small

step-sizes, we use the approximation

E|uiw̃i−1|2 ≈ E‖w̄pav
i−1‖2

Ru
≈ E‖w̄pav

i−1‖2
Λ

to evaluate the learning curve by computing E‖w̄pav
i−1‖2

Λ for
each i. This task can be accomplished recursively from relation
(33) by iterating it and choosing σ̄ = λ = vec(Λ). This yields

E‖w̄pav
i ‖2

λ = E‖w̄pav
−1 ‖2

F̄ iλ
+

µ2E|f∆(i, 0)|2(λT (I + · · · + F̄ i−1)λ)
(36)
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Fig. 3. Learning curves of LMS (µ = 0.005, Input: Gaussian,
System: FIR (10), SNR=30dB)

That is,

E‖w̄pav
i−1‖2

λ = E‖w̄pav
−1 ‖2

fi−1
+ µ2E|f∆(i, 0)|2g(i − 1) (37)

where the vector fi and the scalar g(i−1) satisfy the recursions

fi−1 = F̄ fi−2, f0 = λ

g(i − 1) = g(i − 2) + λT fi−1, g(−1) = 0

Fig. 3 shows the learning curves of LMS obtained by using
the learning curve of its partially averaged system and by sim-
ulation. The step-size is set to 0.005 for LMS. It is seen that
there is good match between theory and practice.

B. Steady-State Behavior

In the above we used the variance relation (33) to character-
ize the transient behavior of the partially averaged system (8)
in terms of a state recursion. We can use the same variance re-
lation to shed further light on the mean-square performance of
adaptive filters. In particular, we shall re-examine the EMSE,
as well as study the mean-square deviation (MSD), which is
defined by MSD = E‖w̃i‖2 as i → ∞. Assuming the step-size
µ is chosen to guarantee filter stability, recursion (33) becomes
in steady-state

E‖w̄pav
∞ ‖2

σ̄ = E‖w̄pav
∞ ‖2

F̄ σ̄
+ µ2E|f∆(i, 0)|2(λT σ) (38)

which is equivalent to

E‖w̄pav
∞ ‖2

(I−F̄ )σ̄
= µ2E|f∆(i, 0)|2(λT σ̄) (39)

Assume that we select σ̄ as the solution to the linear system
of equations (I − F̄ )σ̄ = diag{I}. In this case, the weighting
quantity that appears in (39) reduces to the vector of unit
entries. Then the left-hand side of (39) becomes the filter MSD
and (39) leads to

MSD = µ2E|f∆(i, 0)|2λT (I − F̄ )−1diag{I} (40)

In a similar way, let us evaluate the EMSE. Now we need
to evaluate E‖w̄pav∞ ‖2

λ, where the weighting factor is λ =
diag{Λ}. Assume we select σ̄ as the solution to the linear
system of equations (I − F̄ )σ̄ = λ. In this case, the weighting
quantity that appears in (39) reduces to Λ. Then the LHS of
(39) becomes the filter EMSE and (39) leads to the desired
result

EMSE = µ2E|f∆(i, 0)|2λT (I − F̄ )−1λ (41)

V. Conclusion

In this paper, we considered general weight-error adaptive
updates of the form (2) and studied their mean-square error
and mean-square deviation performance measures as well as
the transient behavior of their partially averaged systems. The
derivation was based on replacing the filter error equation by a
partially-averaged system, whose weight-error trajectory stays
close to that of the adaptive filter for small step-sizes. By ap-
plying energy conservation arguments to the averaged system,
we were able to derive performance results as well as charac-
terize the filter transient behavior. The results obtained using
averaging are essentially similar to those using independence
analysis.
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