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Abstract— With multiple antennas at the transmitter, either
space-time block coding or beamforming can be used as the
transmission scheme depending on the availability of channel
state information at the transmitter. Although beamforming can
provide superior performance over space-time block coding,
it nevertheless suffers from feedback overhead. An efficient
beamforming scheme in terms of feedback rate is proposed in
this paper. The proposed scheme exploits the channel statistics
by using space and time correlation in a joint manner in
order to track the channel at the transmitter. Simulation results
show improvements compared to a system with space-time block
coding.

I. INTRODUCTION

The deployment of multiple transmit and receive antennas
has been envisioned for several wireless communications
standards. Two of the approaches that are being considered
to exploit the potential of multiple transmit antennas with the
purpose of maximizing the SNR at the receiver are space-time
block coding (STBC) and beamforming. Space-time block
coding is useful when channel state information (CSI) is not
available at the transmitter. However, more can be done if
the CSI is known to the transmitter, either completely or
partially. In the case of complete CSI at the transmitter,
beamforming can be used. Its drawback is the need for a
feedback link to send back to the transmitter the estimated
channel information. The feedback link results in overhead
and reduces the achievable data rates in mobile environments.
Different schemes have been proposed to combat and reduce
the rate overhead caused by feedback. In [1], for example, a
quantized version of the beamforming coefficients estimated at
the receiver is sent back to the transmitter. The feedback rate
is reduced by using an appropriate quantization scheme. In
another approach [2], the channel covariance matrix is used at
the transmitter to derive the beamforming coefficients from the
eigenvector corresponding to the largest eigenvalue. Although
this scheme requires a lower feedback rate (due to the slower
variation of the covariance matrix), it nevertheless suffers from
poor performance compared to the case when the channel
realizations are used.

In this paper, we propose a scheme where the channel taps
of a flat fading Rayleigh channel are efficiently tracked at the
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transmitter and then used directly to compute the beamforming
coefficients. The channel correlations in both time and space
are exploited by the transmitter for improved channel tracking
and the receiver is required to feed back a decimated version
of the received data. A reduced feedback rate is shown to be
sufficient to track the channel and achieve performance close
to that of an ideal beamformer.

The paper is organized as follows. The next section de-
scribes the model used for the channel. In Sec. III, a state-
space model is derived that exploits the channel statistics
in both time and space. Kalman and RLS channel tracking
schemes are then presented in Sec. IV. Simulation results are
presented in Sec. V. Conclusions are given in Sec. VI.

II. CHANNEL MODELING

A multi-input single-output (MISO) system with M transmit
antennas is considered–see Fig. 1. A single-path channel is
assumed between every transmit and receive antenna. Let hn

represent the collection of channel gains from the various
transmit antennas to the receiver, say

hn = col {h1(n) h2(n) · · · hM (n)}
where hi(n) is the complex channel gain from the ith antenna
to the receiver at time n.

If the channel is known at the transmitter, then one could
use beamforming to maximize the received SNR. The beam-
forming vector wn at time n could be chosen as [3]:

wn =
h∗

n

‖hn‖ (1)

where ‖.‖ denotes the Euclidean norm of its argument.
One common way to obtain the Channel State Information

(CSI) at the transmitter is to estimate the channel at the
receiver and to feed this information back to the transmitter.
This step involves some overhead and decreases the system
throughput. An alternative solution would be to feed back
some minimal information that enables the transmitter to per-
form both channel estimation and tracking. For example, for
channels that could be modeled by a first order autoregressive
(AR) model, say

hn+1 = Fhn + Gun (2)
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Fig. 1. The proposed beamforming architecture with feedback.

the channel estimation and tracking step could be performed
at the transmitter by using a Kalman filter provided that the
model parameters (i.e., the F and G matrices) are known
by the transmitter. In the model (2), un is a zero-mean i.i.d
random process with unit covariance matrix, Ru = Euu∗ = I.
In the case of Gaussian wide-sense stationary uncorrelated
scattering fading channel gains (WSSUS), the matrices F and
G in (2) can be taken as diagonal [8] (see below). However,
in the case of spatially correlated channel gains, F and G
would need to be chosen properly in order to reflect the inter-
dependency among the elements of hn. This issue is addressed
in Sec. III.

III. STATE-SPACE MODEL

A channel vector hn with a spatial covariance matrix Rh =
Ehnh∗

n can be modeled as hn = R1/2
h hw

n , where hw
n is

a vector whose elements are uncorrelated (i.e., Rw
h = I).

In other words, a spatially correlated channel vector can be
regarded as the transformation of a spatially white channel
vector hw

n . The dynamics of the vector hw
n could be modeled

as

hw
n+1 = Fwhw

n + Gwun (3)

where Fw and Gw are diagonal matrices in the spatially
uncorrelated case and found as follows [7]. Let Fw = aIM×M

and Gw = gIM×M . Then (3) becomes

hw
n+1 = ahw

n + gun (4)

where the scalar a denotes the first-order autocorrelation
coefficient for each channel gain, namely,

a = Ehw(n)hw∗(n − 1) (5)

In order to estimate a, we use the model from [4] where the
variability of the wireless channel over time is modeled in
terms of the autocorrelation function of a complex Gaussian
process. It was shown in [5] that the theoretical power spectral
density function associated with either the in-phase or quadra-
ture portion of each channel element has the well-known U-
shaped bandlimited form:

S(f) =

{ 1

πfd

�
1−( f

fd
)
2 |f | ≤ fd

0 elsewhere
(6)

where fd is the maximum Doppler frequency. The correspond-
ing normalized discrete-time autocorrelation sequence of each
channel element is given by

ak = Ehw(n)hw∗(n − k) = J0(2πfdT |k|) (7)

where J0(.) is the zeroth-order Bessel function of the first
kind, and T is the sampling period. Thus [6],

a = J0(2πfdT ) (8)

Moreover,
g =

√
1 − |a|2 (9)

Now let R1/2
h denote any square-root of Rh > 0. Using

hn = R1/2
h hw

n we can formulate a state-space model for
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spatially correlated channels as follows. Substituting hw
n =

R−1/2
h hn into (3) gives

R−1/2
h hn+1 = aR−1/2

h hn + gun (10)

or, equivalently,

hn+1 = ahn + gR1/2
h un (11)

Thus, the dynamics of a spatially correlated channel vector
could be modeled as

hn+1 = Fhn + Gun (12)

where F = aIM×M and G = gRh
1/2, with F continuing to

be a diagonal matrix1.

IV. CHANNEL ESTIMATION

Let y(m) denote the received data at time m, i.e.,

y(m) = xmhm + v(m) (13)

where xm is the transmitted 1 × M vector of data (known to
the transmitter ) and v(m) is the added noise at the receiver.
Note that we are using two time indices, m and n. It is
assumed that data are transmitted at time instants mT , while
the channel dynamics varies at a slower rate denoted by
the time instants nT . Both v(n) and un are assumed to be
uncorrelated. Denoting the transmitted sample at time m by
s(m), the transmitted vector xm is given by xm = s(m)wn.

The channel covariance matrix Rh = Ehnh∗
n can be

initially estimated at the receiver by time averaging of the
estimated channel elements and the result sent back to the
transmitter. Subsequently, the receiver feeds back the received
data {y(m)} at a downsampled rate–see Figure 1. In this way,
the transmitter ends up with the following state-space model:

hn+1 = ahn + gR1/2
h un

y(n) = xnhn + v(n)
(14)

Note that the transmitted vector xn is known at the transmitter
and the receiver only feeds back y(m) at a downsampled
rate. This reduces the number of feedback bits significantly as
opposed to the case when the entire channel vector is fed back.

1The approach presented in this paper for a MISO channel can be
generalized to a MIMO channel. Let H be an N × M matrix representing
the channel. The spatially correlated channel matrix can be modelled as

H = R
1/2
r HwR

1/2
t

where all the entries of Hw have unit variance and for some transmit and
receive covariance matrices {Rt,Rr}. Then

vec(H)� �� �
h

=
�
R

T/2
t ⊗ R

1/2
r

�
vec(Hw)� �� �

hw

and results can be extended to the MIMO case by substituting R
1/2
h with�

R
T/2
t ⊗ R

1/2
r

�
.

The Kalman equations [3] can now be used by the transmitter
to track the channel as follows:

e(n) = y(n) − xnĥn, ĥ0 = 0
ĥn+1 = ĥn + kp,ne(n)
kp,n = aPnx∗

nr−1
e (n)

re(n) = σ2
v + xnPnx∗

n

Pn+1 = |a|2Pn + |g|2Rh − kp,nrek
∗
p,n, P0 = Rh

Alternatively, the RLS algorithm could be used to estimate
and track the channel. RLS is independent of the underlying
state-space model and it does not require knowledge of the
state-space parameters F and G. Based on the measurements
y(n), the RLS update equations are given by [3]:

Pn =λ−1

(
Pn−1 − λ−1Pn−1x∗

nxnPn−1

1 + λ−1xnPn−1x∗
n

)
, P−1 = δI

ĥn =ĥn−1 + Pnx∗
n

[
(y(n) − xnĥn−1

]
, ĥ−1 = 0

(15)
where 0 � λ ≤ 1. The RLS algorithm is used for com-
parison purposes in order to show how much improvement
in performance can be obtained when the channel model is
estimated and exploited. This improvement is reflected in the
BER curves shown in the following section.

V. SIMULATION RESULTS

A. Simulation Set-Up

A typical MISO system is simulated to evaluate the perfor-
mance of the proposed transmission scheme in comparison to
a beamformer with perfect channel information, as well as a
system with orthogonal space-time block coding. We consider
a 4-transmit 1-receive configuration. QPSK constellation is
used at the transmitter. A single tap channel between every
transmit and receive antenna is simulated.

A spatially white channel is generated through a first order
AR model:

hw
n = ahw

n−1 + gun−1

with parameters a and g calculated using the channel Doppler
frequency as

a = J0(2πfdT ), g =
√

1 − |a|2

with fd = 60Hz, T = 1µsec. The spatially correlated channel
used in the simulations is generated as

hn = R1/2
h hw

n
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Fig. 2. The training pattern used in the simulations.
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Fig. 3. BER versus SNR for a 4 × 1 system with fd = 60Hz, ρ = 0.8,
ND=512, NT1 = 6, and NT2 = 1.
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Fig. 4. BER versus SNR for a 4 × 1 system with fd = 60Hz, ρ = 0.4,
ND=512, NT1 = 6, and NT2 = 1.

where Rh is the channel covariance matrix. We performed
simulations for a covariance matrix of form

Rh =

⎡
⎢⎢⎣

1 ρ ρ4 0
ρ 1 ρ ρ4

ρ4 ρ 1 ρ
0 ρ4 ρ 1

⎤
⎥⎥⎦

where the spatial correlation of the channel is controlled
through the parameter ρ < 1. In the simulations, we use an
estimated version of Rh at the transmitter. This estimate is
obtained at the receiver using time-averaging and is fed back
to the transmitter. The packet structure used in the simulations
is shown in Figure 2.

Before the transmission starts, a burst of NT1 (e.g., NT1 =
6) training data is transmitted for initial estimation of the chan-
nel and of Rh. Payloads of length ND are then transmitted
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Fig. 5. BER versus SNR for a 4 × 1 system with fd = 60Hz, ρ = 0.8,
ND=512, NT1 = 8, and NT2 = 1. See Figure 1 for an explanation of the
parameter D.
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Fig. 6. BER versus SNR for a 4 × 1 system with fd = 60Hz, ρ = 0.4,
ND=512, NT1 = 8, and NT2 = 1. See Figure 1 for an explanation of the
parameter D.

(e.g., ND = 512). To enable channel tracking, training data
is transmitted between the payloads. To reduce the training
overhead, we choose NT2 < NT1, e.g., NT2 = 1 in which
case only one measurement y(m) is fed back every ND data
points. More generally, one block of received data y(m) corre-
sponding to a training block of length NT2 could be sent back
to the transmitter for every D received data blocks of length
ND each. In the simulations, we show how we can increase
the payload length ND and decrease the training lengths NT1

and NT2 in order to reduce the feedback overhead.
The simulation results demonstrate the effects of the pa-

rameters fd, ρ, and the feedback rate, on the proposed
Kalman and standard RLS channel estimation schemes. In
all simulations we compare the suggested channel tracking
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system to both ideal beamforming and Orthogonal Space Time
Coding (OSTBC). In all the simulations, we have used the
3/4-rate orthogonal space-time block code proposed for a
4 × 1 MIMO system [9]. Due to the rate difference between
the beamforming and OSTBC scheme (full versus 3/4), the
total transmit power for a frame of data is normalized for
both schemes. Figures 5 and 6 depict the results for different
feedback rates D = 1, 2, 4, 8–see Figure 1. The results show
a significant improvement over the OSTBC scheme and a
performance that is close to ideal beamforming for different
simulation parameters.

VI. CONCLUDING REMARKS

An efficient beamforming scheme in terms of feedback rate
is proposed in this paper. The proposed scheme exploits the
channel statistics using space and time correlation in a joint
manner to track the channel at the transmitter. The proposed
channel tracking scheme is based on a state-space model
derived for channel evolution in the spatially correlated case.
Simulation results show improvements compared to a system
with space-time block coding.
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