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Abstract

This paper studies the application of robust state-
space estimation with uncertain models to tracking
problems in human-machine interfaces. The need for
robust methods arises from the desire to control the
influence of uncertain environment conditions on sys-
tem performance, such as the effect of abrupt varia-
tions in object speed and motion characteristics. This
paper produces models for motion uncertainties associ-
ated with e human hand, and applies them to a robust
state-space estimation algorithm used to track a user’s
pointing fingertip. Then a comparison is performed
between the results from the robust tracker against a
Kalman filter.

1 Introduction

One critical factor in human-machine interface ap-
plications is the ability of the machine to quickly and
efficiently identify and interpret the hand gestures of
its user. This capability can be useful in many circum-
stances. For example, while using a wearable com-
puter system, the user’s fingertip could be used to
point to and encircle objects of interest in a scene.
In this way, a machine that is able to track the move-
ments of the user’s fingertip could convey to the user
information ebout the identified objects.

There are several computer vision algorithms that
have been developed for such purposes in the literature
[1],{7]. These algorithms extract color segmentations,
3D stereo segmentations, and shape information from
the machine’s camera view in order to identify the
user’s hand and fingertip position. The algorithms,
however, are complex and computationally intensive,
and tend to slow down the response of the machine to a
great extent. In order to perform real-time acquisition
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and tracking, state-space estimation techniques can be
used to enable the designer to reduce the search space
from the full camers view to a smaller search window
in a dynamic fashion. This window is centered around
a prediction for the future position of the object being
tracked, and such predictions can be obtained from
state-space estimation methods like, e.g., Kalman fil-
ters (refer to Figures 1 and 2).

However, since the trajectory created by the user’s
hand is subject to several sources of uncertainties, it
becomes useful to investigate the use of robust es-
timation methods in order to limit the degradation
in performance of otherwise optimal systems. For a
wearable computer system, for example, these uncer-
tainties arise from the camera moving along with the
user’s head motion, the background and object mov-
ing independently of each other, the user standing still
or randomly walking, and the user’s pointing finger
abruptly changing directions at variable speeds. All
these factors give rise to uncertainties that influence
the design of reliable trackers. This paper attempts to
model such sources of uncertainties and compares the
performance of a tracker that is based on a Kalman
filter to that of a tracker that is based on the robust
algorithm of Sayed [6]. The latter shows improved
performance.

2 State-space modeling for fingertip
tracking

Figure 1 illustrates a wearable computer system,
Snap& Tell, that is currently under development at
HRL laboratories in Malibu,CA. It aims at providing
gesture-based interfaces between users and machines.
This system enables a user to specify, segment, and
recognize objects of interest, such as landmarks, by
simply pointing at and encircling them with the user’s
fingertip (for details see [2],[3]).

In order to enhance the gesture-based interface, a
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Figure 1: Block diagram of gesture-based interface for
a wearable computer system.

state-space tracker is inserted into the system in order
to predict the future user’s fingertip position, which
will point to the user’s focus of attention during the
next frame. These predicted coordinates are then used
as the center of a smaller image search window during
the next video frame, thus speeding up the response
time of the system and making it memory and com-
putationally efficient.

The tracker relies on a state-space model that
describes the fingertip motion. Thus let T de-
note the frame capture rate for the wearable com-
puter system (measured in seconds/frame). Let
also {og,i,0y,i} denote the fingertip’s accelerations
along the x and y directions (measured in pixels per
second?), and let {v2,5,vy,i} denote the speeds along
these same directions during the i** frame (measured
in pixels/second). Then one could approximate the
present fingertip position in the i** frame {z;,y;}
in terms of the previous frame fingertip pixel coor-
dinates {z;-1,¥%;-1} and the pixel-shifts per frame
{vi—1T, ai_1TTQ} such as

Vzi R Ugi-1+0ziaT (1)

Vi R Vpi-1+ oyl (2)
2

T N Tie1+ V5T + i-1%" 3)
T2

Yi N Y1+ yiaT + Oyi-17" (4)

In general, the acceleration and speed variables are
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unknown and more advanced trackers would need to
estimate them as well. In order to simplify the pre-
sentation in this article a simplified model is adopted.
Thus assume zero accelerations in the x and y direc-
tions and, consequently, constant speeds along these
directions. These assumptions are fairly reasonable in
situations when the user is standing still and pointing
at an object.

Under the constant speed assumption, let
{Az;, Ay;} denote the pixel displacements in the x
and y directions during the i** frame, which will ac-
count for the instantaneous change of trajectory of the
pointing finger. Then it holds that

(5)

and these equations motivate the following state-space
model. Introduce the state and measurement vectors

Tig1 = i + ATy, Y1 =Y+ Ay;

Z;
A Yi AT
P b BC
Ay;
then
8i41 = Fs; + Gu;, zi = Hs; +v; (7)
with model parameters
1 010 1000
0101 0100
F=1o0010]"%]o010
0 0 01 0 0 01
1 000
2= 950 ®

and where u; and v; denote uncorrelated zero mean
white process énd measurement noises that satisfy

T

80 S0 Iy 0 0
E Ui Uuj = 0 Qéz-j 0 9)
Vi vy 0 ij

The covariance matrices are chosen as
3 000

Q ,R=[3§}<10)

oo
oo W
[l )
[ N ]

These choices are determined experimentally as fol-
lows. Assuming initially large uncertsinties in the



x and y locations, say of the order of 3 pixels, and
smaller uncertainties in the displacements, say of the
order of 1 pixel. - Then, these values are checked for
optimality by testing the whiteness of the resulting
innovations process of a Kalman filter following the
method of Mehra [4]. The chosen values for R and @
meet Mehra’s 95% confidence whiteness test.

It should be further mentioned that we are using
a full image frame size of 260 x 180, which has an x-
pixel mean of 130 and a y-pixel mean of 90. Therefore,
these mean values are subtracted from the actual coor-
dinate positions before forming the above state-space
model. In other words, the variables {z;,y;} in the
above model are zero-mean varisbles that have been
centered by removing their means. This is needed
prior to the application of state-space estimation al-
gorithms, such as a Kalman filter.

In addition, the measurement vector z; consists of
the centered pixel coordinates that are provided by
the vision algorithm locating the fingertip position.
These coordinates can therefore be regarded as noisy
measurements of the actual pixel coordinates {z;,y;}.
By using the assumed state-space model (6)—(10), one
can then proceed to employ a variety of estimation
techniques to ’clean’ 2; from measurement noise and
to predict future movements of {z;,y;}.

3 Kalman fingertip tracker

Introduce the following predicted and filtered esti-
mates of the state vector:

8

Llm.s. estimate of s; given {20,21,... ,2i-1}

> e

Sils
and the corresponding error variances,

P,
Py

E(S,; - 51)(3, - §,)T

E(si — 8i3) (s — 3q5)7.

> >

Then the {8;,3;;} can be constructed recursively as
follows (see, e.g., [5]):

Gy = Fayp, i20 11)

€i+1 = Ziy1— Héip (12)

Sitvtfivr = Six1+ Py H R 'einn (13)
where

P, = FPFT +GQGT (14)

Reit1 = R+HP L HT (15)

Piyis1 = Puyr—PyHTR]} HP;yy (16)

Llm.s. estimate of s; given {20, 21,...,2i-1,2;}
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and with initial conditions
-1 17T p—-1
OIOH R~y

(I + HTR'H)™.

(17)
(18)

Equations (11)-(16) are known collectively as the
time- and measurement-update form of the Kalman
filter.

Figure 2 shows preliminary results on the tracking
of the fingertip location by using the aforementioned
state-space model and the Kalman filtering equations.
The figure illustrates how the Kalman filter helps re-
duce the search area and speed up the recognition al-

S0/0
Fyo

‘gorithm. In this particular simulation, the response

time of the overall system was reduced by 68% when
compared with a system that uses a full camera view
to track the user’s fingertip. Note how the reduced
search window centered around the previously pre-
dicted fingertip position, almost overlaps the actual
present finger position.

Full camera view from
Wearable computer

Reduced search window centered
at the predicted fingertip position

Figure 2: Successfully tracked fingertip using a
Kalman filter.

It should be noted that the size of the reduced search
window was chosen to be at least twice the size of
the maximum estimation errors in the x and y direc-
tions, of a Kalman tracker applied to a training se-
quence representative of a typical pointing finger tra-
jectory (AW > 2Zmag, AWy > 2§maes). Therefore,
the more accurate the tracker is, the smaller the search
window needed, and the faster the overall system re-
sponse time will be. Thus, in order to improve the
tracking abilities we now turn to integrate models for
the sources of uncertainties, such as abrupt changes
in speed or finger trajectory, by using a robust state-
space algorithm.

4 Robust fingertip tracker with uncer-

tainty models
It is well-known that a central premise in the
Kalman filtering formulation is that it assumes that
the underlying mode! parameters {F, G, H, R,Q} are
accurate. When this assumption is violated, the per-
formance of the filter can deteriorate appreciably and



one is therefore motivated to consider robust variants;
. robust in the sense that they attempt to limit, in cer-
tain ways, the effect of model uncertainties on the
overall filter performance.

For the wearable computer system, there are sev-
eral sources of uncertainties that may interfere with
the accuracy of the assumed state-space model. The
uncertainties can be due to the camera moving along
with the user’s head motion, to changes in lighting
conditions, to the background and object moving in-
dependently from each other, to the user standing still
or randomly walking, or to the user’s pointing finger
abruptly changing directions at variable speeds and
accelerations. All these factors changing constantly in
time create different conditions of uncertainties.

One way to model uncertainties is to treat the given
parameters {F,G} as nominal values and to assume
that the actual values lie within a certain set around
them. Thus consider an uncertain model of the form

= (F+0F)si+(G+6Giu;  (19)
Hs; +v; (20)
where the perturbations in {F, G} are modeled as

[ 6F; 6G; ) = MA;[ Ef E,] (21)

for some matrices {M, Ef, Eg} and for an arbitrary
contraction A;, ||A;]l < 1. For generality, one could
allow the quantities {M, Ey, E,} to vary with time as
well. The model (21) allows the designer to restrict
the sources of uncertainties to a certain range space
(defined by the matrix M), and to assign different
levels of distortion by selecting the entries of {Ey, Eg}
appropriately — see, e.g., [6]. For example, initial
investigations have suggested that possible choices for
{M, E¢, E;} in the context of fingertip tracking with
constant speed (user standing still) are

Ef=[0 01 1], E,=[1 10 0] (22
M=[01 01 01 01]7 (23)

These choices account for possible violations of the
constant speed assumption. The authors are currently
investigating more elaborate modeling for the uncer-

Si+1
2

tainties in surveillance and tracking applications. A -

listing of a time- and measurement-update form of a
robust filter, developed by Sayed [6], that applies to
the uncertain model (19)-(21) is shown in Table 1.
This robust filter attempts to minimize the estima-
tion error at the worst possible case created by the
bounded uncertainties §F; and 6G;. The estimates
{8i41,3;31)i+1} and thus the predicted fingertip coor-
dinates for the next frame, can be obtained by recur-
sively iterating between steps 2 and 3. For the case
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when Xi =0, steps 2 and 3 get reduced to the standard
time and measurement update Kalman equations.

Assumed uncertain model: Egs. (19)-(21). Also, Ilp >
0, R > 0, @ > 0 are given weighting matrices.

Initial conditions: Set 8y = PojoHTR™ 120 and Py)p =
(I + HTR-1H) ™.

Step 1. If HM =0, then set 3; =0 (non robust filter).
Otherwise, select a (typically 0< o <1) and set

Ai=01+a) |MTHTR'HM)|.
Step 2. Replace {Q, R, Py;, G, F'} by:

~ . . -1
7= QU+ NET [+ AEPEf| B,
Riyn = R-N\'HMMTHT
~ . -1
Py = (Pl +MEfE)
= Py — PuEf (A7 + EgPy;Ef) " By Py,
@i = G- j\zFEIZE}‘Eg

F =

(F - \G:Q:ETEs)(I - \:Py,ETEy)

If /A\,- = 0, then simply set @ = Q, ﬁi.}.l = R,
Py, = Py;, Gi =G, end F; = F.

Step 3. Update {3;;, Py;} as follows:

S = Fay
ei+1 = 2ziy1— H3ip
Py = Fﬁih’FT + G:Q:GT
Reiy1 = Riy1+HP HT
Pijiy1 = Pipri— Pi+1HTR;i1+1HPi+1
Gistits = dir1+ Py H R e

Table 1. Listing of a robust filtering algorithm in time-
and measurement-update form.

- 5 Experimental results

We applied this robust algorithm to the fingertip
trajectory previously tracked by the plain Kalman fil-
ter, using the state model (6)-(10), the perturbation
model (22)(23), and the particular choice of a=0.5.
The magnitude of the MSE results for both algorithms
are shown and compared in Figure 3 for the estima-
tion error of the x and y pixel coordinates, and the
estimation error in the Az and Ay displacements. As
it can be seen, the magnitude of the average MSE for



the x, Az, and Ay estimates are smaller for the ro-
bust algorithm when compared with the traditional
Kalman filter. However, the average MSE estimate
for the y coordinate indicates that the perturbations
on (22)(23) did not model properly the y coordinate
uncertainties. This prompts us to adjust the pertur-
bation model (23) to increase the level of uncertainty
on y, such as
M=[01 02 01 01]F (24)
Figure 4 shows the results obtained with the new
perturbation model (22)(24). In this case, the robust
algorithm shows smaller magnitudes of the average
MSE for all the state variables estimated (x, y, Az,
and Ay), obtaining an averaged improvement of 10%
over the overall performance of the traditional Kalman
filter.

---Kalman[MSE)glAw ‘33951 T

e Robust | ST
101 @

--~Kalman]MSEAxl|

[ e

-—-Kalman[MSEAy,

—_— Fcmust ] WS

| =1.7092
LA tzess

)

30
Frame Number

1 Comparison of the fingertip estimation er-
rors between the Kalman filter and the robust tracker
using the perturbation model (22)(28), with a=0.5.

6 Conclusion

These performance results are encouraging and
merit future exploration. For example, one exten-
sion is to investigate on-line adaptive learning methods
to develop proper models for uncertainties associated
with the user’s head motion, walking, and changes in
lighting conditions. Another extension is to investi-
gate more elaborate state space variables that allow
to model additional information, such as accelerations,
depth information, hand size, and skin tone.
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