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Abstract 

This paper addresses the problem of channel tracking 
and equalization in frequency-selective fading channels. 
Low-order autoregressive models approximate the chan- 
nel taps, where each tap is a circular complex Gaussian 
random process with the typical U-shaped spectrum, and 
uncorrelated with each other A Kalman filter tracks the 
time:va$ng channel, using the decisions of an adaptive 
minimum-mean-squared-error decision-feedback equalizer 
(DFE). The DFE is optimized for  decision delay A > 0, 
which exhibits pelformance advantages over decision delay 
A = 0 for a wide range of channels. The DFE staggered 
decisions cause the Kalman filter to also track the channel 
with a delay. The receiver also uses a channel prediction 
module to bridge the time gap between the Kalman channel 
estimation and the channel estimates needed for  the DFE 
adaptation. The proposed algorithm oflers good tracking 
behaviol; thus allowing for reduction in the amount of train- 
ing symbols needed to efectively track a time-varying fre- 
quency selective channel. 

1 Introduction 

Time-variant frequency-selective fading channels present a 
severe challenge to the designer of a wireless communi- 
cation system. They are usually considered to comprise a 
rather small number of taps M + 1 (M is of the order of 
5 for GSM, and it rarely exceeds 2 for IS-136), each of 
which is modeled as a circular complex Gaussian random 
process, uncorrelated with the other taps and having a lo- 
cally constant mean (giving rise to a wide-sense stationary 
and uncorrelated scattering channel, called “WSSUS”, see 
[ l ] ) .  If the tap mean is zero, the channel is said to intro- 
duce Rayleigh fading (worst case), while a non-zero mean 
tap corresponds to Ricean fading. 
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The receiver has a dual role, to estimate the time-varying 
channel tap coefficients (tracking) and to equalize the chan- 
nel. Several choices are available for the implementation 
of the estimation and equalization tasks, depending on the 
modeling of the channel and the complexity invested in each 
task. For example, the tap amplitudes can be approximated 
by a finite-state Markov chain and then MAP channel es- 
timation andor equalization may be used. The number of 
states though for the decoding increases exponentially with 
the constellation size and the number of channel taps. 

This paper uses a Kalman filter to track the channel 
and a Decision-Feedback Equalizer (DFE) for subsequent 
channel equalization. following the approach of 121. The 
main difference is that we use an MMSE decision-feedback 
equalizer [3] optimized for decision delay A > 0, which ex- 
hibits performance advantages over decision delay A = 0 
for a wide range of channels. Simulation results demon- 
strate that the performance of the system proposed in this 
paper (see Section 3) is better than employing a fast adap- 
tive algorithm (e.g., plain RLS) to track the channel, albeit 
at a higher computational cost. We also examine the effect 
in the performance when the D E  is substituted with a lin- 
ear equalizer optimized for delay A. 

We may add that Kalman-based channel estimation 
methods are quite common in the literature, (e.g., [4] uses 
the extended Kalman filter to track a channel with delays 
unknown a priori). Also, in [5 ]  the Kalman approach is used 
to formulate extended forms of the RLS algorithm, and the 
tracking superiority of those is demonstrated compared to 
the standard RLS and LMS algorithms. 

The paper is organized as follows: Section 2 presents the 
channel model. Section 3 introduces the receiver block di- 
agram, and discusses in respective subsections the Kalman- 
based tracking, the channel prediction, and the delay- 
optimized adaptive DFE design. Section 4 presents the sim- 
ulation results and Section 5 concludes the paper. 
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2 Channel Model 
The uncorrelated scattering assumption leads to an FIR 
channel model, in  which each of the M + 1 taps varies 
independently of every other tap, and with a time autocor- 
relation function giving rise to the well-known U-shaped 
spectrum [ 6 ] .  The physical situation underlying this model 
is the existence of a few large scatters far from the mobile 
receiver and the existence of a large number (virtually a 
continuum) of small scatterers in the vicinity of the mo- 
bile receiver. Thus the channel at time n is described by 
a vector hn = [h(n; 0) h(n; 1) . . . h(n; M)]* and the re- 
ceived value is given by: 

M 
U(.) = h(n; k)s(n - k) + U(.) S:-Mhn + ~ ( n )  

k=O 

where s(n) is the transmitted constellation point at time n, 
the vectors:-M = [s(n)  . . . s(n - M ) )  contains the M + 1 
most recently transmitted symbols, and v ( n )  is a zero-mean, 
complex Gaussian i.i.d. random process, with variance 0:. 

The real and imaginary parts of the channel tap coef- 
ficients-are uncorrelated [ 6 ] ,  and since Gaussian, they are 
also indepegdent. A generally accepted mathematical ex- 
pression for the time-correlation of the channel taps (their 
real parts (R), imaginary parts (I) and amplitudes (r) respec- 
tively) can be summarized by the follovding correlation co- 
efficients: 

pRR(hR(ni;ki),hR(nz;kz)) = 6(ki-kz)JO(2afdT~ni-nzl) 

prr(hr(ni;ki),hr(nz;kz)) = 6(kl-k2)~O(2nfd*lni-nzl) 

P R  I (h R(ni ;ki ) ,hr (nz ;kz)) 

pVP ( I  h (nl ;k 1 ) I I I h(nz ; kz ) 1) 

= 

= 

0 ,  V n i  .nz ,ki , k z  

6 ( k I - k2 ) JOz (2s f a  7'1 n l -  n2 I ) 

where fd is the Doppler frequency, T is the baud duration, 
and Jo( . )  is the zero-order Bessel function of the first kind. 

Notice that since the autocorrelation functions are non- 
rational, no ARMA model is an exact representation of the 
time evolution of the channel taps. However, since only the 
first few correlation terms (for small Inl -7121) are important 
for the design of any receiver, even low order autoregressive 
models, or even a simple Markov model, can capture most 
of the channel tap dynamics and lead to effective tracking 
algorithms, as demonstrated below. 

Assuming that the channel vector process { h,} is zero- 
mean (the effect of the mean is just a constant addition), the 
receiver can model this vector process as a multichannel AR 
process of order p ,  as in [ 2 ] :  

P 

hn = A(1)hn-I + Gqn (1) 
1=1 

where qn is an i.i.d. circular complex Gaussian vector 
process with correlation matrix Rqq(j)  = E{qnqi+j} = 

I ~ + ~ 6 ( j ) .  For p = 1, the best fit of the above AR(1) 
model with the theoretical autocorrelation is achieved by 
choosing A(l)  = F to be a diagonal matrix with en- 
tries fk = Jo(2n-f~")T),  k = 0,1,. . . , M where f: is the 
Doppler of the kth tap, and G to be also diagonal with en- 
tries ,/=. Although higher order models can be con- 
structed for larger p ,  it turns out that this simple first-order 
approximation is enough to model the channel dynamics 
to the extent necessary for a receiver to operate. For per- 
spective, in a 2.4 GHz transmission situation with Doppler 
frequency fd = 200 Hz (corresponding to vehicular veloc- 
ity of 90 Kmh or 56 mph) and a baud rate of 20 Ksps, 

A useful method to obtain the sequence of matrices 
A(l), 1 = 1,. . . , p  during a training mode is provided in 
[ 2 ] ,  via higher-than-second-order statistics (HOS). Their 
method is effective and requires only reasonable assump- 
tions about the transmitted sequence and the noise. In this 
paper we assume that F is known from a training phase, and 
focus on decision-aided tracking of the channel. 

fk = 0.999. 

3 Receiver Structure 
The receiver uses a Kalman filter to track the channel and a 
DFE to equalize it. The Kalman filter assumes that the DFE 
hard decisions are correct and uses them to estimate the next 
channel value, while the DFE assumes correct Kalman fil- 
ter channel estimates, and uses them in turn to equalize the 
channel. For a wide range of channels, it makes sense to use 
a DFE with delayed decisions, because it is a more powerful 
equalizer (see, e.g., Fig. 2). But then a time gap is created. 
At time n, when the last received value is U(.), the DFE 
produces the hard-decision i(n - A). The staggered deci- 
sions cause the Kalman filter to operate with delay, that is, 
operate at time n - A, since it only has available hard de- 
cisions from the DFE up to then. However, the DFE still 
needs channel estimates up to time n. Thus the receiver 
needs to use a channel prediction module, to bridge the time 
gap between the Kalman channel estimation and the chan- 
nel estimates needed for the current DFE adaptation. 

The proposed system block diagram of Fig. 1 is meant 
to show the time succession of steps (1) through (4) below. 
In Fig. 1 the flow of new information is clockwise, starting 
from top left, with each of the blocks corresponding to one 
of the following actions: 

3. [fzPt,  bgp'] = design DFE(hE-,) 

4. i(n - A) = DFE( fzPt, hip') 
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I -  - I I  t -  btfJf 1 Design 
Decision Equalizer i(n - A) 

4- N 

Figure 1 : Receiver block diagram. 

The iteration starts with the well-known Kalman filter 
recursions denoted by iC(.), which at-time n yield the opti- 
mum linear estimator of the channel hn-A as it was at time 
n - A, because it is based on the (assumed reliable) DFE 
decisions vector . G ~ ~ ~ ~ ~ - l  = [i(n - A - l) ,  . . . , S(n - 
A - M - l)], the received u(n - A - 1) and the previously 
estimated channel vector h, , -~- l .  In the second step, a(.) 
denotes a prydictor that may exploit the additional received 
values = [u(n), . . . , u(n - A)], along with the esti- 
mate h,-A to compute the sequence of A new predicted 
channels hE-A+l. 

Those A predicted channels, along with the N + 1 - A 
most recent channel estimates from the Kalman filter, are 
used by the DFE design module (see Sect. 3.3) to design the 
optimum feedforward filter, f:Ptt, and the feedback filter, 
b;Pt of an MMSE DFE. Finally, the newly designed D E  
decodes one more symbol i(n - A), which is added to the 
vector of past (assumed reliable) decisions, which will help 
the Kalman filter make a new channel estimate h , - ~ + l  at 
the next iteration, taking place at time instant n + 1. In 
the following subsections we look at the implementation of 
each receiver module in greater detail. 

3.1 Kalman Filter 'lkacking 
For simplicity, we limit our discussion to the AR(1) chan- 
nel model, but the extension to higher order AR models is 
straightforward. Define the ( M  + 1)-dimensional vector of 
transmittedpointss, = [s(n) s(n-1) . . . s ( n - M ) ] .  The 
channel at time n has a constant non-zero mean h (Ricean 
fading), and a zero-mean time-varying part h,, which fol- 
lows the AR( 1 ) model: 

At time n, the (zero-mean) received value u(n) is given by: 

(3) ~ ( n )  = S, . (h + h,) + v ( ~ L ) .  

Assuming the matrices F and G and the mean channel vec- 
tor are known from a preceding training phase, and as- 
suming the vector of the most recent decisions $, = SE-.M 
to be equal to the true Sn. the receiver can use the Kalman 
filter to track the channel variation h,, using as observables 
the u(n) - snh. The Kalman filter, operating with a delay 
A is described at time n by the series of equations [7]: 

The above Kalman recursions implement the optimum lin- 
ear estimator for the time-varying part of the channel h , - ~ .  
The last reliable decision made by the DFE and used by the 
Kalman filter at this time is i(n - A - 1). For matrices 
F and G that are multiples of the identity (produced, for 
instance, by uncorrelated fading with the same Doppler for 
all taps) fast algorithms for the Kalman recursions can be 
pursued (see, e.g., [SI). 

3.2 Channel Prediction 
At time n the last channel estimate fro? the Kalman t i l -  
ter is h,-A, but the predicted channels hn-A+k, for k = 
1 , .  . . , A are needed for the DFE design. The channel pre- 
diction implementation depends upon the SNR of operation 
and how fast the channel varies. For a very slow varying 
channel, the simplest choice is to assume that the channel 
remains constant, that is: 

(4) h, = hn-l = . . . = hn-A 

where h , - ~  is provided by the Kalman filter. 
More generally, the optimal linear predictions, given that 

the channel follows the model of Eq. (2), but ignoring the 
additional received values u(n), . . . , u(n - A + 1) are: 

L, = F ~ L , , - A , .  . . , hn-a+l = FL,,-A ( 5 )  

where again &,-A is provided by the Kalman filter. 
The received values ~ ( n ) ,  . . . , u(n - A + l), which are 

also available, can be used to improve the prediction for a 
fast varying channel at high SNR. For example one could 
pick the channel estimates h k ,  k = 1,  . . . , A, as the argu- 
ments that minimize a weighted regularized least-squares 
cost J(h), say of the form: 

J(h) = (h - Fkhn-A)'no(h - Fkhn-a) 
2 + I llJh)(2 - aI2 - p I , k = 1,. . . , A .  (6 )  
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where Q and p are suitable constants, depending on the ob- 
servables u(n - A + I C ) ,  the mean channel h and the noise 
variance a:, and K, is a positive weight scalar, selected ac- 
cording to how fast the channel varies and the SNR. 

3.3 DFE Design 
The design of the optimum mmse feedforward and feed- 
back filters f i P t  and b",Pt of lengths N + 1 and Q respec- 
tively, uses the most recent N + 1 channel tap coefficients 
(of which some are predicted and some are estimated). Un- 
der the assumption of no error propagation, the filter coeffi- 
cients can be calculated as [3]: 

f:Pt = b~P'R,,R,' (8) 

where el is the vector with first entry 1 and all others 
zero. To form the matrices RF', R, and R,,, we use the 
( N  + 1) x ( M  + N + 1) pre-windowed channel matrix C,  
containjng the tap values: 

(h+h,)T 0 " '  0 

c =  [ ] (9) 
0 . . .  0 ( h + h , _ N ) T  

R6 = R, - R,,R,' RYS (10) 

R, = CR,C* + u:IN+~ (1 1) 

and form R6 and R, as: 

where R, is the autocorrelation matrix of the input constel- 
lation points (typically R, =  IN+^), and a: is the variance 
of the zero-mean white noise. R,, is a banded matrix of 
dimensions (Q + 1) x (N + 1) obtained from C*, starting 
A rows after the first, where A is the decision delay of the 
D E ,  and C' denotes conjugate transpose of C in (9). 

4 Simulation Results 
The simulation results examine a 2-tap fading channel, with 
mean value (1 + j) [l 2.5IT and Doppler rate f d T  = 0.01. 
The transmitted constellation is 4-PSK. We assumed that 
the channel variation follows an AR( 1) model, designed to 
provide the best first-order AR approximation to a Ricean 
channel with this Doppler rate. 

This is a maximum phase channel, and was chosen as 
an example of a short channel where decisions made with 
delay A > 0 offer a significant performance improvement. 
Fig. 2 plots the performance of the MMSE DFE over this 
channel for different A as a function of SNR. The feedfor- 
ward and feedback filters of the DEE have 7 and 1 taps, 

respectively. Also for this simulation we assumed that the 
DFE coefficients are calculated with perfect channel infor- 
mation. 

1 oo 

I -  T 
I" 

8 9 10 11 12 13 14 

SNR, in dB 
Figure 2: Performance of DFE for different values of A, 
assuming perfect channel information. 

For known tap coefficients the decision delay that results 
in the minimum MMSE can be calculated analytically [3]. 
Generally though, using a decision delay larger than the op- 
timum does not deteriorate the DFE performance given, of 
course, a sufficient feedforward filter length. For the rest 
of the simulations we used A = 5, which is larger than 
required for this channel. The reason is that we wanted to 
have a large prediction interval to compare different pre- 
diction approaches. Also, we assume that we have perfect 
channel information at the beginning of operating intervals 
of 5000 symbols, during which the Kalman filter is used to 
track the channel. 

Figures 3 and 4 show the simulation results for a baud- 
spaced DFE and a linear equalizer respectively, both us- 
ing decision delay A = 5. The solid line represents the 
proposed system performance, using Eq. ( 5 )  for prediction. 
The results indicate that our Symbol-Error Rate (SER) per- 
formance is better than the performance the LMS and RLS 
adaptive versions of the DFE or the linear equalizer can pro- 
vide. Comparison of Fig. 3 and Fig. 4 shows that the DFE 
performs better than the linear equalizer, when both use de- 
cision delay A = 5. However, a finite-length DFE does not 
always outperform a finite linear equalizer, as shown in [9]. 

Fig. 3 also plots the system performance assuming per- 
fect channel information. Note that this curve is very close 
to the solid line that employs Kalman estimated tap values. 
Fig. 5 exhibits the tracking performance of the Kalman- 
based algorithm for this system at SNR=10 dB, which in- 
deed is very good. 
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Figure 3: The DFE with Kalman-based tracking, and with 
RLS and LMS. 
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Figure 5 :  Tracking performance of the Kalman-based algo- 
rithm, plotted for the real part of the first tap. The solid linc 
represents the true channel tap trajectory, and the dotted line 
the estimated trajectory. SNR=10 dB. 
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