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Abstract 

Linear systems of equations with structured coeflcient 
matrices arise in several applications in signal processing 
and communications. In this paper we develop fast algo- 
rithms for updating the solutions of such systems when the 
coeficient matrices undergo rank-one updates that preserve 
the matrix structure. An application in adaptive filtering is 
noted. 

1 Introduction 

In this paper we study the problem of updating the solu- 
tions of symmetric positive-definite linear systems of equa- 
tions with structured coefficient matrices. We focus on the 
case of real-valued data, although the extension to complex- 
valued data is immediate. Likewise, the restriction to sym- 
metric coefficient matrices can be removed easily. 

Let 20 denote the solution of To20 = bo, where 20 and bo 
are real n-dimensional vectors, and TO is an n x n symmetric 
positive-definite matrix. Assume further that TO is a struc- 
tured matrix in the sense that the difference TO - FToFT 
has low rank (say a << n)  for some n x n lower triangular 
matrix F. This is equivalent to saying that there exists an 
n x a matrix Go, and an a x CY signature matrix J ,  such that 

To - FToFT = GoJG:. 

Matrices To that satisfy conditions of this type are said to 
have displacement structure [l]. Actually, it also holds that 
there should exist an n x a matrix HO such that the inverse 
of TO satisfies a similar displacement equation, viz., 

T;' - FTT;'F = HoJH;, 
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with the same signature matrix J but with the roles of 
(F,  F T }  reversed (see, e.g., [ 1,21). 

Now assume that for successive time instants IC 2 0 the 
values of {Tk, bk) are obtained recursively as follows: 

b k + i  = bk  f v(k)ak , Tk+i = Tk + aka: , 
for some known column vectors {ak} and scalars { ~ ( b ) } .  
In other words, Tk+l is a rank-one update of Tk and b k + l  

is obtained from bk by adding a scaled version of ak to it. 
Assume further that the successive {Tk} all have the same 
displacement rank with respect to the same matrix F, i.e., 
they satisfy displacement equations of the form 

Tk - FTkFT = GkJGT , 
for some n x a matrices {Gk}.  It then follows that their 
inverses also have displacement ranks CY, say 

TL1 - FTTL'F = HkJHT,  

for some n x a matrices {Hk}.  We shall not need to know 
explicitly the matrices {Gk, H k } .  Instead, we shall develop 
a recursive procedure for evaluating the successive { H k }  

starting from Ho. This procedure will be enough for our 
purposes. 

Let zk be the solution of the system of equations Tkxk = 
b k .  The first problem we consider is the derivation of a 
fast algorithm for computing Z k + l  recursively from 21;. By 
fast we mean an algorithm that is an order of magnitude 
faster than O(n2) flops per iteration. We shall present an 
algorithm that can compute z k + l  recursively from x k  in  
O(m + 11 + n a 2 )  flops, where m is the number of flops 
required to multiply a matrix with same displacement struc- 
ture as Tk with an n-dimensional vector, a is the displace- 
ment rank of Tk, and 11 is the number of flops required to 
multiply an n-dimensional vector by F .  

2 Structured Updates 

We start by introducing the vector ~k = TF'ak. From 
the matrix inversion lemma we obtain 

T& = (Tk + aka:)-' = TL1 - P ( k ) f k T T ,  
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where we defined the scalar 1. Initialization (overhead costs). Given {Go, Ho}, com- 
pute zo and TO using Go and the so-called general- 
ized Schur algorithm with back-substitution, or by us- 
ing HO and fast matrix-vector multiplication proce- 
dures for matrices with displacement structure (see, 
e.g., [I ,  2,4, 51). Compute also P ( 0 )  as an inner prod- 
uct. 

(1) 

Using these quantities we obtain, after some algebra, the 

1 - - A 1  
P ( k )  = 1 + a r T k  1 + a r T F ' a k  ' *  

following update for the solution z k + 1 :  

x k + l  = (TF1 - P ( k ) T k T z ) ( b k  q ( k ) a k )  

= x k  + P ( k ) T k [ q ( k )  - a z z k ]  . 

TO compute T k  we can use H k  and form T L l a k  fast in 
O ( m )  flops by using fast matrix-vector multiplication pro- 
cedures for matrices with displacement structure (see, e.g., 
[I]) .  When F is the lower triangular shift matrix 2, this 
step can be done in O(n log n) flops. For diagonal matrices 
F, it can be acheved in O(n)  flops. 

We still need to show how to propagate the successive 
generator matrices { H k  ). For this purpose, note that 

This suggests that we first compute the following reduced 
QR factorization: 

where Qk is an n x (a + 2) matrix, and R k  is an (a + 2) x 
(a + 2) upper triangular matrix. This takes O(na2  + 11)  
flops using standard algorithms for (skinny) QR factoriza- 
tions (see, e.g., [3]). We then compute the symmetric eigen- 
decomposition: 

where w k  is orthogonal and A k  is diagonal. This computa- 
tion c m  be done in O(a3)  operations using standard algo- 
rithms [3]. But since, by assumption, the displacement rank 
of T k + l  should be a, it follows that A k  should have two 
zero entries on its diagonal. Now define Hk+l as follows: 

H k + l  = Qk W k m  9 

and discard the two zero columns of H k + l .  Forming H k + l  

from Q k ,  w k ,  and A k  in this way takes O(na2)  opera- 
tions to do the multiplications. This gives the recurrence 

The cost per iteration of the above algorithm is 
O(a3 + na2 + m + 1 1 ) .  We summarize the main steps 
below. 

for H k + l .  

Fast Updating of Structured Linear Equations (FUS) 

2. Assumethatwe h a v e { H k , r k , X k , P ( k ) }  anditerate: 

z k + 1  = z k  + P ( k ) r k [ q ( k )  - a r x k ]  [O(n)  flops]. 
0 Compute the QR factorization (2) [O(n(r2 + 11) 

e Compute the eigendecomposition (3) [O((r3) 

Let H k + l  = Q k W k m  and discard the two 

flops]. 

flops]. 

zero columns of H k + l  [O(no2) flops]. 

0 Compute T k + l  = T F - , a k + l  fast by using H k + l  

and fast matrix vector-multiplication procedures 
[O(m) flops]. 

0 Compute P ( k  + 1) = a r + ; l T k + l  [O(n) flops]. 

3 Doubly Structured Updates 

The second problem we consider is a special case of the 
first one. We now assume that the vectors a k  are further 
related among themselves as follows: 

a k + i  = F a k  + a(k )g  , 
where F is the same matrix that appears in the displacement 
equation for T k ,  S(k)  is a scalar, and g is an n-dimensional 
vector. By using this additional relationship among the 
{ a k )  we can get a faster algorithm. More specifically, we 
shall now derive an O(na2  + 11 + 1 2 )  procedure for updat- 
ing the solutions { x k ) ,  where 12 is the number of flops re- 
quired to multiply F-' with an n-dimensional vector. The 
assumption that F be invertible is not necessary (see next 
section). 

We introduce the following three additional vectors: 

q k  = Tk F a k  , p k  = TL'g, v k  TF'Fg, 

and proceed to determine updates for them. First note that 

p k + l  = T F 2 1 g  = TF'g - P ( k ) r k r r g  

A - 1  A 

= P k  - P ( k ) ( r k T g ) T k  

= P k  - P ( k ) ( a F p k ) r k *  

Either of the last two expressions can be evaluated in O(n)  
flops. For special F andor special g ,  it might be possible to 
efficiently evaluate p k + l  directly from H k + l .  In such cases 
there is no need to propagate p k  . 
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Second, observe that 

vk+l = TL-lFg = TL'Fg - P(k)rkrcFg 

= v k  - P(k)(rrFg)rk 
= v k  - P ( k ) ( a c v k ) r k .  

The last expression can be evaluated in O(n) flops, and the 
one preceding it in O(n + 11) flops. For some special F and 
g we may again be able to efficiently evaluate vk+l directly 
from Hk+l. In such cases there is no need to propagate V k .  

We can now derive at least two recurrences for Tk+l. 

Thus note that 

rk+l  = T;-,ak+l 

= (TL' - P(k)rkrl)ak+l 

= 
= 

TL1(Fak + 6 ( k ) g )  - @(k)(rTak+l)rk  

q k  + 6 ( k ) p k  - @(k)(rcak+l)rk- 

"his expression can be evaluated in O(n)  flops. We can get 
another recurrence as follows: 

are O(n). The above recursions for qk+l require F to be 
nonsingular. 

O(na2 + 11 + h). We summarize its steps below. 
The cost per iteration of the above algorithm is 

q - 1  (Fak + W ) 9 )  
(TL1 - P(k)rkrF)Fak + J(k)pk+l 

q k  - P(k)(rFFak)rk + d(k)pk+l 

q k  -P(k)(a;qk)rk + 6(k)pk+l. Fast Updating of Structured Linear Equations with 
Affine Transformed UDdates (FUSA) 

This expression can also be evaluated in O(n)  flops. More 
such expressions can be derived. Numerical considerations 
might lead to a suitable choice. 

We now turn our attention to qk+1. This is the technically 
hardest part of the algorithm. We first assume that F is non- 
singular and that F-' can be applied to an n-dimensional 
vector in O(12) flops. Again several recursions can be de- 
rived. We satisfy ourselves with two of them. First observe 
that 

qk+l  -=-  Ti:lFak+l 

= (TL1 - P(k)rkrc)Fak+l 

= TL'Fak+l - P(k)(rcFak+l)rk 

= 
= 

T;'F2ak 4- 6(k)Ti1Fg - P(k)(rFFak+l)rk 

TL'F2ak + 6(k)vk - ,8(k)(rTFak+l)rk. 

Now multiplying by FT we have 

FT(qk+l - 6(k)vk + P(k>(r;Fak+l)rk) = 
= FTTLIFFak 
= (T;' - HkJHr)FUk 

= q k  - H k J H l F a k .  

The right-hand side of h s  expression can be evaluated 
in O(na + l 1 )  flops, and then Qk+l can be obtained in 

1. Initialization (overhead costs). Given {GO, Ho}, com- 
pute 20 and {TO,  VO, qo, po}  using Go and the so-called 
generalized Schur algorithm with back-substitution, or 
by using HO and fast matrix-vector multiplication pro- 
cedures for matrices with displacement structure (see, 
e.g., [l ,  2,4,5]). Compute also P ( 0 )  as an inner prod- 
uct. 

2. Assume that We have {Hk,rk,Pk,Vk,qk,Zk,P(k)} 
and iterate: 

sk+1 = x k  + P ( k ) T k [ 7 ] ( k ) - a r z k ]  [o(n) flops]. 
0 Compute the QR factorization (2) [O(na2 + 11) 

0 Compute the eigendecomposition (3) [ O ( a 3 )  

0 Let Hk+l = Q k W k m  and discard the two 

flops]. 

flops]. 

zero columns of Hk+l [O(n(u2) flops]. 

flops]. 

flops]. 

[O(n)  flops]. 

Compute Pk+l = p k  - P ( k ) [ a f P k ] r k  [O(n)  

Compute vk+l = V k  - P(k)[azvk]rk [O(n)  

Computerk+l = qk +6(k)pk  -P(k ) [ r ;a+l I~k  
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4 Shift Structured Updates 

Let us now consider the case in which F is singular, e.g., 
F = 2, the lower triangular shift matrix (i.e., a Jordan 
block with ones on the first sub-diagonal), or F = 2 CB 2, 
etc. We focus on the case F = 2 since the argument can be 
generalized to other singular matrices F. 

The only difficulty that we need to resolve in this situa- 
tion is how to compute q k + l  recursively in O(na2 + 11 + 12)  

flops. Recall from the first recursion for q k + l  in the previ- 
ous section that 

F T ( q k + l  - b ( k ) V k  + P ( k ) ( " ; F a k + l ) r k )  = 
q k  - HkJHTFak. (4) 

Since we have assumed that F = 2, this equation can be 
solved for all the components of q k + l  except the first one. 
So all we need to do is to recover the first component of 
q k + i  efficiently. 

To do this, we examine the following equation: 

q k + l  - b ( k ) v k  P ( k ) ( r T F a k + l ) f k  = TG'F2ak. 

We see that all we need is the first row of 7';'. Therefore 
let Y k  = TL'el, where el is the first basis vector. Then we 
see that 

eTqk+i = Y r F 2 a k  
(5 )  

which can be computed in O(n)  flops if Y k  is available. It is 
convenient to combine equations (4) and ( 5 )  into one equa- 
tion as follows (exploiting the fact that F = 2): 

b ( k ) e r V k  - P ( k ) ( r f F a k + i ) e r T k ,  

q k + l  = a ( k ) V k  - P ( k ) ( r z F a k + l ) r k +  
+ y f F 2 U k e l  + F ( q k  - H k J H T F a k ) .  

The cost -of evaluating Qk+l from this formula is ~ ( n a )  
flops. 

Clearly yo = TF'el can be computed in O(n2) flops 
using Go. This can be regarded as an overhead cost. We 
now derive a rapid recurrence for Y k + l  as follows: 

T Y k + l  = TL:lei = TL'el - P ( k ) T k T k  el 

= Y k  - P ( k ) ( " ; e l ) r k  
= Y k  - P ( k ) ( a r y k ) r k .  

Either of the last two expressions can be evaluated in O(n) 
flops to yield Y k + l  recursively. 

The cost per iteration of the above algorithm is O(na2). 

Fast Updating of Structured Linear Equations with 
Affine Transformed Updates with F = 2 (FUSAZ) 

1. Initialization (overhead costs). Given {GO, Ho}, 
compute xo and {TO,  V O ,  qo, PO, y o }  using GO and 
the so-called generalized Schur algorithm with back- 
substitution, or by using HO and fast matrix-vector 
multiplication procedures for matrices with displace- 
ment structure (see, e.g., [ l ,  2, 4, 51). Compute also 
P(0)  as an inner product. 

2. Given ( H k ,  f k , P k ,  V k ,  q k , ,  Y k r  z k  7 P(k)}q  iterate: 

gk+1 = z k  + P ( k ) r k [ v ( k )  - a z z k ]  [O(n)  flops]. 
0 Compute the QR factorization (2) [O(na2 + 11)  

0 Compute the eigendecomposition (3) [O(a3)  

0 Let Hk+l = Q k W k m  and discard the two 

flops]. 

flops]. 

zero columns of Hk+l [O(na2) flops]. 

flops]. 

flops]. 

flops]. 

Compute P k + l  = P k  - P ( k ) [ a z p k ] r k  [O(n)  

0 Compute V k + l  = V k  - p(k) [a lvk]rk  [o(n) 

Compute Y k + l  = Y k  - b ( k ) [ a r y k ] r k  [O(n)  

0 Computerk+l = q k  + b ( k ) P k  - P ( k ) [ r k T a k + l ] r k  
flops]. 

Computeqk+l = 6 ( k ) V k  - P ( k ) [ r F F a k + l ] r k  + 
y f F 2 U k e l  + F[qk - HkJH:Fak] [O(na) 
flops]. 

0 Compute P ( k  + 1) = az+;lrk+l [O(n) flops]. 

5 Adaptive Filtering 

We now comment briefly on an application in the context 
of adaptive filtering [6,7]. More details along with connec- 
tions with, and alternatives to, existing fast RLS schemes 
[8,9, 101 and fast state-space estimation algorithms [l 1, 121 
will be pursued elsewhere. 

Thus consider a sequence of k scalar data points, 
{ ~ I ( j ) l ; = ~ ,  also known as reference or desired signals, and 
a sequence of k row vectors  UT}^=^, also known as input 
signals, with the entries of each UT denoted by 

U T =  [ u ( j )  u ( j  - 1) ... u( j  - M +  1) ] . (6) 

Consider also a positive-definite weighting matrix no. The 
objective is to minimize the following cost function over w: 

r k 1 
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The optimal solution w k  of (7 )  is well-known to be the SO- 

lution of the linear system of equations @ k w k  = s k ,  where 
ipk and Sk satisfy the time-update relations 

(8) 
s k + l  - - Sk d ( k +  l ) u k + l  (9) 

T 
* k + l  = @ k  + u k + l u k + l  I 

with initial conditions 00 = H i 1  and so = 0. 
It can be verified that, in general, the difference @ k + l  - 

Z @ k Z T  has rank 3 and inertia (1,1, -I), so that generally 
@k itself will have displacement rank a = 4, viz., it will 
satisfy a displacement equation of the form 

@k - Z @ k Z T  = G k J G z ,  

where Gk has four columns and J = diag(l , l ,  -1, -1); 
see also [13] (the effect of no is not considered in [13]). 
The values of {Go, Ho} are determined by the choice of 
no. For example, if we choose no as no = p I  for some 
p > 0, then 

so that we can take 

Ho = [ &e1 0 0 0 ] , J = diag( l , l l - l l - l ) .  

Moreover, the famed recursive least-squares (RLS) algo- 
rithm is a recursive procedure for evaluating the successive 
W k .  If we define 

then the RLS algorithm is given by 

(13) 

In addition, with the RLS problem we associate two resid- 
uals at each time instant k: the a priori estimation er- 
ror e , ( k ) ,  defined by e, (k )  = d ( k )  - U r W k - 1 ,  and the 
a posteriori estimation error ep(k), defined by e p ( k )  = 
d ( k )  - U z W k .  If we replace W k  in the definition for e,(k) 
by its update expression (1 l), some straightforward alge- 
bra will show that ep(k) = T(k)e , (k ) ,  where the so-called 
conversion factor ~ ( k )  is given by 

T 
P k  = P k - 1  - 9 k u k P k - l  . 

Comparing all these results with the definitions employed 
in the earlier sections for the solution of equations of the 
form T k x k  = b k ,  we see that we can make the identifica- 
tions shown in the table between the variables of the RLS 
problem and the variables of the earlier sections. 
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