Fast Updating of Structured Linear Systems of Equations with Applications in Adaptive Filtering*

S. Chandrasekaran, ${ }^{\dagger}$ M. Gu, ${ }^{\ddagger}$ and Ali H. Sayed ${ }^{\S}$

Abstract

Linear systems of equations with structured coefficient matrices arise in several applications in signal processing and communications. In this paper we develop fast algorithms for updating the solutions of such systems when the coefficient matrices undergo rank-one updates that preserve the matrix structure. An application in adaptive filtering is noted.

1 Introduction

In this paper we study the problem of updating the solutions of symmetric positive-definite linear systems of equations with structured coefficient matrices. We focus on the case of real-valued data, although the extension to complexvalued data is immediate. Likewise, the restriction to symmetric coefficient matrices can be removed easily.

Let x_{0} denote the solution of $T_{0} x_{0}=b_{0}$, where x_{0} and b_{0} are real n-dimensional vectors, and T_{0} is an $n \times n$ symmetric positive-definite matrix. Assume further that T_{0} is a structured matrix in the sense that the difference $T_{0}-F T_{0} F^{T}$ has low rank (say $\alpha \ll n$) for some $n \times n$ lower triangular matrix F. This is equivalent to saying that there exists an $n \times \alpha$ matrix G_{0}, and an $\alpha \times \alpha$ signature matrix J, such that

$$
T_{0}-F T_{0} F^{T}=G_{0} J G_{0}^{T}
$$

Matrices T_{0} that satisfy conditions of this type are said to have displacement structure [1]. Actually, it also holds that there should exist an $n \times \alpha$ matrix H_{0} such that the inverse of T_{0} satisfies a similar displacement equation, viz.,

$$
T_{0}^{-1}-F^{T} T_{0}^{-1} F=H_{0} J H_{0}^{T},
$$

[^0]with the same signature matrix J but with the roles of $\left\{F, F^{T}\right\}$ reversed (see, e.g., [1, 2]).

Now assume that for successive time instants $k \geq 0$ the values of $\left\{T_{k}, b_{k}\right\}$ are obtained recursively as follows:

$$
T_{k+1}=T_{k}+a_{k} a_{k}^{T}, \quad b_{k+1}=b_{k}+\eta(k) a_{k}
$$

for some known column vectors $\left\{a_{k}\right\}$ and scalars $\{\eta(k)\}$. In other words, T_{k+1} is a rank-one update of T_{k} and b_{k+1} is obtained from b_{k} by adding a scaled version of a_{k} to it. Assume further that the successive $\left\{T_{k}\right\}$ all have the same displacement rank with respect to the same matrix F, i.e., they satisfy displacement equations of the form

$$
T_{k}-F T_{k} F^{T}=G_{k} J G_{k}^{T}
$$

for some $n \times \alpha$ matrices $\left\{G_{k}\right\}$. It then follows that their inverses also have displacement ranks α, say

$$
T_{k}^{-1}-F^{T} T_{k}^{-1} F=H_{k} J H_{k}^{T}
$$

for some $n \times \alpha$ matrices $\left\{H_{k}\right\}$. We shall not need to know explicitly the matrices $\left\{G_{k}, H_{k}\right\}$. Instead, we shall develop a recursive procedure for evaluating the successive $\left\{H_{k}\right\}$ starting from H_{0}. This procedure will be enough for our purposes.

Let x_{k} be the solution of the system of equations $T_{k} x_{k}=$ b_{k}. The first problem we consider is the derivation of a fast algorithm for computing x_{k+1} recursively from x_{k}. By fast we mean an algorithm that is an order of magnitude faster than $O\left(n^{2}\right)$ flops per iteration. We shall present an algorithm that can compute x_{k+1} recursively from x_{k} in $O\left(m+l_{1}+n \alpha^{2}\right)$ flops, where m is the number of flops required to multiply a matrix with same displacement structure as T_{k} with an n-dimensional vector, α is the displacement rank of T_{k}, and l_{1} is the number of flops required to multiply an n-dimensional vector by F.

2 Structured Updates

We start by introducing the vector $r_{k}=T_{k}^{-1} a_{k}$. From the matrix inversion lemma we obtain

$$
T_{k+1}^{-1}=\left(T_{k}+a_{k} a_{k}^{T}\right)^{-1}=T_{k}^{-1}-\beta(k) r_{k} r_{k}^{T}
$$

where we defined the scalar

$$
\begin{equation*}
\beta(k) \triangleq \frac{1}{1+a_{k}^{T} r_{k}}=\frac{1}{1+a_{k}^{T} T_{k}^{-1} a_{k}} \tag{1}
\end{equation*}
$$

Using these quantities we obtain, after some algebra, the following update for the solution x_{k+1} :

$$
\begin{aligned}
x_{k+1} & =\left(T_{k}^{-1}-\beta(k) r_{k} r_{k}^{T}\right)\left(b_{k}+\eta(k) a_{k}\right) \\
& =x_{k}+\beta(k) r_{k}\left[\eta(k)-a_{k}^{T} x_{k}\right] .
\end{aligned}
$$

To compute r_{k} we can use H_{k} and form $T_{k}^{-1} a_{k}$ fast in $O(m)$ flops by using fast matrix-vector multiplication procedures for matrices with displacement structure (see, e.g., [1]). When F is the lower triangular shift matrix Z, this step can be done in $O(n \log n)$ flops. For diagonal matrices F, it can be achieved in $O(n)$ flops.

We still need to show how to propagate the successive generator matrices $\left\{H_{k}\right\}$. For this purpose, note that

$$
\begin{gathered}
T_{k+1}^{-1}-F^{T} T_{k+1}^{-1} F=H_{k} J H_{k}^{T}- \\
-\beta(k) r_{k} r_{k}^{T}+\beta(k) F^{T} r_{k} r_{k}^{T} F .
\end{gathered}
$$

This suggests that we first compute the following reduced QR factorization:

$$
\left[\begin{array}{lll}
H_{k} & \sqrt{\beta(k)} r_{k} & \sqrt{\beta(k)} F^{T} r_{k} \tag{2}
\end{array}\right]=Q_{k} R_{k}
$$

where Q_{k} is an $n \times(\alpha+2)$ matrix, and R_{k} is an $(\alpha+2) \times$ $(\alpha+2)$ upper triangular matrix. This takes $O\left(n \alpha^{2}+l_{1}\right)$ flops using standard algorithms for (skinny) QR factorizations (see, e.g., [3]). We then compute the symmetric eigendecomposition:

$$
\begin{equation*}
R_{k}(J \oplus-1 \oplus 1) R_{k}^{T}=W_{k} \Lambda_{k} W_{k}^{T} \tag{3}
\end{equation*}
$$

where W_{k} is orthogonal and Λ_{k} is diagonal. This computation can be done in $O\left(\alpha^{3}\right)$ operations using standard algorithms [3]. But since, by assumption, the displacement rank of T_{k+1} should be α, it follows that Λ_{k} should have two zero entries on its diagonal. Now define H_{k+1} as follows:

$$
H_{k+1}=Q_{k} W_{k} \sqrt{\left|\Lambda_{k}\right|}
$$

and discard the two zero columns of H_{k+1}. Forming H_{k+1} from Q_{k}, W_{k}, and Λ_{k} in this way takes $O\left(n \alpha^{2}\right)$ operations to do the multiplications. This gives the recurrence for H_{k+1}.

The cost per iteration of the above algorithm is $O\left(\alpha^{3}+n \alpha^{2}+m+l_{1}\right)$. We summarize the main steps below.

Fast Updating of Structured Linear Equations (FUS)

1. Initialization (overhead costs). Given $\left\{G_{0}, H_{0}\right\}$, compute x_{0} and r_{0} using G_{0} and the so-called generalized Schur algorithm with back-substitution, or by using H_{0} and fast matrix-vector multiplication procedures for matrices with displacement structure (see, e.g., $[1,2,4,5])$. Compute also $\beta(0)$ as an inner product.
2. Assume that we have $\left\{H_{k}, r_{k}, x_{k}, \beta(k)\right\}$ and iterate:

- $x_{k+1}=x_{k}+\beta(k) r_{k}\left[\eta(k)-a_{k}^{T} x_{k}\right][O(n)$ flops $]$.
- Compute the QR factorization (2) $\left[O\left(n \alpha^{2}+l_{1}\right)\right.$ flops].
- Compute the eigendecomposition (3) $\left[O\left(\alpha^{3}\right)\right.$ flops].
- Let $H_{k+1}=Q_{k} W_{k} \sqrt{\left|\Lambda_{k}\right|}$ and discard the two zero columns of H_{k+1} [$O\left(n \alpha^{2}\right)$ flops].
- Compute $r_{k+1}=T_{k+1}^{-1} a_{k+1}$ fast by using H_{k+1} and fast matrix vector-multiplication procedures [$O(m)$ flops].
- Compute $\beta(k+1)=a_{k+1}^{T} r_{k+1}[O(n)$ flops $]$.

3 Doubly Structured Updates

The second problem we consider is a special case of the first one. We now assume that the vectors a_{k} are further related among themselves as follows:

$$
a_{k+1}=F a_{k}+\delta(k) g
$$

where F is the same matrix that appears in the displacement equation for $T_{k}, \delta(k)$ is a scalar, and g is an n-dimensional vector. By using this additional relationship among the $\left\{a_{k}\right\}$ we can get a faster algorithm. More specifically, we shall now derive an $O\left(n \alpha^{2}+l_{1}+l_{2}\right)$ procedure for updating the solutions $\left\{x_{k}\right\}$, where l_{2} is the number of flops required to multiply F^{-1} with an n-dimensional vector. The assumption that F be invertible is not necessary (see next section).

We introduce the following three additional vectors:

$$
q_{k} \triangleq T_{k}^{-1} F a_{k}, \quad p_{k} \triangleq T_{k}^{-1} g, \quad v_{k} \triangleq T_{k}^{-1} F g
$$

and proceed to determine updates for them. First note that

$$
\begin{aligned}
p_{k+1} & =T_{k+1}^{-1} g=T_{k}^{-1} g-\beta(k) r_{k} r_{k}^{T} g \\
& =p_{k}-\beta(k)\left(r_{k}^{T} g\right) r_{k} \\
& =p_{k}-\beta(k)\left(a_{k}^{T} p_{k}\right) r_{k}
\end{aligned}
$$

Either of the last two expressions can be evaluated in $O(n)$ flops. For special F and/or special g, it might be possible to efficiently evaluate p_{k+1} directly from H_{k+1}. In such cases there is no need to propagate p_{k}.

Second, observe that

$$
\begin{aligned}
v_{k+1} & =T_{k+1}^{-1} F g=T_{k}^{-1} F g-\beta(k) r_{k} r_{k}^{T} F g \\
& =v_{k}-\beta(k)\left(r_{k}^{T} F g\right) r_{k} \\
& =v_{k}-\beta(k)\left(a_{k}^{T} v_{k}\right) r_{k} .
\end{aligned}
$$

The last expression can be evaluated in $O(n)$ flops, and the one preceding it in $O\left(n+l_{1}\right)$ flops. For some special F and g we may again be able to efficiently evaluate v_{k+1} directly from H_{k+1}. In such cases there is no need to propagate v_{k}.

We can now derive at least two recurrences for r_{k+1}. Thus note that

$$
\begin{aligned}
r_{k+1} & =T_{k+1}^{-1} a_{k+1} \\
& =\left(T_{k}^{-1}-\beta(k) r_{k} r_{k}^{T}\right) a_{k+1} \\
& =T_{k}^{-1}\left(F a_{k}+\delta(k) g\right)-\beta(k)\left(r_{k}^{T} a_{k+1}\right) r_{k} \\
& =q_{k}+\delta(k) p_{k}-\beta(k)\left(r_{k}^{T} a_{k+1}\right) r_{k}
\end{aligned}
$$

This expression can be evaluated in $O(n)$ flops. We can get another recurrence as follows:

$$
\begin{aligned}
r_{k+1} & =T_{k+1}^{-1} a_{k+1} \\
& =T_{k+1}^{-1}\left(F a_{k}+\delta(k) g\right) \\
& =\left(T_{k}^{-1}-\beta(k) r_{k} r_{k}^{T}\right) F a_{k}+\delta(k) p_{k+1} \\
& =q_{k}-\beta(k)\left(r_{k}^{T} F a_{k}\right) r_{k}+\delta(k) p_{k+1} \\
& =q_{k}-\beta(k)\left(a_{k}^{T} q_{k}\right) r_{k}+\delta(k) p_{k+1}
\end{aligned}
$$

This expression can also be evaluated in $O(n)$ flops. More such expressions can be derived. Numerical considerations might lead to a suitable choice.

We now turn our attention to q_{k+1}. This is the technically hardest part of the algorithm. We first assume that F is nonsingular and that F^{-1} can be applied to an n-dimensional vector in $O\left(l_{2}\right)$ flops. Again several recursions can be derived. We satisfy ourselves with two of them. First observe that

$$
\begin{aligned}
q_{k+1} & =T_{k+1}^{-1} F a_{k+1} \\
& =\left(T_{k}^{-1}-\beta(k) r_{k} r_{k}^{T}\right) F a_{k+1} \\
& =T_{k}^{-1} F a_{k+1}-\beta(k)\left(r_{k}^{T} F a_{k+1}\right) r_{k} \\
& =T_{k}^{-1} F^{2} a_{k}+\delta(k) T_{k}^{-1} F g-\beta(k)\left(r_{k}^{T} F a_{k+1}\right) r_{k} \\
& =T_{k}^{-1} F^{2} a_{k}+\delta(k) v_{k}-\beta(k)\left(r_{k}^{T} F a_{k+1}\right) r_{k}
\end{aligned}
$$

Now multiplying by F^{T} we have

$$
\begin{aligned}
F^{T}\left(q_{k+1}\right. & \left.-\delta(k) v_{k}+\beta(k)\left(r_{k}^{T} F a_{k+1}\right) r_{k}\right)= \\
& =F^{T} T_{k}^{-1} F F a_{k} \\
& =\left(T_{k}^{-1}-H_{k} J H_{k}^{T}\right) F a_{k} \\
& =q_{k}-H_{k} J H_{k}^{T} F a_{k} .
\end{aligned}
$$

The right-hand side of this expression can be evaluated in $O\left(n \alpha+l_{1}\right)$ flops, and then q_{k+1} can be obtained in
$O\left(n+l_{1}+l_{2}\right)$ flops, provided F is invertible. We now derive another expression for q_{k+1} :

$$
\begin{aligned}
q_{k+1} & =T_{k+1}^{-1} F a_{k+1} \\
& =T_{k+1}^{-1} F^{2} a_{k}+\delta(k) T_{k+1}^{-1} F g .
\end{aligned}
$$

Multiplying by F^{T} as before, we have

$$
\begin{aligned}
& F^{T}\left(q_{k+1}-\delta(k) v_{k+1}\right)= \\
= & F^{T} T_{k+1}^{-1} F T_{k} T_{k}^{-1} F a_{k} \\
= & \left(T_{k+1}^{-1}-H_{k+1} J H_{k+1}^{T}\right) T_{k} q_{k} \\
= & T_{k+1}^{-1} T_{k} q_{k}-H_{k+1} J H_{k+1}^{T} F a_{k} \\
= & \left(T_{k}^{-1}-\beta(k) r_{k} r_{k}^{T}\right) T_{k} q_{k}-H_{k+1} J H_{k+1}^{T} F a_{k} \\
= & q_{k}-\beta(k)\left(r_{k}^{T} F a_{k}\right) r_{k}-H_{k+1} J H_{k+1}^{T} F a_{k} \\
= & q_{k}-\beta(k)\left(a_{k}^{T} q_{k}\right) r_{k}-H_{k+1} J H_{k+1}^{T} F a_{k} .
\end{aligned}
$$

Either of the last two right-hand sides can be evaluated in $O\left(n \alpha+l_{1}\right)$ flops. Then q_{k+1} can be obtained in $O(n+$ l_{2}) flops. For diagonal and bidiagonal F, both l_{1} and l_{2} are $O(n)$. The above recursions for q_{k+1} require F to be nonsingular.

The cost per iteration of the above algorithm is $O\left(n \alpha^{2}+l_{1}+l_{2}\right)$. We summarize its steps below.

Fast Updating of Structured Linear Equations with Affine Transformed Updates (FUSA)

1. Initialization (overhead costs). Given $\left\{G_{0}, H_{0}\right\}$, compute x_{0} and $\left\{r_{0}, v_{0}, q_{0}, p_{0}\right\}$ using G_{0} and the so-called generalized Schur algorithm with back-substitution, or by using H_{0} and fast matrix-vector multiplication procedures for matrices with displacement structure (see, e.g., $[1,2,4,5]$). Compute also $\beta(0)$ as an inner product.
2. Assume that we have $\left\{H_{k}, r_{k}, p_{k}, v_{k}, q_{k}, x_{k}, \beta(k)\right\}$ and iterate:

$$
x_{k+1}=x_{k}+\beta(k) r_{k}\left[\eta(k)-a_{k}^{T} x_{k}\right][O(n) \text { flops }]
$$

- Compute the QR factorization (2) $\left[O\left(n \alpha^{2}+l_{1}\right)\right.$ flops].
- Compute the eigendecomposition (3) $\left[O\left(\alpha^{3}\right)\right.$ flops].
- Let $H_{k+1}=Q_{k} W_{k} \sqrt{\left|\Lambda_{k}\right|}$ and discard the two zero columns of H_{k+1} [$O\left(n \alpha^{2}\right)$ flops].
- Compute $p_{k+1}=p_{k}-\beta(k)\left[a_{k}^{T} p_{k}\right] r_{k}[O(n)$ flops].
- Compute $v_{k+1}=v_{k}-\beta(k)\left[a_{k}^{T} v_{k}\right] r_{k}[O(n)$ flops].
- Compute $r_{k+1}=q_{k}+\delta(k) p_{k}-\beta(k)\left[r_{k}^{T} a_{k+1}\right] r_{k}$ [$O(n)$ flops].
- Compute $q_{k+1}=\delta(k) v_{k}-\beta(k)\left[r_{k}^{T} F a_{k+1}\right] r_{k}+$ $F^{-T}\left[q_{k}-H_{k} J H_{k}^{T} F a_{k}\right]\left[O\left(l_{1}+l_{2}+n \alpha\right)\right.$ flops $]$.
- Compute $\beta(k+1)=a_{k+1}^{T} r_{k+1}[O(n)$ flops].

4 Shift Structured Updates

Let us now consider the case in which F is singular, e.g., $F=Z$, the lower triangular shift matrix (i.e., a Jordan block with ones on the first sub-diagonal), or $F=Z \oplus Z$, etc. We focus on the case $F=Z$ since the argument can be generalized to other singular matrices F.

The only difficulty that we need to resolve in this situation is how to compute q_{k+1} recursively in $O\left(n \alpha^{2}+l_{1}+l_{2}\right)$ flops. Recall from the first recursion for q_{k+1} in the previous section that

$$
\begin{gather*}
F^{T}\left(q_{k+1}-\delta(k) v_{k}+\beta(k)\left(r_{k}^{T} F a_{k+1}\right) r_{k}\right)= \\
q_{k}-H_{k} J H_{k}^{T} F a_{k} \tag{4}
\end{gather*}
$$

Since we have assumed that $F=Z$, this equation can be solved for all the components of q_{k+1} except the first one. So all we need to do is to recover the first component of q_{k+1} efficiently.

To do this, we examine the following equation:

$$
q_{k+1}-\delta(k) v_{k}+\beta(k)\left(r_{k}^{T} F a_{k+1}\right) r_{k}=T_{k}^{-1} F^{2} a_{k}
$$

We see that all we need is the first row of T_{k}^{-1}. Therefore let $y_{k}=T_{k}^{-1} e_{1}$, where e_{1} is the first basis vector. Then we see that

$$
\begin{equation*}
e_{1}^{T} q_{k+1}=y_{k}^{T} F^{2} a_{k}+\delta(k) e_{1}^{T} v_{k}-\beta(k)\left(r_{k}^{T} F a_{k+1}\right) e_{1}^{T} r_{k}, \tag{5}
\end{equation*}
$$

which can be computed in $O(n)$ flops if y_{k} is available. It is convenient to combine equations (4) and (5) into one equation as follows (exploiting the fact that $F=Z$):

$$
\begin{aligned}
& q_{k+1}=\delta(k) v_{k}-\beta(k)\left(r_{k}^{T} F a_{k+1}\right) r_{k}+ \\
& \quad+y_{k}^{T} F^{2} a_{k} e_{1}+F\left(q_{k}-H_{k} J H_{k}^{T} F a_{k}\right)
\end{aligned}
$$

The cost of evaluating q_{k+1} from this formula is $O(n \alpha)$ flops.

Clearly $y_{0}=T_{0}^{-1} e_{1}$ can be computed in $O\left(n^{2}\right)$ flops using G_{0}. This can be regarded as an overhead cost. We now derive a rapid recurrence for y_{k+1} as follows:

$$
\begin{aligned}
y_{k+1} & =T_{k+1}^{-1} e_{1}=T_{k}^{-1} e_{1}-\beta(k) r_{k} r_{k}^{T} e_{1} \\
& =y_{k}-\beta(k)\left(r_{k}^{T} e_{1}\right) r_{k} \\
& =y_{k}-\beta(k)\left(a_{k}^{T} y_{k}\right) r_{k}
\end{aligned}
$$

Either of the last two expressions can be evaluated in $O(n)$ flops to yield y_{k+1} recursively.

The cost per iteration of the above algorithm is $O\left(n \alpha^{2}\right)$.
Fast Updating of Structured Linear Equations with Affine Transformed Updates with $F=Z$ (FUSAZ)

1. Initialization (overhead costs). Given $\left\{G_{0}, H_{0}\right\}$, compute x_{0} and $\left\{r_{0}, v_{0}, q_{0}, p_{0}, y_{0}\right\}$ using G_{0} and the so-called generalized Schur algorithm with backsubstitution, or by using H_{0} and fast matrix-vector multiplication procedures for matrices with displacement structure (see, e.g., $[1,2,4,5]$). Compute also $\beta(0)$ as an inner product.
2. Given $\left\{H_{k}, r_{k}, p_{k}, v_{k}, q_{k}, y_{k}, x_{k}, \beta(k)\right\}$, iterate:

- $x_{k+1}=x_{k}+\beta(k) r_{k}\left[\eta(k)-a_{k}^{T} x_{k}\right][O(n)$ flops $]$.
- Compute the QR factorization (2) $\left\{O\left(n \alpha^{2}+l_{1}\right)\right.$ flops].
- Compute the eigendecomposition (3) $\left[O\left(\alpha^{3}\right)\right.$ flops].
- Let $H_{k+1}=Q_{k} W_{k} \sqrt{\left|\Lambda_{k}\right|}$ and discard the two zero columns of H_{k+1} [$O\left(n \alpha^{2}\right)$ flops].
- Compute $p_{k+1}=p_{k}-\beta(k)\left[a_{k}^{T} p_{k}\right] r_{k}[O(n)$ flops].
- Compute $v_{k+1}=v_{k}-\beta(k)\left[a_{k}^{T} v_{k}\right] r_{k}[O(n)$ flops].
- Compute $y_{k+1}=y_{k}-\beta(k)\left[a_{k}^{T} y_{k}\right] r_{k}[O(n)$ flops].
- Compute $r_{k+1}=q_{k}+\delta(k) p_{k}-\beta(k)\left[r_{k}^{T} a_{k+1}\right] r_{k}$ [$O(n)$ flops].
- Compute $q_{k+1}=\delta(k) v_{k}-\beta(k)\left[r_{k}^{T} F a_{k+1}\right] r_{k}+$ $y_{k}^{T} F^{2} a_{k} e_{1}+F\left[q_{k}-H_{k} J H_{k}^{T} F a_{k}\right][O(n \alpha)$ flops].
- Compute $\beta(k+1)=a_{k+1}^{T} r_{k+1}[O(n)$ flops $]$.

5 Adaptive Filtering

We now comment briefly on an application in the context of adaptive filtering [6, 7]. More details along with connections with, and alternatives to, existing fast RLS schemes [$8,9,10$] and fast state-space estimation algorithms [11, 12] will be pursued elsewhere.

Thus consider a sequence of k scalar data points, $\{d(j)\}_{j=1}^{k}$, also known as reference or desired signals, and a sequence of k row vectors $\left\{u_{j}^{T}\right\}_{j=1}^{k}$, also known as input signals, with the entries of each u_{j}^{T} denoted by

$$
u_{j}^{T}=\left[\begin{array}{llll}
u(j) & u(j-1) & \ldots & u(j-M+1) \tag{6}
\end{array}\right]
$$

Consider also a positive-definite weighting matrix Π_{0}. The objective is to minimize the following cost function over w :

$$
\begin{equation*}
\min _{w}\left[w^{T} \Pi_{0}^{-1} w+\sum_{j=1}^{k}\left|d(j)-u_{j}^{T} w\right|^{2}\right] . \tag{7}
\end{equation*}
$$

The optimal solution w_{k} of (7) is well-known to be the solution of the linear system of equations $\Phi_{k} w_{k}=s_{k}$, where Φ_{k} and s_{k} satisfy the time-update relations

$$
\begin{align*}
\Phi_{k+1} & =\Phi_{k}+u_{k+1} u_{k+1}^{T} \tag{8}\\
s_{k+1} & =s_{k}+d(k+1) u_{k+1} \tag{9}
\end{align*}
$$

with initial conditions $\Phi_{0}=\Pi_{0}^{-1}$ and $s_{0}=0$.
It can be verified that, in general, the difference Φ_{k+1} $Z \Phi_{k} Z^{T}$ has rank 3 and inertia ($1,1,-1$), so that generally Φ_{k} itself will have displacement rank $\alpha=4$, viz., it will satisfy a displacement equation of the form

$$
\Phi_{k}-Z \Phi_{k} Z^{T}=G_{k} J G_{k}^{T}
$$

where G_{k} has four columns and $J=\operatorname{diag}(1,1,-1,-1)$; see also [13] (the effect of Π_{0} is not considered in [13]). The values of $\left\{G_{0}, H_{0}\right\}$ are determined by the choice of Π_{0}. For example, if we choose Π_{0} as $\Pi_{0}=\mu I$ for some $\mu>0$, then

$$
\Pi_{0}-Z \Pi_{0} Z^{T}=\mu e_{1} e_{1}^{T},
$$

so that we can take

$$
H_{0}=\left[\begin{array}{cccc}
\dot{\sqrt{\mu}} e_{1} & 0 & 0 & 0
\end{array}\right], \quad J=\operatorname{diag}(1,1,-1,-1) .
$$

Moreover, the famed recursive least-squares (RLS) algorithm is a recursive procedure for evaluating the successive w_{k}. If we define

$$
\begin{equation*}
P_{k}=\Phi_{k}^{-1}, \quad g_{k}=\Phi_{k}^{-1} u_{k} \tag{10}
\end{equation*}
$$

then the RLS algorithm is given by

$$
\begin{align*}
w_{k} & =w_{k-1}+g_{k}\left[d(k)-u_{k}^{T} w_{k-1}\right] \tag{11}\\
g_{k} & =\frac{P_{k-1} u_{k}}{1+u_{k}^{T} P_{k-1} u_{k}} \tag{12}\\
P_{k} & =P_{k-1}-g_{k} u_{k}^{T} P_{k-1} \tag{13}
\end{align*}
$$

In addition, with the RLS problem we associate two residuals at each time instant k : the a priori estimation error $e_{a}(k)$, defined by $e_{a}(k)=d(k)-u_{k}^{T} w_{k-1}$, and the a posteriori estimation error $e_{p}(k)$, defined by $e_{p}(k)=$ $d(k)-u_{k}^{T} w_{k}$. If we replace w_{k} in the definition for $e_{p}(k)$ by its update expression (11), some straightforward algebra will show that $e_{p}(k)=\gamma(k) e_{a}(k)$, where the so-called conversion factor $\gamma(k)$ is given by

$$
\gamma(k)=\frac{1}{1+u_{k}^{T} P_{k-1} u_{k}} .
$$

Comparing all these results with the definitions employed in the earlier sections for the solution of equations of the form $T_{k} x_{k}=b_{k}$, we see that we can make the identifications shown in the table between the variables of the RLS problem and the variables of the earlier sections.

General problem	RLS problem
T_{k}	Φ_{k}
b_{k}	s_{k}
x_{k}	w_{k}
a_{k}	u_{k+1}
$\eta(k)$	$d(k+1)$
F	Z
$\delta(k)$	$u(k+2)$
g	e_{1}
$\beta(k)$	$\gamma(k+1)$
r_{k}	$g_{k+1} / \gamma(k+1)$

References

[1] T. Kailath and A. H. Sayed, Displacement structure: Theory and applications, SIAM Review, vol. 37, no. 3, pp. 297-386, Sep. 1995.
[2] T. Kailath and A. H. Sayed, eds., Fast Reliable Algorithms for Matrices with Structure, SIAM, PA, 1999.
[3] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd edition, The Johns Hopkins University Press, Baltimore, 1996.
[4] S. Chandrasekaran and A. H. Sayed, Stabilizing the generalized Schur algorithm, SIAM J. Matrix Anal. Appl. vol. 17, no. 4, pp. 950-983, 1996.
[5] S. Chandrasekaran and A. H. Sayed, A fast stable solver for nonsymmetric Toeplitz and quasi-Toeplitz systems of linear equations, SIAM J. Mat. Anal. and Appl., vol. 19, no. 1, pp. 107-139, Jan. 1998.
[6] S. Haykin, Adaptive Filter Theory, 3rd edition, Prentice Hall, NJ, 1996.
[7] A. H. Sayed and T. Kailath, A state-space approach to adaptive RLS filtering, IEEE Signal Processing Magazine, 11, pp. 18-60, July 1994.
[8] G. Carayannis, D. Manolakis, and N. Kalouptsidis, A fast sequential algorithm for least-squares filtering and prediction, IEEE Trans. Acoust. Speech Signal Process., vol. 31, pp. 1394-1402, Dec. 1983.
[9] J. Cioffi and T. Kailath, Fast recursive-least-squares transversal filters for adaptive filtering, IEEE Trans. Acoust. Speech Signal Process., vol. 32, pp. 304-337, April 1984.
[10] R. Merched and A. H. Sayed, Fast RLS Laguerre adaptive filtering, Proc. Allerton Conference on Communication, Control, and Computing, Allerton, IL, Sep. 1999.
[11] A. H. Sayed and T. Kailath, Extended Chandrasekhar recursions, IEEE Trans. Automat. Contr, 39, pp. 619-623, Mar. 1994.
[12] A. P. Mullhaupt and K. S. Riedel, Fast adaptive identification of stable innovation filters, IEEE Transactions on Signal Processing, vol.45, no.10, p. 2616-2619, Oct. 1997.
[13] R. A. Regalia and F. Desbouvries, Displacement structures of covariance matrices, lossless systems, and numerical algorithm design, SIAM J. Matrix Anal. Appl., vol. 16, no. 2, pp. 536-564, April 1995.

[^0]: *This material was based on work supported in part by NSF awards CCR-9732376 and CCR-9734290, and by ARO DAAH04-96-1-0176P00005.
 ${ }^{\dagger}$ Dept. Electrical and Computer Engineering, University of California, Santa Barbara, CA 93106.
 ${ }^{\ddagger}$ Dept. of Mathematics, University of California, Los Angeles, CA 90095.
 ${ }^{\$}$ Electrical Engineering Dept., University of California, Los Angeles, CA 90095.

